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Abstract: The Periodic Table, and the unique chemical be-
havior of the first element in a column (group), were discov-

ered simultaneously one and a half centuries ago. Half a
century ago, this unique chemistry of the light homologs

was correlated to the then available atomic orbital (AO)
radii. The radially nodeless 1s, 2p, 3d, 4f valence AOs are

particularly compact. The similarity of r(2s)& r(2p) leads to
pronounced sp-hybrid bonding of the light p-block ele-

ments, whereas the heavier p elements with n+3 exhibit

r(ns) ! r(np) of approximately @@20 to @@30 %. Herein, a
comprehensive physical explanation is presented in terms of

kinetic radial and angular, as well as potential nuclear-attrac-
tion and electron-screening effects. For hydrogen-like atoms

and all inner shells of the heavy atoms, r(2s) @ r(2p) by
++ 20 to ++ 30 %, whereas r(3s)0 r(3p)0 r(3d), since in Cou-

lomb potentials radial motion is more radial orbital expand-
ing than angular motion. However, the screening of nuclear

attraction by inner core shells is more efficient for s than for
p valence shells. The uniqueness of the 2p AO is explained

by this differential shielding. Thereby, the present work

paves the way for future physical explanations of the 3d, 4f,
and 5g cases.

Introduction

Knowing the trends along a series of related compounds is val-

uable for every chemist. Understanding the underlying physical
reasons is even better. The individual chemical facts can be re-

lated to the general physical laws, stepwise, by first finding
some generalizing empirical rule, and then rationalizing the

rule by atomistic and electronic models that can be deduced
from a quantum chemical basis.

The unique chemical behavior of the 2p elements of the

second period of the table of elements, in particular of B to F,
is well known.[1–13] Yet, this chemical insight still needs better

physical rationalization, and better integration into the chemi-
cal curricula. We here present a comprehensive analysis of the

nsp valence atomic orbitals (AOs) of the p-block elements, that

is, of the canonical orbitals from Hartree–Fock or Dirac–Fock or
Kohn–Sham levels of theory; which simulate the observable

spatial and energetic changes in physical ionization and excita-

tion processes.
In 2019, we celebrated the sesquicentenary of the first com-

prehensive tables of chemical elements, developed by Meyer,
Mendeleev, and others in the 1860s.[1, 14, 15] Mendeleev also real-

ized the uniqueness of elements H and Li to F, following earlier
notes in Gmelin’s handbook of 1843.[16] Although Meyer con-
tributed to the discussion, he did not emphasize the aspects

of the “uniqueness”.[17]

It took another century until Jørgensen[2] related the unique-

ness of the first element in any vertical group of the periodic
table to the exceptionally small radial extensions of the 1s, 2p,

3d, and 4f AOs. Orbital functions of all atoms had become
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known through the then-possible routine atomic structure
computations (see also the Supporting Information). The 1s,

2p, 3d and 4f AOs are characterized by having no radial nodes,
in contrast to the n‘ AOs with higher principal quantum num-

bers n>‘+ 1, which have n@(‘+ 1) radial nodes (n and ‘ are
the principal and angular quantum numbers). This so-called

Radial Node Effect is now linked to a well-documented set of
empirical chemical phenomena.[2–9]

Conceptual Analysis of Observations and
Computations

Radial node effect and core screening

The radii of the valence AOs, the Radial Node Effect, and the
screening of the nuclear attraction potential by the electronic

core shells were explicated by Shchukarev in great chemical
detail, and reviewed in the 1970s.[3, 4] Following Jørgensen, he

was the first to rationalize the comprehensive bulk of empirical
chemistry of those elements, where an orbital angular momen-

tum number ‘ appears for the first time. Shchukarev named

the 1s, 2p, 3d, and 4f AOs kaino(ceno)symmetric (Greek:
kainj&, kainos = new) and Pyykkç[5] named them primogenic

(Latin: primus = first, genitus = born).
Harris and Jones[6] investigated the different geometric and

electronic structures and the bonding in group 14 dimers (C2

to Pb2) and highlighted the nodelessness of the C 2p shell. In a

seminal review, Kutzelnigg[7] pointed out that the distinct hy-

bridization of bonded B, C, N, O atoms is mainly due to the
similar radii of their s and p valence AOs, occurring despite the

rather different s and p AO energies in the second period. The
resulting impressive difference of structure and bonding of

C2H2 and Si2H2 has recently been elucidated by Ruedenberg et
al.[18] Only for F, the very different AO energies e(2s) ! e(2p)

suppress any significant hybridization.[7] In recent decades, vari-

ous excellent, chemically oriented reviews have been pub-
lished by Kaupp, Huheey, and others.[8–13] Thereby, the macro-

scopic chemical observations were realized as empirical trends
and qualitatively rationalized at the AO level.

Shchukarev’s rationalization was based on two physical
mechanisms,[4] of potential and of kinetic type, which in coop-
eration cause the unique pattern of AO radii and thereby yield
the unique chemistries of each first element of a group. The

first, potential energy, mechanism is related to the penetration
of the s valence AOs deep into the atomic core, where the at-
traction of the effective nuclear Coulomb potential is large.
This effect of deep potential energy will be quantitatively ex-
plored below by an analysis of core screening, using numerical

quantum mechanical computations of many-electron atoms
within the orbital model (for details see the Supporting Infor-

mation, S.2–4). We confirm Shchukarev’s educated guess that
the p AOs are better shielded from nuclear attraction than the
s AOs, meaning an actual deviation from Slater’s lowest-order

approximation of similar screening of s and p AOs.[19]

Shchukarev was not fully confident about the second mech-

anism, related to kinetic energy, that is, the Radial Node Effect.
More radial, instead of more angular, motion means in wave

mechanics that the orbitals have more radial maxima and
nodes and fewer angular maxima (lobes) and nodes. The nodal
pattern of a wave function is determined by the boundary
conditions, the stationary energy, and the potential function.
This interrelation will be quantitatively explored by using
mathematical derivations of one-electron atoms with different

model potentials.[20, 21] We also elucidate the meaning of the
so-called non-bonded Pauli repulsions by lower-energy occu-
pied (as well as virtual unoccupied) orbitals, represented by

pseudopotentials[22] that simulate the orbital orthogonality
constraint. H and the 2nd period elements have, respectively,

no and a particularly small 1s2 Pauli-repelling atomic core shell,
as compared to the heavier elements.

The second, kinematic mechanism has become a popular ra-
tionalization of the primogenic effect in chemistry, for example,

in refs. [5, 8, 9] , assuming that the centrifugal force simply

causes p AOs to be more expanded than s AOs. However, the
chemical differences and respective physical causes appear

rather complicated in the four different sets of 1s, 2p, 3d, and
4f elements. Compare, for example, the 1s case (H 1s1 vs. Li 2s1

& F 2p5 ; and He 1s2 vs. Be 2s2 & Ne 2p6) with the 4f case (the 15
lanthanoids La–Gd and Gd–Lu are chemically similar to Ac and

the later actinoids Cm–Lu, whereas the early actinoids Th–Am

are more or less akin to d elements Hf–Ir). Clearly, the chemical
diversity is richer than expected on the basis of the Radial

Node Effect alone.

The physical problem with the p block

We will elucidate the physical mechanisms that cause the di-
versity of ns–np radii patterns of the chemically diverse light

and heavy p-block elements. The principal quantum number

of an AO is [Eq. (1)]

n ¼ 1þ ‘þ 1 ð1Þ

where 1 is the quantum number of radial nodes, ‘ of angular
nodes, and the ‘ + 1’ originates from the Heisenberg Uncertain-

ty principle of quantum theory (see also the Supporting Infor-
mation, S.6). A common conjecture in chemistry is that the

local value of the repulsive centrifugal force for an electron

with angular quantum number ‘>0, [Eq. (2)]

FðrÞcentrifugal ¼ ‘ð‘þ 1Þ=r3 ð2Þ

(in atomic units, au), moves the outer maximum of an orbital

to larger radii. But for hydrogen atoms, s AOs are more extend-

ed than p AOs of the same energy (Figure 1, left). The explicit
formula for the hydrogenic hri values[20] is (in au; note the

minus sign in front of the angular momentum term) [Eq. (3)]:

hri ¼ ð3 n2@ð‘þ 1Þ ? ‘Þ=2Z ð3Þ

On the other hand, for the second period p-block elements
with somewhat larger and slightly screened nuclear Coulomb

potentials (by the 1s2 core shell), the valence 2s,2p AOs with
somewhat different energies e(2s)<e(2p) have similar radial
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extensions, r(2s)& r(2p), for various definitions of r (see

Table 2), whereas for the heavier elements of the nth period
with significantly larger and significantly more screened nucle-

ar Coulomb potentials (by the 1s2 to (n@1)p6 core shells), the

ns and np AOs with less different orbital energies e(2s)9e(2p)
have r(ns) ! r(np) (Figure 1, right). This pattern is summarized

in Table 1. Clearly, both kinetic and potential energy effects
need to be considered in any, even qualitative, explanation.

Differently shaped potentials

At first, we investigate the radial extensions rn‘ of radial (‘= 0)
and angular-rotational motions (primogenic largest ‘= n@1) at

a given energy e in differently shaped potentials, with the hy-
drogenic Coulomb potential as the reference. The s/p radii

ratios [Eq. (4)]

Qn ¼ hrins=hrinp ð4Þ

are for the hydrogenic case Q2 = 1.2, Q3 = 1.08 (Figure 1, left),

Q1!1, whereas hri3s/hri3d = 1.29, Qmax = hrins/hrin,‘max = n@1!1.5.
Clearly, the ratio of hydrogenic ns / n‘ radii is 1< rns/rn‘<1.5.

The ‘empirical’ finding is: Iso-energetic conversion of radial into
angular motion contracts hydrogenic orbitals.

The hydrogenic AO energies (in a.u.) [Eq. (5)]:

en‘ ¼ @Z2=2n2 ¼ @n ? ðZ2=2n3Þ ð5Þ

depend only on the principal quantum number n =1+ ‘+ 1

[Eq. (1)] . The energy quanta of radial and angular motions are
equal (see the Supporting Information, S.6). That does not

hold for most other potentials such as for the harmonic oscilla-

tor, the particle in a box, or the linear potential (modeling, e.g. ,
the strong color interaction of quarks with constant force at

large distances, or the vertical motion of a mass on a trampo-
line). In general, there are large gaps between the s and p orbi-

tal levels. For instance, the energies of three-dimensional har-
monic vibrations in potential V(r)~ + r+ 2 (compare with the

Coulomb potential V(r)~@r@1, see Eq. (1), Eq. (5)) are [Eq. (6)] ,

[Eq. (7)]

en‘ ¼ þn ? ðhvÞ ð6Þ

n ¼ 2 ? 1þ ‘þ 1:5 ð7Þ

In general, one cannot compare quantized s and p states at

the same or similar energies, as for atoms. For the harmonic
oscillator, e(p) is just in the middle between the two corre-

sponding e(s) levels.

However, at higher energies, one may compare purely radial

(rrad = r‘= 0) and angular-rotational states (rang = r‘-max), at similar
energies. The semi-classical approach is a reliable approxima-

tion[21] to estimate the ratio Qmax = rrad/rang = r‘= 0/r‘-max. Some re-
sults for potentials V(r) = c·k·rk with k2(@2, +1) show that for

k2(@2, + 1), the potentials are flattish at large r yielding

rrad > rang (Figure 2, left, Qmax+1), whereas for more box-like
potentials with k2(+ 1, +1), rrad< rang (Figure 2, right,

Qmax<1). Potential wells that are wider at the bottom, and steep-
er, result in more compact radial motion versus more extended

angular motion.

Figure 1. Radial densities r2f(r)2 of valence AOs f (in atomic units e/Bohr)
versus nuclear distance r (in a). The dashed (red in the electronic version)
and solid (blue) curves, respectively, refer to p and s AOs. The bold numbers
specify the change of orbital radii from p to s in % (referring to the density
maxima at rmax ; in parentheses for the hri average values; the trends of both
are similar and pictured by the bold (blue) arrows). Left : H-like atoms/ions
(here Be3 +(n‘), without any core shells) ; 2s is significantly more extended
than 2p (ca. + 30 and + 20 %), whereas 3s and 3p are less different
(< + 10 %). Right: C and Si: rmax of C 2s and C 2p are similar, hri of C 2s is a
little more compact (ca. @10 %); Si 3s is approximately @20 % smaller than
Si 3p.

Table 1. Pattern of s and p AO radii (see Figure 1, Table 2, and
Refs. [20, 23]).

Hydrogen-like AOs & core AOs
of many-electron atoms

Valence shell AOs
of p-block atoms

n = 2 hri2s @ hri2p (>by + 20 to + 30 %) hri2s&hri2p (<by 0 to @10 %)
n+3 hrins&hrinp (>by 0 to + 10 %) hrins ! hrinp (<by @20 to @30 %)

Figure 2. Three-dimensional spherical potentials V(r) with different shapes.
Left : Green: The electrostatic Coulomb potential ~@r@1 is narrow at short
range and flattish at long range, therefore rrad @ rang and Qmax = rrad/rang>1.
Blue: The linear interaction ~ + r+ 1 is the border case with Qmax = 1. Right:
Potentials are wide at low energies with a steep rise, yielding rrad ! rang and
Qmax<1. Lilac: Harmonic oscillator potential ~ + r+ 2. Red: Typical screened
Coulomb potential. Brown: Spherical box potential ~ + r+1. For details, see
section S.2b and Table S1 in the Supporting Information.
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Impact of screening on s vs. p valence orbitals

Table 2 displays the ratios Qn = rns/rnp of s over p valence AO
radii for p-block atoms. Qn values <1 indicate smaller s than p

AOs. The ratio values scatter by only a few percent over a
period in the p block. Throughout, the ratios of the s/p valence

orbital radii are reduced from hydrogen to atoms with core
shells by DQn2[@0.30, @0.23] , remarkably independent of the

cores: 1s2 for 2sp, or (1s2s2p)10 for 3sp, or (1s–3d)28 for 4sp, or
(1s–4d)46 for 5sp. The radius patterns of H-like or inner-core
AOs are contrasted with the valence AOs of the p-block ele-
ments in Table 1.

We now investigate how the shielding of the nuclear attrac-

tion of the outer valence s and p AOs by the inner core shells
emerges. Different relativistic Dirac–Fock and Kohn–Sham den-

sity functional calculations yield similar trends. Technical details

are given in the Supporting Information (S.4). We increase the
nuclear charge of an excited H atom and simultaneously add

electrons.
First, we add valence electrons to H (ns,np)1 (H*), obtaining

Be ns2np2 (Be**) with an empty core and populated valence
shells as in atoms C (n = 2), Si (n = 3), or Ge (n = 4). Since the

AO radii vary as ~1/Z (compare Eq. (3)), we plot 1/hri versus Z

to obtain nearly linear lines (Figure 3). Up to an n-dependent
scale factor, 1/hri had been defined as Zeff by Hartree,[24] that is,

Figure 3 actually shows Zeff versus Z. The steep slopes on the
left side indicate strong AO contraction and Zeff increase upon

increase of Z, owing to the weak screening of the increasing
nuclear charge when electrons are added in the same valence

shell. This is in accordance with Slater’s[19b] medium–small

mean shielding constant with an average value of s= 0.35 for
s,p shells. The screening constant s corrects the nuclear charge

Z to Z@s ; this can be applied to the exponent in the wave-
function[21] or to expressions for orbital energies, or for orbital

radii, as suggested by Hartree. He stressed “there is no single
‘screening parameter’ which will represent all the properties.

This is perhaps not always sufficiently realized”. In quantum
defect theory, two weakly varying parameters s‘ and d‘ are

needed to describe an outer orbital with quantum numbers

n,‘, the effective screening by Z@s‘, and the effective phase
shift or quantum number by n@d‘.

Second, we populate the core shells until reaching C, Si, or
Ge. Screening by inner shells is more efficient (s!1), whereas

screening by outer (Rydberg) shells would be even weaker
(s!0). The radii of the sp valence shells behave approximately

as expected for Slater’s nuclear screening by the next inner

(ss = sp = 0.85) and further in-bound sp shells (ss =sp = 1), cor-
responding to the flat lines on the right side of Figure 3. How-
ever, somewhat different screening for s than for p AOs was al-
ready noticed by Clementi et al.[25] This is here reconfirmed by
the steeper lines for ns than for np AOs in Figure 3. This is due
to the stronger core penetration of the s AOs. Concerning the

AO radii, the differential screening of the valence s versus p
AOs by the next inner sp core shell is better described by ss

&0.7 and sp&0.9 to 1.0, than by Slater’s single averaged value

of ss,p&0.85. As a consequence, the valence s AOs of heavier
p-block atoms are eventually more contracted than the p AOs.

Core vs. valence screenings

The s/p radii ratios Qn for 1-electronic H*, for 4-valence elec-
tronic Be**, both with empty lower shells, and for 1-valence

electronic atoms with filled core shells (A = Li, Na, Cu), and for
group 14 atoms of the second to fourth period (E = C, Si, and

Ge) are displayed in Table 3. The hri and rmax ratios show similar
trends as sketched in Figure 4. The core-valence inter-shell

Figure 3. Inverse radii hn‘ j r jn‘i@1 (in nm@1) corresponding to Zeff of the
atomic n‘ valence orbitals versus nuclear charge number Z (with electronic
core–hole configurations (see Supporting Information, S.4–5). The straight
lines (full for s, dotted for p) guide the eyes from H* n(sp)1 through
Be** ns2np2 to C 1s2–2s22p2 or, respectively, Si 1s22s22p6–3s23p2. The smaller
slopes for np versus the steeper for ns from Be onward to C or Si show that
the np valence orbitals are better shielded from the (increasing) nuclear
charge by the (increasing number of) core electrons than the ns orbitals.
Note the change of order from H* and Be** (rs> rp) to C or Si (rs< rp).

Table 2. Ratios Qn = rns/rnp of the various valence orbital radii (rmax , hri,phr2i) in period n. Results for H from Bethe.[20] Dirac–Fock results for
many-electron atoms from Desclaux.[23] DQn is the mean reduction of the
hydrogenic Qn value. Different computational approaches yield very simi-
lar trends for rmax , hri, and

phr2i, for the whole p-block.[7–9, 23, 25–27]

n r2s/r2p H B C N O F Mean DQ2

2 rmax 1.309 0.96 1.00 1.03 1.05 1.06 1.02 @0.29
hri 1.200 0.90 0.91 0.92 0.92 0.92 0.91 @0.29phr2i 1.183 0.87 0.88 0.89 0.89 0.89 0.88 @0.30

r3s/r3p H AI Si P S CI Mean DQ3

3 rmax 1.090 0.78 0.82 0.86 0.88 0.89 0.85 @0.25
hri 1.080 0.76 0.79 0.81 0.83 0.84 0.81 @0.27phr2i 1.072 0.75 0.78 0.80 0.82 0.83 0.80 @0.28

r4s/r4p H Ga Ge As Se Br Mean DQ4

4 rmax 1.044 0.75 0.79 0.81 0.84 0.86 0.81 @0.24
hri 1.043 0.72 0.75 0.78 0.80 0.81 0.77 @0.27phr2i 1.04 0.71 0.75 0.77 0.79 0.80 0.76 @0.28

r5s/r5p H In Sn Sb Te I Mean DQ5

5 rmax 1.03 0.75 0.79 0.82 0.84 0.85 0.81 @0.23
hri 1.027 0.72 0.76 0.78 0.80 0.81 0.78 @0.25phr2i 1.025 0.72 0.75 0.78 0.79 0.81 0.77 @0.26
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shielding of nuclear attraction of the valence ns versus np AOs
by the (1s)2, (1s–2p)10, and (1s–3d)28 core shells reduces the hy-
drogenic rns/rnp ratio Qn throughout by approximately @40 %,

whereas the s2p2 intra-valence shell shielding is nearly an order
of magnitude smaller (ca. @5 %). The two shielding effects in-

terfere and damp each other (by ca. + 15 %), which is not un-
common for two different ‘perturbations’. The joint screening

reduction of Qn then sums up to approximately @40 %@5 % +

15 %&@30 %, throughout, as mentioned above (Table 2).

Inferences

When periodic tables of elements were designed 150 years
ago, it was realized that the first element in a column is spe-

cial. A good century later, a large body of observed facts on
the light homologs had been collected, classified, and related
to the comparatively small radii of the 1s, 2p, 3d, and 4f va-
lence AOs, resulting in different bonding schemes for the first
versus the heavier homologs. Concerning the unique p ele-
ments of the second period, another half century passed until

the final step of understanding is now achieved. The physical
elucidation reveals why rns ! rnp for the valence shells of most

p-block elements (with dominant p-bonding), except r2s& r2p in
the second period (with dominant sp-hybrid bonding). The hy-
drogenic relations are in contrast r2s @ r2p, and rns0 rnp for n>2.

Although independent-electron orbitals in principle do not
exist by themselves in many-electron systems,[29] they have

proven as an approximate and very useful concept and tool to
explain and understand the behavior of chemical systems. In

the present context, several important points need to be taken

into account:
(1) The orbital set of an atom (or molecule) emerges as a co-

herent set, describing the quantized motions of electrons in the
nuclear Coulomb potential, screened by the other electrons.

Canonical orbitals are conveniently chosen as a mutually or-
thogonal set. Owing to the mutual orthogonality and to the

atomic potential V(r), the inner node positions of different

radial orbitals of given ‘ occur at similar places, determined by
the shape of the potential. The number of radial and angular

orbital nodes and extrema is the number of quanta of the re-
spective radial and angular motions. The number of quanta is

required either by the Pauli principle and the occupied core
shells, or by electronic excitation into a higher orbital above

unoccupied ones. An orthogonality constraint on lower (occu-

pied or unoccupied) AOs can be simulated by a pseudopoten-
tial, which is repulsive in the inner region. A pseudopotential is

a useful tool for computations and for explanations, it does
not represent a physical causal effect of mutual orthogonality.

(2) Coulomb potentials ~@r@1 are flattish at larger nuclear
distances, with a narrow deep well at the center. This potential
shape yields rather large orbital radii of the 2s, 3s, and 4s AOs,

that is, significantly larger than the radii of orbitals 2p, 3d, 4f
at the same energies. Radial motion (nodes) in a nuclear Cou-
lomb potential moves the outer maximum of an orbital to
larger radii (the Radial Node Effect) than the centrifugal force,

in particular in the case of the 2s–2p orbital pair, where the 2p
AO has no radial node. The radially nodeless 7i (‘= 6) AO is

smaller than 7s and even than 6s. For the 2s,2p AOs of H as

well as of heavy atoms with occupied core shells, (rmax)2s/(rmax)2p

is around 1.3, and hri2s/hri2p is around 1.2.

(3) Radial oscillation samples the potential at large distances
as well as in the nuclear vicinity, especially for the ‘= 0 s

states. For atomic ions Z+ q, the effective Zeff varies from Zeff = Z
at r = 0 to Zeff = 1 + q at large r. The difference of the effective

potential inside the atomic cores, compared with pure Cou-

lomb potentials, leads to contracted s AOs (the Core Screening
Effect). Slater’s lowest-order approximation of similar core

screening for s and p valence AOs is not accurate enough for
the chemical problems at hand. Although a basically Coulom-

bic potential yields the orders hri2s @ hri2p and hri3s0 hri3p0
hri3d for the inner core orbitals of all heavier atoms (the Radial

Figure 4. Variation of the ratios Qn = rns/rnp of valence orbital radii, upon
strong differential core–(s,p) valence inter-shell screening (Dcore&@0.40,
Red); upon weak (s,p) valence intra-shell screening (Dval&@0.05, Blue) ; and
the double-screening cross term of opposite sign (d(c,v)& + 0.15, Lilac).

Table 3. Ratios Qn of ns/np valence orbital radii of excited hydrogen-like
states H* (ns,np)1, of group 1 or 11 atoms A (ns,np)1, of highly excited
empty-core Be** ns2np2 configurations, and of atoms E ns2np2, E = C, Si,
and Ge.

Atom Valence
state[a]

Atomic
core

Comput.
method[b]

hrins/
hrinp

hrmaxins/
hrmaxinp

H* 2s1 or 2p1 1s0 “exact” 1.20 1.31
Li 1s2 KS-STO 0.80 0.82

Be** 2s22p2 1s0 KS-num. 1.09 1.235
C 1s2 various 0.90(2) 1.01(1)

H* 3s1 or 3p1 1s02s02p0 “exact” 1.08 1.09
Na 1s22s22p6 KS-STO 0.70 0.68

Be** 3s23p2 1s02s02p0 KS-num. 1.05 1.07
Si 1s22s22p6 various 0.78(1) 0.82(1)

H* 4s1 or 4p1 (1s–3d)0 “exact” 1.043 1.044
Cu (1s–3d)28 KS-STO 0.65 0.68

Be** 4s24p2 (1s–3d)0 KS-num. 1.023 1.034
Ge (1s–3d)28 various 0.75(1) 0.79(1)

[a] Configuration state averaged. [b] “Exact” = explicit nonrelativistic
point-charge solutions by Bethe.[20] KS-STO= nonrelativistic Kohn–Sham
PBE approach with STO basis, using the ADF program of Baerends, see
the Supporting Information, S.3a. KS-num. = numerical relativistic Dirac–
Kohn–Sham–Slater approach by Fritzsche (see the Supporting Informa-
tion, S.4b).[28] Various = Average of Kohn–Sham, Hartree–Fock, or Dirac–
Fock approaches; the number in parentheses is the standard deviation
(see also the Supporting Information, S.5).
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Node Effect, acting for n = 2), the outer valence orbitals in the
screened Coulomb potential follow the inverted order hri2s9
hri2p, but hri3s ! hri3p< hri3d (the Core Screening Effect, shifting
all ratios Qn for n+2 by ca. @0.3).

(4) Some update of chemical explanations appears appropri-
ate. (a) The centrifugal force owing to a quantum of angular

motion (corresponding to an angular node of the AO), is com-
parable to the expanding effect of a quantum of radial motion,

represented by a radial node. Which is more effective depends

on the shape of the effective potential in the core. (b) Elec-
trons in valence s AOs of many-electron atoms are less shield-

ed and more attracted and contracted than their p counter-
parts. (c) Both the energetic and radial patterns of the valence

AOs determine the bonding behavior of an element.
Other aspects may also be highlighted,[30, 31] in particular the

diverse Pauli repulsions by the divers atomic core shells,[13c, 36]

namely the small 1s2 core of the 2nd period and the ‘standard
sized’ (n-1)p6 or (n-1)p6d10 cores of the heavier nth periods co-

determine the interatomic separations, and thereby the differ-
ent valence-orbital overlaps. More exotic core interpretations

(such as by spurious nodes and outer tails of inner core orbi-
tals, or by taking formal charges seriously) have been refute-

d.[32a,b]

Conclusion

Kinetic and potential energy effects and their interplay need

be analyzed together in physical explanations of chemistry.
There is a tendency to explain covalent bonding electrostati-

cally, whereas the electronic–kinetic aspect is physically domi-
nating.[33] Conversely, the radii ratio of the s/p valence AOs

governing the bonding and chemistry of the p-block elements
is dominantly determined by the screening of the electrostatic

core potential, whereas the kinetic Radial Node Effect has

more pedagogic appeal.
The relevance of each term (radial vs. angular motion in a

more or less shielded Coulomb potential) can only be judged
on the basis of quantitative data, in particular in the more

complicated cases of d and f orbitals. That is needed for a
better future understanding of chemistry over the periodic
table. Investigations of differential screening connected to the
Radial Node Effect, as presented here for the p-block, are still
awaiting their turn to trace the physical origin of the chemical

peculiarities of the 3d, and 4f, not to mention the hypothetical
5g block.[34] The peculiarity of the non-primogenic early 5f ele-

ments belongs to this field, too.
In summary, the 2p elements are known to be qualitative-

chemically different from their heavier congeners. The physical
origin is the quantitative interplay of the electronic kinetic and

potential energies of the valence orbitals : 2p has no radial

node and little radial kinetic energy, thus 2p is radially con-
tracted. All s orbitals are weakly shielded from nuclear attrac-

tion, thus 2s, 3s, 4s etc. are radially contracted. Therefore r2s/r2p

&1, but rns/rnp<1 for n>2. The uniqueness of the 2p (as well

as the 3d and 4f) block elements exhibiting the quantum pri-
mogenic effect plays a significant role in general chemistry.

The effect is also essential for the topical support influence in
heterogeneous catalysis.[35]

Acknowledgments

We thank Sergey Druzhinin (Siegen), Gernot Frenking and

Robert Berger (Marburg), Robert Jones (Jelich), Martin Kaupp
(Berlin), Peter Schwerdtfeger (Auckland) and an anonymous re-

viewer for valuable comments. WHES thanks the theoretical
chemistry groups of Tsinghua-Beijing and Siegen Universities

for their hospitality. PP acknowledges travel support from a

Humboldt Research Prize. This work is financially supported by
the National Natural Science Foundation of China (Grant No.

22033005). The support of Guangdong Provincial Key Labora-
tory of Catalysis (No. 2020B121201002) is also acknowledged.

The calculations were performed by using supercomputers at
SUSTech and Tsinghua National Laboratory for Information Sci-

ence and Technology. Open access funding enabled and or-

ganized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: bond theory · orbital radii · periodic table ·
quantum chemistry · radial node effect · sp hybridization

[1] D. I. Mendeleev, Z. Chem. 1869, 12, 405; Ann. Chem. Pharm. Suppl. 1871,
8, 133; Zhur. Russ. Khim. Obshch. 1869, 1, 60; Zhur. Russ. Khim. Obshch.
1870, 3, 25.

[2] a) C. K. Jørgensen, Energy Levels of Complexes and Gaseous Ions, Gjeller-
up, København, 1957; b) Oxidation Numbers and Oxidation States,
Springer, Berlin, 1969.

[3] S. A. Shchukarev, J. Gen. Chem. USSR 1954, 24, 595; Rus. J. Inorg. Chem.
1969, 14, 1374; Neorganicheskaya khimiya (Inorganic chemistry), Vol. 2,
chapter 7, Vysshaya Shkola, Moscow, 1974.

[4] S. A. Shchukarev, One Hundred Years of the Periodic Law of the Chemical
Elements, 10th Jubilee Mendeleev Congress (in Russian), p. 40. Nauka,
Moscow, 1971; S. A. Shchukarev, J. Gen. Chem. USSR 1977, 47, 227; S. A.
Shchukarev, J. Gen. Chem. USSR 1977, 47, 449.

[5] P. Pyykkç, J. Chem. Res. 1979, 380; P. Pyykkç, Phys. Scripta 1979, 20, 647.
[6] J. Harris, B. O. Jones, Phys. Rev. Lett. 1978, 41, 191; J. Harris, B. O. Jones,

Phys. Rev. A 1978, 18, 2159; J. Harris, B. O. Jones, J. Chem. Phys. 1979,
70, 830; J. Harris, B. O. Jones, Phys. Rev. A 1979, 19, 1813.

[7] W. Kutzelnigg, J. Chim. Phys. Phys. Chim. Biol. 1981, 78, 295; W. Kutzel-
nigg, Angew. Chem. Int. Ed. Engl. 1984, 23, 272; Angew. Chem. 1984, 96,
262.

[8] M. Kaupp, J. Comput. Chem. 2006, 27, 320; The Chemical Bond : Chemical
Bonding Across the Periodic Table, (Eds. : G. Frenking, S. Shaik), ch. 1,
Wiley-VCH, Weinheim, 2014.

[9] a) J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of
Structure and Reactivity, 4th ed., HarperCollins, New York (NY), 1993 ;
b) Anorganische Chemie, 5th completely revised edition in German, (Ed. :
R. Steudel), ch. 18 by M. Kaupp, Walter de Gruyter, Berlin, 2014.

[10] a) V. M. Chistyakov, Zh. Obshch. Khim. 1968, 38, 209; b) V. I. Lebedev,
Vestnik LGU 1970, 6, 36; V. I. Lebedev, Geokhimiya 1989, 7, 915; c) V. A.
Latysheva, R. Hefferlin, J. Chem. Inf. Comput. Sci. 2004, 44, 1202; d) K.
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