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All animals that operate within the atmospheric boundary layer need to
respond to aerial turbulence. Yet little is known about how flying animals
do this because evaluating turbulence at fine scales (tens to approx.
300 m) is exceedingly difficult. Recently, data from animal-borne sensors
have been used to assess wind and updraft strength, providing a new possi-
bility for sensing the physical environment. We tested whether highly
resolved changes in altitude and body acceleration measured onboard
solo-flying pigeons (as model flapping fliers) can be used as qualitative
proxies for turbulence. A range of pressure and acceleration proxies per-
formed well when tested against independent turbulence measurements
from a tri-axial anemometer mounted onboard an ultralight flying the
same route, with stronger turbulence causing increasing vertical displace-
ment. The best proxy for turbulence also varied with estimates of both
convective velocity and wind shear. The approximately linear relationship
between most proxies and turbulence levels suggests this approach should
be widely applicable, providing insight into how turbulence changes in
space and time. Furthermore, pigeons were able to fly in levels of turbulence
that were unsafe for the ultralight, paving the way for the study of how
freestream turbulence affects the costs and kinematics of animal flight.
1. Introduction
The impact of atmospheric turbulence on flying animals represents an impor-
tant frontier [1–3], as the effects of turbulence on flight energetics and route
selection are far less studied than the effects of wind [4,5]. Turbulence is broadly
defined as a measure of rapid changes in wind velocity at small scales and is
mainly driven by shear forcing or thermal heating, although it can also be gen-
erated by warm and cold fronts. Shear forcing results from the interaction of
wind with the topography and obstacles on the surface, leading to flow instabil-
ities and eddy production. While shear forcing depends on the presence of
mean wind, turbulence produced by thermal heating can occur even in the
absence of a mean flow, through convective instability, i.e. when warm air
near the surface rises through cooler, denser air. Within the atmospheric bound-
ary layer, and at the usual altitudes at which animals fly, turbulence is
influenced by both processes, depending on the strength of the wind and
heat fluxes, the altitude above ground, land cover and topography.

Thermal-driven turbulence has a strong upward component, which a range of
birds exploit to reduce flight costs through thermal soaring [6,7], particularly in
species adapted to soaring flight, where the distribution of thermal updrafts can
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influence movement paths from local to regional scales [8,9].
Much less is known about the impact of gustiness, which
is associated with both thermal- and mechanically driven
turbulence. Flying animals will experience gusts when velocity
fluctuations are of a magnitude at least as large as the wing
chord or span. Experiments, mostly done in laboratory con-
ditions, have shown that gusts can impact flight control [10,11]
and flight costs [12–14]. As such, gustiness is relevant for
birds irrespective of their flight style and body mass. In fact,
gusts should be most relevant for animals flying close to the
ground, where an inability to respond to gusts could ultimately
result in a collision. Indeed, it has been suggested that these risks
explain why gulls soaring above buildings increased their
distance to the buildings with increasing wind strength [15].

Despite the potential importance of turbulence in animal
movement, documenting spatially and temporally explicit
changes in gustiness remains challenging over fine scales
(tens to hundreds of metres) [16]. Most weather stations
do not report turbulence intensity or vertical wind velocity,
and when in situ measurements are made, conditions at a
single location near the ground are not representative of
those at higher altitudes or along an entire flight track.Weather
balloons can reach high altitudes in the atmosphere and are
useful in providing vertical profiles of atmospheric turbulence
and stability (unstable, neutral or stable), but these also offer
in situ measurements of paths that cannot be controlled but
are rather determined by wind speed and direction, as well
as being costly [17]. Reanalyses models, which combine
global circulation forecast models, observational data and an
assimilation scheme to produce estimates of past atmospheric
variables [18], provide estimates of vertical velocity and turbu-
lence strength (e.g. the turbulent kinetic energy) with excellent
spatial coverage. However, the temporal and spatial resol-
utions tend to be relatively coarse, at best hourly and of the
order of tens of kilometres respectively. Reanalyses models
therefore cannot resolve changes in fine-scale gustiness that
birds would experience along their flight path [9].

Large eddy simulation models (LES) can also be used
to realistically assess the conditions associated with flight
(e.g. for modelling convective velocity w* [19]) over a wide
range of terrains and conditions. LES can produce fine-scale
predictions (down to a few centimetres) by nesting a high
resolution model within a lower resolution regional
model(s). However, the computational costs tend to constrain
their application according to the combination of the study
area size, desired temporal/spatial resolution, complexity
and available computational resources [20,21].

Remote sensing solutions, namely LiDAR (light detection
and ranging), are also capable of measuring near-surface
changes in turbulence of the order of seconds and tens of
metres, by scanning at different angles to infer the three vel-
ocity components. In most cases, turbulence is quantified by
the vertical velocity of a vertically pointed LiDAR (e.g. [22]).
The critical limitation of LiDAR for ecologists is the availability
and expense of such sensing equipment, which means that
measurements tend to be made in specific locations in associ-
ation with meteorological research programmes and often do
not have wide spatial coverage depending on the instrument
and scanning pattern [23]. LiDAR also incorporates errors
depending on atmospheric stability and scanning method,
and often assumes that the three-dimensional flow is horizon-
tally homogeneous (an assumption usually not valid, i.e. over
complex terrain).
Recently, researchers have shown that the movements of
the birds themselves can be used to quantify wind and thermal
strength [19,24]. Indeed, large tracking datasets mean that
these Lagrangian approaches can be used to quantify con-
ditions over substantial areas [25]. It is clear from flying in
aircraft that turbulence can cause fluctuations in altitude and
body motion. In fact, the clear air turbulence has been esti-
mated using routine measurements of aircraft motion [26]
and the variation in vertical acceleration [27]. Similarly, Laurent
et al. [2] showed that there was a linear relationship between
the body accelerations of a single 5 kg golden eagle (Aquila
chrysaetos) during gliding flight and the atmospheric turbu-
lence (specifically, the body accelerations exhibited power
spectra characteristic of turbulence and that increased in pro-
portion to the turbulence intensity). This demonstrates the
potential for using high-frequency data from animal-attached
loggers to estimate changing levels of turbulence experienced
by animals in flight.

Our aim was to establish whether the highly resolved
movements recorded using animal-attached data loggers can
be used as qualitative proxies for turbulence in flapping
fliers. As this is the predominant type of flight used by birds,
the ability to extract information on turbulence from onboard
loggers would represent a powerful technique allowing
researchers to monitor the aerial environment. On the one
hand, flapping fliers tend to be smaller than those that rely
on gliding flight, potentially making their movements more
sensitive to the movements of the air. But against this, the
motion of the wings could compensate for much of the turbu-
lence spectrum, resulting in little displacement of the body
from a straight and level course. In order to investigate this,
we flew an ultralight (ATOS VRS280, www.a-i-r.de) at the
same time and in the same area as homing pigeons (Columba
livia). The birds and the ultralightwere equippedwith high-fre-
quency data loggers recording altitude and body acceleration,
and the ultralight was also instrumented with a tri-axial anem-
ometer to provide independent estimates of turbulence.
We used the resulting data to assess (1) the performance of
flight metrics based on variation in pressure (altitude) and
body acceleration as turbulence proxies and (2) whether
the predictive power of the proxies varied according to
whether data were collected onboard the fixed wing aircraft
or flapping fliers.
2. Material and methods
2.1. Data collection
Data were collected near Radolfzell in Germany (47°44’42.7600N,
8°57’59.3900E) within an area of 36.6 km2 characterized by a
narrow valley between two forested hills (figure 1c,d), where
elevation ranged from 494 to 715 m (electronic supplementary
material, figure S1). Flight data were collected over six days in
July 2018, eight days in April 2019 and nine days in July 2019.
This ensured that we sampled a wide range of convective con-
ditions, as well as wind strengths and directions. Data were
also collected during morning and afternoon sessions, as turbu-
lence and wind strength tended to be higher in the afternoons.
Wind speed was logged at the pigeon release site every five
seconds using a Kestrel 5500 anemometer (Kestrel Instruments,
USA) stationed 5 m above ground.

Pigeons were brought from the loft to the release site by car; a
straight-line distance of 5.7 km (see Garde et al. [28] for details).
Both the pigeons and the ultralight were equipped with a ‘Daily
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Figure 1. The logging platforms used in this study and corresponding flight tracks. (a) The combined logger unit used on the pigeon’s back, (b) the ultralight,
(c) pigeon tracks and (d ) ultralight flight legs. Black and white triangles indicate the location of the release site and the loft, respectively. The parts of the tracks
where pigeons performed orientation circles near the release site or loft, and the ultralight flight legs that did not form a straight line, were removed from the
analysis, producing pigeon and ultralight flights with mean durations of approximately 293 and approximately 155 s respectively.
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Diary’ logger (Wildbyte Technologies, Swansea University, UK),
recording tri-axial acceleration (smallest step/resolution 0.065 mg
per bit) and barometric pressure (using Bosch pressure sensor
BMP280 with a relative accuracy of ±0.12 hPa, equivalent to ±1
m), and a GiPSy-5 GPS logger (Technosmart, Rome, Italy). The
two tags were connected to the same battery and integrated in a
single three-dimensional printed housing [28]. The Daily Diary
tag was programmed to take the time from the GPS logger in
order to time-synchronize the two datasets. The combined
system was attached to the back of ten pigeons using a Velcro
patch attached to the down feathers with cyanoacrylate glue
(figure 1a) [29]. The total unit had an approximate mass of 18 g,
accounting for <4.5% of the mean pigeon body mass (455 g).
One logger was also attached to the front of the ultralight frame
(figure 1b). The ultralight had a mass of 173 kg, including the
pilot and petrol, and a wingspan of 12 m. Tags were programmed
to record barometric pressure at 20 Hz and acceleration at 200 Hz,
with the exception of two pigeon flights where measurements
were taken at 4 Hz and 40 Hz, respectively. The GPS sampled
locations at 1 Hz except for the flights in April 2019, where
sampling frequency was 5 Hz. For consistency, these flights were
subsampled to 1 Hz.

Prior to our trials pigeons had been flownwith dummy loggers
from the release site >30 times to remove changes associated with
route learning. We released six pigeons on a given day from the
same release site, with 11–13 min between each release. Pigeons
were released to fly solo so that any turbulence they encountered
was the result of environmental conditions and not other birds
[30]. Birds were released when the ultralight reached the release
site, to ensure that both the bird and the ultralight were flying in
similar wind conditions. Once the bird was released, the ultralight
flew a straight track from north to south (figure 1d), which largely
coincided with the main pigeon flight route (figure 1c), with the
ultralight remaining behind the focal bird at all times. The ultralight
maintained a fixed altitude and speed during the flight, before
returning to the release site for the next release.

While every attempt wasmade tomaintain the same ultralight
path, on three days in July 2019, the pilot flew a triangular path
close to the release site and before the valley because ofmechanical
difficulties and/or unsafe wind conditions. This triangular path
was split into two or three sections to extract flight legs that
formed a relatively straight line. This reduced the effect of the
ultralight’s motion on the ultrasonic anemometer measurements
(see below). The result of this process was 42 shorter flight legs
(approx. 40–60 s long) included in a total of 88 flights where a
Daily Diary logger was attached on the ultralight. Forty-two
more flights were included in the analysis of turbulence (see
below) where only ultrasonic anemometer data were available.
These additional flights were only included in the comparison
between the estimated turbulence and the pilot’s rating of turbu-
lence (see below). Data were collected with approval from the
Animal Welfare Ethical Review Body of Swansea University
(approval number: IP-1718-23) and the Regierungspräsidium
Freiburg (reference number: G-17/92).

2.2. Turbulence estimation
A triaxial ultrasonic anemometer (uSonic-3 CLASS A; electronic
supplementary material, figure S2) was mounted on the front of
the ultralight (2.2 m upstream of the propeller, which remained
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on during test flights) and programmed to record at 20 Hz. The
three wind components were used to estimate the overall turbu-
lence level for each flight leg, and this, in turn, was used to
examine the performance of turbulence proxies at scales of a
few hundred metres (see Data analysis).

Turbulence intensity can be defined as the wind speed fluctu-
ations relative to the mean wind speed. However, measurements
made by the ultrasonic anemometer also included a contribution
from the motion of the ultralight itself. Full estimation and sub-
traction of the ultralight’s contribution require high-resolution
measurements of the orientation and acceleration of the platform;
however, this is a complex process requiring very accurate
measurements synchronized with the wind speed data [31–33].
This approach is required for calculating turbulent fluxes. Since
our aim was to provide a qualitative measure of changes in
turbulence levels, we developed a simpler approach using the
anemometer measurements alone.

The log power spectrum density of the root mean square of the
three velocity components is predicted to follow a −5/3 slope for
homogeneous, isotropic turbulence. This holds over a wide
range of frequencies (the whole inertial subrange) as energy cas-
cades from low to high frequencies (larger to smaller scale
eddies) until it is dissipated through viscosity [34]. Our spectra
were heavily contaminated by the ultralight’s motion, especially
at lower and higher frequencies. Nonetheless, it should be possible
to identify a range of frequencies where contamination from the
ultralight motion is small and this slope can be fitted. Visual
inspection of the log power plots revealed that frequencies
between approximately 10−2.3 and 100 (approx. 0.05 to 1 s) were
typically the least contaminated in the inertial subrange, and the
most appropriate for fitting the ideal −5/3 power law (electronic
supplementary material, figure S3). Our method automatically
fitted the−5/3 linewithin this range of frequencies and objectively
selected the subrange with the best fit for each ultralight leg (that
with the lowest root mean square error), subject to the subrange
spanning at least half a decade.

From this fit we obtain the constant of proportionality
between the power spectrum density and the frequency to the
power of −5/3. This constant of proportionality is directly related
to the eddy dissipation rate, which is equal to the rate of turbu-
lence production at large scales (assuming the turbulence is
statistically stationary), and hence provides a measure of turbu-
lence. This follows because energy in the inertial subrange is
not generated or lost, but rather cascades from larger to smaller
scales. Indeed, this proportionality is often used in meteorology
to estimate the dissipation rate from ultrasonic anemometers (e.g.
[35]), and similar approaches have been used to measure clear air
turbulence using the eddy dissipation rate from aircraft [26,27].
We, therefore, took the proportionality of the fit for the power
law relationship (between the power and the frequency(−5/3) as
a measure of the turbulent energy. We also compared turbulence
estimates from the ultralight anemometer with a qualitative
assessment of turbulence made by the pilot on a scale of 0–5
(0: no turbulence; 5: highest turbulence). This is analogous to
the turbulence observations that are routinely provided verbally
by pilots in the form of pilot reports (PIREPs). Here, the turbu-
lence level is determined by a pilot’s subjective experience of
the aircraft response to turbulence [27]. Computations of our
qualitative measure of turbulence strength were conducted in
Python v. 2.7.15 [36].

2.3. Data analysis
Estimates of turbulence from the anemometer on the ultralight
were used to assess the performance of potential turbulence
proxies based on pressure and acceleration measurements on
both flying bodies. We predicted that turbulence would cause
vertical displacements from a level course in flying bodies that
should be evident in the barometric pressure data (noting that
the pressure sensor was mounted parallel to the flow and the
top was covered by the printed tag housing to minimize the
influence of airspeed on the signal). To assess this we smoothed
the pressure values over two seconds and calculated the mean
pressure difference per second. We also calculated the pressure
fluctuations by subtracting pressure smoothed over 30 s (after
testing different windows) from the raw values.

We also tested the performance of acceleration-based proxies,
which could have advantages over pressure-basedmetrics because
they can capture lateral, as well as vertical, displacements from a
straight course. For this we used the vectorial static body accelera-
tion (VeSBA), calculated as the root mean square of the three
smoothed acceleration channels, using a two-second smoothing
window [37]. Smoothing is a simple, but commonly used, way
of removing much of the high frequency ‘dynamic’ component
of the acceleration and isolating the ‘static’ or gravitational com-
ponent. VeSBA should equal 1.0 g for a body flying straight and
level and maintaining a constant velocity. Departures from 1 g
can occur when the flying body is acted on by an external unba-
lanced force, such as turbulence, which can cause (primarily)
vertical and lateral displacements. We, therefore, predicted that
increasing turbulence would result in greater displacements from
a straight and level flight path, producing a positive correlation
between VeSBA and turbulence strength. We calculated the
fluctuations in VeSBA by subtracting 1.0 g from VeSBA values.

In order to account for the difference in resolution between tur-
bulence (one estimate per flight leg), and VeSBA and pressure
(sub-second resolution), we calculated four metrics for each quan-
tity per flight leg, the interquartile range (IQR), median, variance
and the sum of all absolute values normalized by the flight leg’s
sample size (SUM), as a measure of the area under the curve
(AOC). The SUM and the median were used to identify the
magnitude of the fluctuations in pressure and VeSBA, and the
IQR and the variance indicated the level of variability per flight
(i.e. how variable the mean pressure difference was per second).
This process resulted in a set of 18 metrics.

Theperformanceof allmetrics inpredicting turbulence strength
was evaluated with generalized additive effect models with
Gaussian errors (GAM, package ‘mgcv’ v. 1.8.31 [38]). Turbulence
measured by the ultrasonic anemometer was included as the
response, and one flight metric based on either barometric pressure
or VeSBA as the predictor in each case. This allowed us to test for
linear and nonlinear relationships across the large set of models.
Each ultralight flight leg (n = 88)was associatedwith the turbulence
measured within it, while each pigeon flight (n = 66) was assigned
the turbulence estimate of the closest ultralight flight in time
(range: 0.2–107 min), with closest ultralight flight for two pigeon
flights being greater than one hour (excluding these flights did
not significantly change the results). We assessed the influence of
the time delay between the pigeon flight and the associated ultra-
light flight by including this in the model as a fixed effect. We
also assessed the effect of flight altitude in the pigeon models by
including the difference in median altitude between a pigeon
flight and its closest ultralight flight in time. One model was run
for each single metric and models were ranked by their predictive
ability in terms of Akaike’s information criterion (AIC).

The potential effect of different tags or pigeons was assessed
by running the same models as generalized additive mixed effect
models (GAMMs) with the addition of tag ID or pigeon ID (in
the case of the pigeon models) as a random effect (intercept).
All models included the date and the mean coordinates of each
flight, using the corARMA and corSpatial functions (nlme pack-
age v. 3.1.148 [39]) to account for temporal and spatial
autocorrelation respectively. The final models were evaluated
for outliers, uniformity, over-/under-dispersion and spatial/tem-
poral autocorrelation using the DHARMa package v. 0.3.3.0 [40].
All statistical analysis was conducted in RStudio v. 1.2.5 [41] and
the R programming language v. 3.6 [42].



Table 1. Top 10 pigeon proxy models ranked by AIC. ‘IQR’, ‘VAR’, ‘MED’, ‘SUM’ are used to indicate that the model is the interquartile range, variance, median
and area under the curve of each property. The estimated degrees of freedom (EDF) indicate the extent to which relationships are linear, with values closer to 1
describing a linear fit and closer to 2 curvilinear.

model p-value EDF adj. R2 dev. expl. AIC ΔAIC

raw pressure fluctuations_ IQR <0.001 1.57 0.41 0.43 176.59 —

raw pressure fluctuations_SUM <0.001 1.13 0.40 0.41 177.33 0.74

raw pressure fluctuations_ MED <0.001 1.20 0.38 0.39 179.58 2.99

raw pressure fluctuations_VAR <0.001 1.71 0.34 0.36 184.81 8.21

mean pressure difference per s_SUM <0.001 1.70 0.30 0.32 188.26 11.67

mean pressure difference per s_IQR <0.001 1.80 0.29 0.31 189.01 12.42

mean pressure difference per s_VAR <0.001 1.80 0.27 0.29 191.31 14.72

VeSBA fluctuations_VAR <0.001 1.75 0.27 0.29 191.31 14.72

VeSBA_VAR <0.001 1.40 0.22 0.24 195.28 18.69

VeSBA fluctuations_SUM <0.001 1.00 0.21 0.22 195.65 19.06
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As an additional ground-truthing stepwe assessedwhether our
best turbulence proxies were correlated with estimates of the con-
vective velocity (w*) and the shear velocity (u*), using data from
the global reanalysis ERA5 [43] (see electronic supplementary
material for the estimation of convective and shear velocities).
3. Results
In several cases, birds did not return to the loft immediately but
waited until other flockmate(s)were released, before flying back
together. These flights, aswell as otherswith incomplete orerro-
neous datawere excluded. Overall, 66 pigeon flights were used
to estimate turbulence proxies after excluding the non-solo
flights, flights where the barometric pressure sensor recorded
unrealistic estimates, flights for days which the ultralight pilot
did not fly because of mechanical problems or because of
unsafe conditions in the valley and finally flights that included
landing breaks (identified in the acceleration signal). A total of
88 ultralight flights were used to estimate turbulence proxies
after excluding flights for which the ultrasonic anemometer
did not record data because of malfunction or low battery and
flights without a daily diary logger onboard. Pigeons flew
slightly lower than the ultralight with mean flight heights of
81 m (s.d. ± 24 m) and 116 m AGL (s.d. ± 13.4 m), respectively.

Ourmethod of fitting the −5/3 power law line to the turbu-
lence spectrum from the anemometer gave linear fitting errors >
0.2 (root mean square) for 24% of the ultralight flights. This
suggests that (i) the mean flow and/or strength of the turbu-
lence changed over the length of the flight leg and/or (ii) the
part of the power spectra selected for analysis still contained
some contamination from themotion of the ultralight.Nonethe-
less, there was a positive relationship between the ultrasonic
anemometer estimates of turbulence and the pilot’s turbulence
score on a given day (Pearson correlation coefficient = 0.73, t =
12.11, d.f. = 128, p-value < 2.2 × 10−16) (linear fit: adj. R2= 0.53,
n = 130; electronic supplementary material, figure S4).

3.1. Performance of turbulence proxies (i) pigeon
flight data

A positive linear/near-linear relationship was identified
between the anemometer estimates of turbulence and the
pigeon-based proxies in almost all of the top models in
terms of AIC (table 1; electronic supplementary material,
figure S5), which included both pressure- and VeSBA-based
proxies. The top two models were proxies of pressure fluctu-
ations, while three models of mean pressure difference per
second (SUM, IQR and variance) followed in the top 10
models. Pressure proxies ranked higher than VeSBA proxies
and had the highest R2, with only three proxies based on
VeSBA included in the top 10 models. Overall, AIC scores
differed between models and the adj. R2 values ranged
between 0.21 and 0.41. Neither tag ID nor pigeon ID was sig-
nificant. The time delay between the pigeon and ultralight
flights was significant in only two of the top 10 models and
it did not improve the R2 values substantially. The difference
in flight altitude between the pigeon and ultralight was
significant in five of the top 10 models (electronic supple-
mentary material, table S1), with turbulence increasing as
pigeons flew higher than the ultralight. Given that most
studies will not have turbulence information from an inde-
pendent platform flying near their study animal, we report
model parameters from models without time delay or
difference in altitude.
3.2. Performance of turbulence proxies (ii) ultralight
flight data

Proxies from metrics recorded on the ultralight performed less
well than metrics from pigeon movements, with the R2 from
the top model being 0.33 (electronic supplementary material,
table S2), compared to a maximum of 0.41 in the pigeon flight
models. Nonetheless, similar to the pigeon proxies, models of
pressure ranked higher than models of VeSBA. As with the
pigeon models, all pressure summary statistics were included
in the top 10 models. However, models of mean pressure
difference per second ranked higher than models of pressure
fluctuations, with the model that ranked first in the pigeon
models, ranking seventh place in the ultralight models. Tag ID
was significant, which was unsurprising as the same tag was
used for all flight legs of the same day, and a small number of
tags were used on the ultralight compared to the pigeons.

Near linear relationships were identified in the top 2 of the
10 best models for pigeon- and ultralight-based proxies
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Figure 2. Turbulence predicted from the top two models based on pigeon movement metrics, the interquartile range of pressure fluctuations (a) and the sum of all
absolute values of pressure as a measure of the area under the curve (b), and from the top two models based on ultralight movement metrics, the variance (c) and
interquartile range (d ) of the mean difference in pressure per second, per flight. The top two models based on pigeon flight had an adjusted R2 of approximately
0.4 and the two ultralight based models an R2 of 0.33 and 0.31, respectively. Black solid curves indicate the predicted fit (and dashed lines the 95% confidence
intervals) and grey points the raw observations.
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(figure 2). While the majority of pigeon-based proxies had an
approximately linear relationship with turbulence this varied
between the pigeon and ultralight proxies, with more non-
linear relationships predicted for the ultralight, although
many of these nonlinear relationshipswere strongly influenced
by very high/low proxy values where there were few data
points (electronic supplementary material, figures S5 and S6).
3.3. Comparing pigeon flight turbulence proxies with
thermal and mechanical turbulence

The best pigeon proxy in terms of both R2 and AIC (raw
pressure fluctuations IQR) was positively correlated with both
the hourly convective velocity (w*) and shear velocity (u*)
(Spearman correlation coefficients: 0.58, S = 2104.96, p-value =
2.7 × 10−07 and 0.59, S = 20 534.33, p-value = 1.5 × 10−07, for w*
and u*, respectively). The latter, in turn, increased with the
ERA5 wind speed (figure 3).

Mapping the turbulence using the same proxy summarized
over 15-second sections of the flight path revealed spatial pat-
terns in turbulence (figure 4) that also varied with wind
direction. Predicted turbulence was particularly high in the
inlet and the outlet of the valley in easterly winds (figure 4a,b),
whether or not overall turbulence was high. This pattern was
also seen in the measured turbulence and corroborated by
the pilot’s experience. Nonetheless, the valley inlet and outlet
were not particularly turbulent in northerly or southerly
winds (figure 4d) when turbulence conditions were weak.
Furthermore, birds appeared to avoid the southerly end
of the valley in northerly/southerly winds when the mean
turbulence was high (figure 4c).
4. Discussion
Previous studies have demonstrated that animal movement
can be used to quantify the strength of thermal updrafts
[9,19,44] and determine the wind vector [24], at scales and
in locations that are not possible using traditional meteorolo-
gical approaches. Here we show that the highly resolved,
vertical displacements of a flapping flier can provide qualitat-
ive predictions of turbulence at the scale of a few hundred
metres. Our proxies are similar in concept to those developed
for aviation [27], demonstrating the widespread utility of
simple measurements derived from onboard accelerometers
and pressure sensors. Furthermore, the fact that turbulence
generally followed an approximately linear relationship
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with the proxies (particularly for birds but also in some cases
for the ultralight proxies) means that relative changes in
turbulence should be straightforward to approximate. This
simple relationship is in line with previous work that ident-
ified a linear correlation between the turbulence spectrum
and the spectral composition of acceleration recorded
onboard a golden eagle in gliding flight [2].

Turbulence appeared to cause greater displacements for
pigeons in flight than for the ultralight, as proxies derived
from the ultralight flight did not perform quite as well. This
will primarily be due to the substantial differences in mass
and wing loading between the two systems, with a given
eddy accelerating the larger ultralight to a lesser extent. Mean
airspeeds of the ultralight and pigeon were similar (21.5 and
19.9 m s−1, respectively), but the objectives are also likely to
have differed, as the pilot aimed to maintain a constant air-
speed and straight and level flight, therefore compensating
for turbulence along the flight path. It is likely that the pilot’s
ability to achieve this varied with the scale of the eddies,
which may also have affected the performance of pressure
and VeSBA proxies from the ultralight. This, combined with
the contamination of the three velocity components from the
aircraft’s motion, suggests that the pigeon-based proxies may
even provide a better representation of turbulence variation
than the ground-truth ultrasonic anemometer measurements.
Nonetheless, the good agreement between turbulence esti-
mates from the anemometer measurements, the pilot’s scores,
reanalysis data and proxy values gives confidence in the per-
formance of our proxies.

Pressure proxies performed better than VeSBA proxies for
both the pigeon and ultralight data, despite the fact that the
variability in both proxies was positively correlated. In fact,
the seven best pigeon proxies in terms of AIC were models
of pressure, suggesting that turbulence caused more pro-
nounced vertical than lateral displacements in these birds
(as pressure-based proxies relate to changes in the vertical
axis whereas VeSBA will be sensitive to both vertical and
lateral displacements).

While we have not tested how pigeons respond to turbu-
lence in terms of their kinematics and speed selection, it is
clear that turbulence causes substantial variability in their ver-
tical movements over fine scales, and that this increases with
turbulence strength. The motion of the pigeons’ wings, there-
fore, did not dampen out all the turbulence that the birds
encountered. Variability in the pigeon trajectories has pre-
viously been interpreted as protean behaviour, with it
conferring potential benefits as a predator avoidance strategy
for solo-flying birds [28]. These explanations are not necess-
arily mutually exclusive. The study by Garde et al. [28] used
a subset of our data (29 of 66 flights) that were performed
under relatively weak turbulence levels, with mean and maxi-
mum values of 0.9 and 2.5, compared to 1.6 and 4.7 in the
current study. They also reported a lower variance in climb
rate (mean and maximum 0.9 and 2.0 m s−1 per flight, com-
pared to 1.6 and 6.7 m s−1 reported here). Therefore, while
some of the variability in pigeon flight behaviour [28] is due
to turbulence, there may still be a baseline level of variability
in birds flying solo and in low turbulence that could represent
an anti-predator response. In both cases, what remains
unknown is the power costs associated with variation in the
flight trajectory.

The behaviour of the birds themselves, including the route
selection, can provide insight into the likely costs or benefits of
turbulence. Mapping changes in our pigeon-based proxies (esti-
mated over 15 s) along the flight paths revealed patterns in
turbulence that varied in both space and time. The high levels
of turbulence at the inlet and theoutlet of thevalley in strongeast-
erlywinds are likely the result ofwind shear,with thevalley itself
being more sheltered by the forested hill to the east. While pre-
dicted turbulence was lower overall in weaker winds, the
strong turbulent features at the inlet and the outlet of the valley
generally persisted, which might help explain why birds
tended to fly the (lower turbulence) valley route.High turbulence
was also predicted over the forested hill when wind direction
changed to northerly. This is consistent with wind travelling
over an extended level terrain before the mouth of the valley
where it is accelerated by the hill with high turbulence over the
hill itself (although sample size is small in these conditions).
These results also agreewith the spatial variability in turbulence
strength experienced by the pilot.
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Overall, our results demonstrate the capacity of simple,
animal-based proxies to estimate fine-scale changes in turbu-
lence over complex terrain. While the absolute values of our
proxies may provide a useful guide for other flapping fliers, it
is likely that the relationship to turbulence levels will vary
with factors including (i) animal mass, airspeed and flight
height, (ii) the sampling frequency and tag location, in the case
of VeSBA, and (iii) the scale and variation of the turbulence
experienced by the animals. A valuable first step in other sys-
tems would therefore be to examine the relationship between
turbulence proxies and independent environmental data (such
as those from ERA5, used in this study), even though those
data have coarser spatial and temporal resolution.

Widespread use of tracking technology means that
pressure and acceleration data are increasingly available from
animals instrumented with data loggers. Our study highlights
that these can providemeteorological insight that is logistically
difficult and costly to acquire from traditional platforms such
as aircraft. Uncrewed aerial vehicles (UAVs) can also provide
tractable platforms for the estimation of turbulence [19], par-
ticularly in regions where birds do not fly. Nonetheless,
planes and UAVs have their own limitations. In our study,
there were two days when the turbulence and wind made it
unsafe for the pilot to fly thewhole route. It is therefore notable
that pigeons flew under these conditions, demonstrating
that birds can reach areas that are inaccessible to light aircraft
(the limitations will be different for UAVs). In some ways
this is analogous to the case where seal-borne sensors are
used to measure temperature and salinity below the ice, pro-
viding invaluable information on oceanographic processes in
locations where ship-based studies are infeasible and satellite
access is restricted [45,46]. However, our specific case raises
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intriguing questions about the behavioural, biomechanical [10]
and navigational capacities of birds, and other flying
animals, that enable them to negotiate an aspect of the flight
environment that remains dangerous for aircraft.
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