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Abstract

Objectives

Left ventricular remodeling after acute myocardial infarction increases cardiovascular

events and mortality. But few study was done in patients with preserved ejection fraction

(EF > 40%). We investigate whether the strain and strain rate by 2D speckle tracking echo-

cardiography could predict left ventricular remodeling after acute myocardial infarction in

this cohort.

Methods

The 83 patients (average age 60.7 ± 12.3 y, 75 [90.4%] male) with new-onset acute myocar-

dial infarction receiving echocardiography immediately, and 6 months after admission were

grouped by the presence or absence of left ventricular remodeling. Strain and strain rate

including longitudinal, circumferential, and radial direction were calculated. The average of

strain and strain rate of which segmental longitudinal strains > – 15% were defined as the

injury longitudinal strain (InjLS).

Results

Left ventricular remodeling occurred in 24 of 83 patients (28.9%). In univariate logistic

regression analyses, gender, peak CK-MB, log BNP, use of statin before discharge, wall

motion score index, and InjLS were significantly associated with left ventricular remodeling

(p < 0.05). In multivariate analysis using the forward stepwise method, gender, CK-MB, and

InjLS were independent predictors. The hazard ratio for InjLS was 1.48 (p = 0.04). Receiver

operating characteristic curve (ROC) analyses showed the area under the curve (AUC) of

InjLS was largest (AUC = 0.75, cut-off value = –11.7%, sensitivity = 81%, specificity = 71%,

p < 0.01). In ST-segment elevation myocardial infarction subgroup, InjLS was the only predictor

according to ROC analysis (AUC = 0.79, p < 0.01, cut-off value = –11.4%, sensitivity = 88%,
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specificity = 77%) and multivariate logistic regression analysis (hazard ratio = 1.88, 95% CI:

1.22–2.88, p < 0.01).

Conclusions

InjLS was an excellent predictor for left ventricular remodeling after acute myocardial infarc-

tion in patient with preserved ejection fraction.

Introduction

Adverse left ventricular (LV) remodeling begins in some patients with acute myocardial infarc-

tion (AMI) even after percutaneous coronary intervention (PCI), and according to previous stud-

ies, the incidence is around 30%–35% [1–4]. LV remodeling leads to heart failure and increases

the risks for cardiovascular events and mortality. Echocardiography is the first choice among

imaging studies in patients with AMI. The left ventricular ejection fraction (LVEF) determined

by conventional echocardiography and the wall motion score index (WMSI) have been reported

as useful predictors for LV remodeling and clinical outcomes[1,5–7]. However, the prediction of

WMSI in patients with preserved systolic heart function is uncertain [8,9]. Myocardial strain and

strain rate measured by the 2D speckle tracking echocardiography can be used to evaluate myo-

cardial performance and have been shown as a better tool to evaluate more subtle changes in LV

function in many cardiac diseases. Several studies have used the 2D speckle tracking echocardiog-

raphy to predict LV remodeling after ST-segment elevation myocardial infarction (STEMI) or

after non–ST-segment elevation myocardial infarction (NSTEMI) [10–17], but no reports have

investigated the role of myocardial strain and strain rate in patients with preserved ejection frac-

tion (EF). Thus, the objective of this study was to evaluate whether myocardial strain and strain

rate by 2D speckle tracking echocardiography predict adverse LV remodeling in patients with

preserved EF following STEMI or NSTEMI.

Materials and Methods

Study population

From March 2010 to July 2013, we enrolled 94 patients who were admitted with new-onset

AMI. Exclusion criteria included patients with severe valvular disease, atrial fibrillation or flut-

ter, or history of myocardial infarction. Echocardiography was performed at baseline 3.2 ± 1.6

days after admission (2.7 ± 1.6 days after PCI), 3 months, and 6 months after AMI was diag-

nosed. This study was approved by the Ethics Committee of the Chiayi Chang Gung Memorial

Hospital, and all patients provided written informed consent.

Angioplasty protocols

Following the diagnosis of AMI, PCI was completed as soon as possible. The average of door-to-

balloon time for STEMI patients was 122 ± 289 min (median = 71 min) and for NSTEMI patients

was 1937 ± 1864 min (median = 1417 min). PCI was considered successful if the residual stenosis

was< 30% and the flow in the culprit vessel was� Grade 2 according to the Thrombolysis in

Myocardial Infarction (TIMI) score. The diseased vessel was defined as� 50% stenosis. Findings

of coronary angiography including culprit vessel, diseased vessels, left main involvement, single

or multi-vessels (� 2 vessels) were recorded.
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Echocardiography

Comprehensive 2D transthoracic grayscale echocardiography was performed using a GE

Vivid 7 echocardiographic system (M3S probe, Vivid 7, GE Vingmed, Horten, Norway).

Images of 3 consecutive cardiac cycles in 3 apical views and short-axis views were stored digi-

tally for off-line analysis with EchoPAC, version 11.0 (GE Vingmed). Frame rate of these

images were 66–79 frames/s. LV and atrial volume, wall motion, and EF were assessed. LV

end-diastolic diameter and end-systolic diameter were calculated according to the American

Society of Echocardiography recommendations [18,19]. Stroke volume was determined by

Doppler echocardiography and then was indexed by body surface area to facilitate derivation

of stroke volume index. LVEF and LV volume were calculated by the modified Simpson’s

biplane method. Regional wall motion was visually evaluated with a 17-segment model in

which each segment was scored as: 1 = normal, 2 = hypokinesia, 3 = akinesia, 4 = dyskinesia,

and 5 = aneurysmal change. The WMSI was averaged from scores of the evaluated segments

[18].

Peak early (E) and late diastolic wave velocity (A) were measured by pulse-wave velocity,

and tissue Doppler imaging measured peak early (e0) and late (a0) diastolic velocity at the

mitral septal annulus [19].

LV remodeling was defined as a> 15% increase in biplane LV end-systolic volume from

the initial presentation to the 6-month follow-up. The population was divided into 2 groups:

the remodeling group and nonremodeling group. Preserved EF was defined as EF> 40%.

Speckle-tracking technique for measuring LV deformation performance

The stored grayscale images were analyzed off-line to measure LV deformation performance

via the 2D speckle-tracking technique (EchoPAC version 11.0). Global and segmental strain

and strain rate in 3 directions (longitudinal, circumferential, and radial) were calculated. The

LV radial and circumferential strains and strain rates were determined from the short-axis

views at the basal, middle, and apical levels, and longitudinal strains and strain rates were

determined from the apical 2-, 3-, and 4-chamber views of the LV. We traced the endocardial

border manually at end-systole and adjusted width of the region of interest to cover the entire

myocardium. The software then automatically tracked the myocardium. Poor tracking quality

was revised manually until the quality was acceptable. Each apical view or short-axis view was

divided into 6 segments and there were 18 segments in total. The global peak longitudinal

strain (GLS), global peak circumferential strain (GCS), and radial strain (GRS) were averaged

from the total 18 segments. Systolic strain rates were analyzed for longitudinal systolic strain

rates (LSRs), circumferential systolic strain rates (CSRs), and radial systolic strain rates (RSRs).

According to previous studies, segmental longitudinal strains > – 15% were defined as injured

segments [20,21]. The average segmental longitudinal strain and strain rate of the abnormal

segments was defined as the injury longitudinal strain (InjLS) (Fig 1) and injury longitudinal

systolic strain rate (InjLSRs). The number of injured segments was also recorded. The average

longitudinal strains and strain rates of territories of the culprit vessels were also calculated as

culprit longitudinal strain (culprit LS) and culprit longitudinal strain rate (culprit LSRs).

Serum biomarkers

Biochemical tests during hospitalization included serum creatinine level, high-sensitivity C-

reactive protein (hs-CRP) and brain natriuretic peptide (BNP). Serial creatine kinase MB iso-

enzymes (CK-MB) were collected immediately and after 8 hours and 16 hours. Estimated

glomerular rate (eGFR) was measured from 4-variable Modification of Diet in Renal Disease

(MDRD) formula
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Statistical analysis

Continuous variables are expressed as means ± standard deviations for variables with nor-

mal distribution and as median (25th, 75th percentile) for variables that were not normally

distributed by Kolmogorov–Smirnov tests. Categorical variables are presented as the num-

bers of subjects and percentages. We used SPSS 21 (SPSS, Chicago, IL, USA) for statistical

analyses. For comparisons between the 2 study groups, two-tailed Student’s t-test was used

for continuous normal-distributed variables and Mann-Whitney U test was used for non-

normal-distributed variables, and chi-squared tests were used for categorical variables.

Binary logistic regression analysis was used to assess the predictors for LV remodeling.

Significant variables with a p value < 0.1 by univariate analyses underwent further multi-

variate analyses using a forward stepwise logistic regression model. A p value < 0.05 was

considered significant. A receiver operating characteristic curve (ROC) analysis was per-

formed to assess the abilities of GLS, InjLS, InjLSRs, EF, and WMSI to predict LV remod-

eling and to identify the optimal cut-off value with optimal sensitivity and specificity. A

p value < 0.05 was regarded as significant.

Ten subjects were randomly selected to assess the inter- and intra-observer variability. All

LV deformation performance indices were measured by two independent observers for inter-

observer variability. The same observer repeated the measurements 1 month later for intra-

observer variability. The variability which was expressed as percentages was derived as the

absolute difference between the 2 sets of measurements, divided by the overall mean of the 2

sets of measurements.

Fig 1. Illustration of injury longitudinal strain (A) A case with left ventricular remodeling; injury longitudinal strain is –9.2%. (B) A case without left ventricular

remodeling: injury longitudinal strain is –12.2%. Abnormal segments are marked with *, which indicates that the longitudinal strain is >–15%.

doi:10.1371/journal.pone.0168109.g001
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Results

Ninety four patients were enrolled initially. Four patients were excluded due to EF� 40%.

During 6-month follow-up, 2 patients had expired, 2 patient receiving CABG dropped out due

to poor echocardiogram images and 3 patients dropped out due to personal reasons. Thus,

these 7 patients’ echocardiograms were not included in the calculation of LV remodeling. Five

patients received new coronary angioplasty. Our final population included 83 patients (average

age 60.7 ± 12.3 y, 75 [90.4%] male). LV remodeling occurred in 24 of 83 patients (28.9%).

Table 1 compares the clinical characteristics of these 2 groups. In the remodeling group, peak

CK-MB and the percentage of females were significantly higher than in the nonremodeling

group. In subgroup of STEMI, the door-to-balloon time was longer in the remodeling group.

The proportion of patients with STEMI was higher in the remodeling group than in the nonre-

modeling group, but this finding was not statistically significant (STEMI vs. NSTEMI = 79.2%

vs. 20.8%, p = 0.09). The incidences of LV remodeling in STEMI and NSTEMI were 35.2% and

16.7%, respectively. The distributions of culprit vessels and single- or multi-vessel lesions were

similar. The proportions of left anterior descending artery (LAD) to non–left anterior

descending artery were 52.5% in the nonremodeling group and 37.5% in the remodeling

group, respectively (p = 0.43). The PCI success rate was 100%, and the TIMI flow grade was 3

after PCI. There was no significant difference in Killip classes between these 2 groups.

Table 2 displays echocardiographic findings. In the remodeling group, the initial LV end-

diastolic and end-systolic volumes were smaller and end-systolic volume at 6th month follow-

up became larger. There was no difference in EF, stroke volume index, left atrial volume index,

E/A ratio, and E/e0 ratio. WMSI was higher in LV remodeling group (p = 0.03).

Table 3 shows the LV deformation performance indices at baseline and 6th month. At baseline,

only InjLS and InjLSRs were significantly worse in the remodeling group. Number of injured seg-

ments was not different. ROC analyses (Fig 2A) were performed to evaluate the ability of peak

CK-MB, WMSI, InjLS and InjLSRs to differentiate LV remodeling from nonremodeling. The

area under the curve (AUC) of InjLS was largest (AUC = 0.75, p< 0.01) than the others (Fig 2).

The optimal cut-off value of InjLS was –11.7% with 81% sensitivity and 71% specificity.

Results of univariate logistic regression analyses to access the association with LV remodel-

ing are shown in Table 4. BNP and hsCRP were log-transformed because they were not normal

distributed. Sex, peak CK-MB, use of statin before discharge, log BNP, WMSI, InjLS and

InjLSRs were significantly associated with LV remodeling (p< 0.05). Variables with p

value < 0.1 by univariate analyses were submitted for multivariate analyses and included age,

sex, peak CK-MB, use of statin, log BNP, WMSI, InjLS and InjLSRs. In multivariate analysis

using the forward stepwise method, gender, CK-MB, and InjLS were independent predictors

of LV remodeling in patients with AMI. The hazard ratio for CK-MB was 1.01 (p = 0.05) and

for InjLS was 1.48 (p = 0.04).

In subgroup analysis for STEMI patients (Tables 5–7), the percentage of females and BNP

were higher and the door-to-balloon time was longer in the remodeling group. Higher peak

CK-MB trended toward LV remodeling but did not reach statistical significance. The propor-

tion of culprit vessels on LAD and multi-vessel diseases were similar. In the LV remodeling

group, the initial LV end-systolic or diastolic volume was smaller and end-systolic volume

became larger at 6th month follow-up. Only InjLS was different from non–LV remodeling

among LV deformation performance indices.

ROC analysis revealed that only InjLS was a significant predictor of LV remodeling (AUC =

0.79, p< 0.01, cut-off value –11.4%, sensitivity 88%, specificity 77%) (Fig 2B). Table 8 displays

the results of logistic regression analyses. BNP and hsCRP were also log-transformed. In univar-

iate logistic regression analysis, InjLS and log BNP were significant (p< 0.05). In multivariate
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analysis with the forward stepwise method, only InjLS was the only one predictors of LV

remodeling in STEMI patients (hazard ratio = 1.88, 95% CI: 1.22–2.88, p< 0.01).

Table 1. Patients’ clinical characteristics.

No remodeling (N = 59) Remodeling (N = 24) p Value

Age (y) 59.4 ± 12.2 64.5 ± 11.4 0.08

Male sex 57 (96.6%) 18 (75%) < 0.01*

hsCRP (mg/L)‡ 13.4 (5.8, 41.3) 30.9 (5.0, 48.4) 0.56

Peak CK-MB (ng/mL)‡ 33.6 (5.6, 117.8) 125.4 (31.7, 300) 0.01*

BNP (ng/L)‡ 169 (62.3, 312) 206.5 (139.8, 520.8) 0.07

eGFR (mL/min/1.73 m2) 80.8 ± 26.3 72.4 ± 26.0 0.19

STEMI/NSTEMI 35 (59.3%)/24 (40.7%) 19 (79.2%)/5 (20.8%) 0.09

D-to-B (min)‡

• 2022STEMI 67 (54, 76.5) 82 (71, 103) 0.01*

• NSTEMI 1458 (614, 3580) 853 (78, 2035) 0.15

S-to-B (h)‡

• STEMI 3.5 (2.3, 6.0) 3.5 (2.7, 6.8) 0.68

• NSTEMI 32 (22, 81) 17 (9.9, 65) 0.39

Hypertension 36 (61%) 13 (54.2%) 0.57

Diabetes mellitus 15 (25.4%) 7 (29.2%) 0.73

Smoking 34 (57.6%) 14 (58.3%) 0.95

Medication before discharge

ACEI or ARB 25 (42.4%) 11 (45.8%) 0.77

Beta-blocker 31 (52.5%) 14 (58.3%) 0.63

Statin 45 (76.3%) 13 (54.2%) 0.05*

Culprit vessel

• LAD 31 (52.5%) 9 (37.5%) 0.43

• LCX 7 (11.9%) (12.5%)

• RCA 21 (35.6%) 12 (50%)

Coronary artery disease

• 1-vessel disease 19 (32.2%) 7 (29.2%) 0.81

• 2-vessel disease 25 (42.4%) 50%)

• 3-vessel disease 15 (25.4%) 5 (20.8%)

Diseased site

• LM 7 (11.5%) 2 (8.3%) 1.0

• LAD 53 (89.8%) 20 (83.3%) 0.46

• LCX 25 (42.4%) 9 (37.5%) 0.68

• RCA 36 (61%) 17 (70.8%) 0.40

Killip class 0.42

I 41 (69.5%) 20 (83.3%)

II 6 (10.2%) 1 (4.2%)

III 4 (6.8%) 0

IV 8 (13.6%) 3 (12.5%)

* = p Vale <0.05

‡variables that were not normally distributed were expressed as median (25th, 75th percentile); ACEI = angiotensin converting enzyme inhibitor;

ARB = angiotensin receptor blocker; BNP = brain natriuretic peptide; CK-MB = creatine kinase MB isoenzyme; D-to-B = door-to-balloon time;

eGFR = estimated glomerular filtration rate; HsCRP = high-sensitivity C-reactive protein; LAD = left anterior descending artery; LCX = left circumflex artery;

LM = left main; NSTEMI = non–ST-segment elevation myocardial infarction; RCA = right coronary artery; S-to-B = symptom-onset-to-balloon time;

STEMI = ST-segment elevation myocardial infarction.

doi:10.1371/journal.pone.0168109.t001
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Intra-observer variability for GLS, GCS and GRS was 3.4 ± 2.1%, 3.5±2.8 and 9.4±8.6,

respectively. For LSRs, CSRs and RSRs, it was 6.8±7.3%, 6.4±8.3% and 11.8±5.5%.

Inter-observer variability for GLS, GCS and GRS was 7.1±5.1%, 8.5±8.9% and 11.8±6.9%.

For LSRs, CSRs and RSRs, it was 10.7±5.0%, 7.7±5.8% and 12.6±10.5%.

Discussion

LV remodeling after AMI is an importantly prognostic issue. Global longitudinal strain (GLS)

by 2D speckle tracking echocardiography has proven to be predictive for LV remodeling but

no reports have investigated its role in patient with preserved EF. We reported a new index,

the injury longitudinal strain (InjLS), defined as the average strain of which segmental longitu-

dinal strains>– 15%. Our study assessed the clinical value of LV deformation performance

indices based on 2D speckle tracking echocardiography in predicting LV remodeling in

patients with acute myocardial infarction with EF> 40%.

The well-known implications of LV remodeling include higher mortality and higher rates

of heart failure, and the incidence is around 30%–35% [1–4]. In our study, LV remodeling was

found in 28.4% of the cohort, and this occurrence rate is comparable to but lower than the

rates reported in previous studies [1–4,12,14,16,22]. EF has been associated with LV remodel-

ing [10,12,13]. The baseline LV systolic functions in our cohort were relatively well preserved,

which could explain the lower rate of LV remodeling in our study.

Two dimensional speckle-tracking echocardiography for remodeling

In 2008, Park et al [10] first reported the predictive value for LV remodeling of longitudinal

strain measured by speckle tracking echocardiography at 7 LV segments of the left anterior

Table 2. Echocardiography findings.

Nonremodeling (N = 59) Remodeling (N = 24) p Value

Baseline echocardiography after admission (days) 3.3 ± 1.5 3.1 ± 2.0 0.58

Baseline echocardiography after PCI (days) 2.6 ± 1.4 2.9 ± 2.0 0.44

Heart rate (baseline) (bpm) 72 ± 11 75 ± 9 0.31

Heart rate (6th month) (bpm) 71 ± 12 68 ± 10 0.32

Ejection fraction (baseline) (%) 58.1 ± 7.3 59.3 ± 10.5 0.62

Ejection fraction (6th month) (%) 63.9 ± 7.9 56.3 ± 8.0 <0.01*

Left ventricular end-diastolic volume (baseline) (mL) 111 ± 28 86 ± 24 < 0.01*

Left ventricular end-diastolic volume (6th month) (mL) 107 ± 26 117 ± 34 0.23

Left ventricular end-systolic volume (baseline) (mL) 47 ± 15 35 ± 13 < 0.01*

Left ventricular end-systolic volume (6th months) (mL) 39 ± 14 52 ± 23 0.02*

Stroke volume index (mL/m2) 40 ± 10.7 38.6 ± 12.4 0.63

Left atrial volume index (mL/m2) 32.6 ± 10.6 34.1 ± 11.1 0.61

Mitral inflow

• E (cm/s) 82.4 ± 18.6 85.3 ± 17.4 0.52

• A (cm/sec) 81.2 ± 23.2 89.2 ± 30.1 0.2

• E/A 1.11 ± 0.44 1.08 ± 0.47 0.78

Deceleration time (ms) 199 ± 63 201 ± 63 0.91

Tissue Doppler image

• E/e0 14.6 ± 5.1 16.6 ± 5.9 0.12

WMSI 1.26 ± 0.21 1.38 ± 0.25 0.03*

* = p Vale <0.05; A = late diastolic wave velocity; a0 = late diastolic wave velocity; E = peak early wave velocity; e0 = peak early diastolic velocity at mitral

septum; s0 = systolic velocity at mitral septum by tissue Doppler image; WMSI = wall motion score index.

doi:10.1371/journal.pone.0168109.t002
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descending coronary artery territory. Fifty patients with anterior-wall AMI were enrolled, and

22 patients developed LV remodeling. Previous studies discovered the value of GLS for

Table 3. Left ventricular deformation performance indices.

Nonremodeling(N = 59) Remodeling (N = 24) p Value

Baseline value

Global longitudinal strain (%) –18.0 ± 3.6 –17.0 ± 4.2 0.3

Global longitudinal systolic strain rate (s–1) –1.10 ± 0.21 –1.07 ± 0.23 0.5

Global circumferential strain (%) –17.6 ± 4.2 –17.6 ± 5.0 0.96

Global circumferential systolic strain rate (s–1) –1.44 ± 0.39 –1.46 ± 0.38 0.9

Global radial strain (%) 36.0 ± 12.5 37.5 ± 12.3 0.66

Global radial systolic strain rate (s–1) 1.8 ± 0.43 1.74 ± 0.32 0.61

Culprit longitudinal strain (%) –16.7 ± 4.2 –15.5 ± 5.3 0.28

Culprit longitudinal systolic strain rate (s–1) –1.00 ± 0.24 –0.96 ± 0.3 0.51

Injury longitudinal strain (%) –12.4 ± 1.6 –10.9 ± 1.7 <0.01*

Injury longitudinal s systolic strain rate (s–1) –0.81 ± 0.15 –0.71 ± 0.15 0.02*

No of injured segments 5.3 ± 4.8 6.8 ± 5.5 0.23

6th month value

Global longitudinal strain (%) -19.6 ± 3.0 -18.2 ± 4.0 0.1

Global longitudinal systolic strain rate (s–1) -1.15 ± 0.19 -0.97 ± 0.22 <0.01*

Global circumferential strain (%) -19.4 ± 4.5 -17.9 ± 3.9 0.25

Global circumferential systolic strain rate (s–1) -1.46 ± 0.39 -1.34 ± 0.26 0.26

Global radial strain (%) 39.3 ± 14.5 29.7 ± 15.3 0.03*

Global radial systolic strain rate (s–1) 1.76 ± 0.43 1.44 ± 0.43 0.02*

Culprit longitudinal strain (%) -19.1 ± 3.6 -17.2 ± 4.7 0.07

Culprit longitudinal systolic strain rate (s–1) -1.11 ± 0.23 -0.9 ± 0.29 <0.01*

Injury longitudinal strain (%) -16.6 ± 3.19 -13.9 ± 3.0 <0.01*

Injury longitudinal systolic strain rate (s–1) -1.0 ± 0.24 -0.75 ± 0.25 <0.01*

* = p Vale <0.05

doi:10.1371/journal.pone.0168109.t003

Fig 2. Receiver operating curve analysis for the prediction of left ventricular remodeling 6 months after acute

myocardial infarction (A) for all population (B) for a subgroup of ST-segment elevation myocardial infarction

patients.

doi:10.1371/journal.pone.0168109.g002
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predicting LV remodeling in STEMI or NSTEMI [11–13,16]. Bochenek et al evaluated 66

patients with ST–T elevation myocardial infarction treated by primary PCI [11]. D’Andrea

et al evaluated 70 patients with recent NSTEMI [12]. Zaliaduonyte et al evaluated 82 patients

within 48–72 h of the onset of AMI [13]. Lacalzada et al studied 97 patients with acute myocar-

dial infarction treated with primary PCI [16]. However, the VALIANT Echo study demon-

strated that circumferential strain rate was predictive for LV remodeling but that GLS and

LSRs were not [17]. That study investigated 603 patients with LV dysfunction or heart failure

after myocardial infarction. Only 311 cases had adequate image quality to permit assessment

of all longitudinal and circumferential strain and strain rate. The GLS and LSRs were derived

only from the mean value of apical 4- and 2-chamber views. Probably, the mean valve of a total

of 12 segments was not representative of global values. A large study by Joyce et al reported an

association between GLS and adverse LV dilatation after STEMI in 1041 patients [15]. The

population was divided into 2 groups according to a median valve of GLS of –15.0%. Patients

Table 4. Univariate and multivariate logistic regression for left ventricular remodeling.

Univariate analysis odds ratio (95% CI) p Value Multivariate analysis odds ratio (95% CI) p Value

Age (y) 1.04 (1.0–1.08) 0.09

Male sex 0.11 (0.02–0.57) 0.01* 0.11 (0.02–0.79) 0.03*

Peak CK-MB (ng/mL) 1.01 (1.00–1.01) 0.01* 1.01 (1.0–1.01) 0.05*

log BNP (ng/L) 2.89 (1.06–7.88) 0.04*

log hsCRP (mg/L) 1.2 (0.54–2.67) 0.66

eGFR (mL/min/1.73 m2) 0.99 (0.97–1.01) 0.19

LAD disease 1.77 (0.45–6.92) 0.41

LAD culprit lesion 1.85 (0.7–4.88) 0.22

D-to-B (min)

• STEMI 1.0 (0.99–1.00) 0.59

• NSTEMI 1.0 (0.99–1.00) 0.26

S-to-B (h)

• STEMI 0.98 (0.93–1.04) 0.54

• NSTEMI 0.99 (0.96–1.02) 0.41

ACEI/ARB 0.87 (0.36–2.26) 0.77

Beta-blocker 0.79 (0.30–2.05) 0.63

Statin 2.72 (1.0–7.41) 0.05*

Ejection fraction (%) 1.02 (0.96–1.08) 0.55

WMSI 9.99 (1.15–87) 0.04*

Left atrial volume index (mL/m2) 1.01 (0.97–1.06) 0.60

Global longitudinal strain (%) 1.07 (0.94–1.2) 0.29

Global longitudinal systolic strain rate (s–1) 2.02 (0.23–17.8) 0.53

Global circumferential strain (%) 1.00 (0.89–1.13) 0.96

Global circumferential systolic strain rate (s–1) 0.9 (0.23–3.49) 0.87

Global radial strain (%) 1.01 (0.97–1.05) 0.65

Global radial systolic strain rate (s–1) 0.7 (0.19–2.66) 0.6

Injury longitudinal strain (%) 1.7 (1.21–2.39) < 0.01* 1.48 (1.02–2.14) 0.04*

Injury longitudinal systolic strain rate (s–1) 112.3 (1.93–6541.2) 0.02*

Culprit longitudinal strain (%) 1.06 (0.95–1.18) 0.27

Culprit longitudinal systolic strain rate (s–1) 1.88 (0.29–12.2) 0.51

* = p Vale <0.05; for acronym key, see Table 1.

doi:10.1371/journal.pone.0168109.t004
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with baseline GLS greater than –15.0% exhibited greater LV dilatation at 3- and 6-month fol-

low-ups compared with patients with GLS equal or less than -15.0%.

Our study is the only one that has assessed the clinical use of 2D speckle tracking echocardi-

ography in patients with relatively preserved LVEF after AMI. In multivariate logistic regres-

sion, InjLS was an independent predictor for LV remodeling and indeed was more predictive

than WMSI. GLS, GCS or GRS was not different between patients with or without LV remod-

eling. The association between GLS and infarct size has been studied recently [23–27]. Sjoli

et al investigated GLS after revascularization in 39 patients with STEMI and treated with

thrombolysis [26]. A cutoff value of –15.0% for GLS was precise to identify a large myocardial

infarct. Gjesdal et al discovered that the GLS level identified by 2D speckle tracking echocardi-

ography is closely related to myocardial infarct size as determined by contrast-enhanced mag-

netic resonance imaging during chronic ischemic heart disease [27]. A strain value of –15%

has 83% sensitivity and 93% specificity at the global level and 76% sensitivity and 95% specific-

ity at the territorial level to identify infarction. In our study, InjLS was defined as the average

of segmental longitudinal strains > –15%. The number of injured segments between the non-

Table 5. Clinical data for STEMI patients.

Nonremodeling (N = 35) Remodeling (N = 19) p Value

Age (y) 58.3 ± 12.5 64.6 ± 11.2 0.07

Male sex 34 (97.1%) 15 (78.9%) 0.05*

hsCRP(mg/L)‡ 18.4 (6.2, 56.7) 38 (7.6, 68.6) 0.32

Peak CK-MB (ng/mL)‡ 58.8 (19.1, 216.3) 165(24.5, 300) 0.12

BNP (ng/L)‡ 207 (63, 207) 343 (145, 844) 0.03*

eGFR (mL/min/1.73 m2) 84.8 ± 28.1 74.6 ± 26.6 0.2

D-to-B (min)‡ 67 (54, 76.5) 82 (71, 103) 0.01*

S-to-B (h)‡ 3.5 (2.3, 6.0) 3.5 (2.7, 6.8) 0.68

Hypertension 17 (48.6%) 9 (47.4%) 0.93

Diabetes mellitus 7 (20.0%) 6 (31.6%) 0.34

Smoking 24 (68.6%) 10 (52.6%) 0.25

Medication before discharge

ACEI or ARB 15 (42.9%) 9 (47.4%) 0.75

Beta-blocker 20 (57.1%) 12 (63.2%) 0.67

Statin 28 (80%) 11 (57.9%) 0.08

Culprit Vessel 0.79

• LAD 18 (51.4%) (42.1%)

• LCX 2 (5.7%) (5.3%)

• RCA 15 (42.9%) 10 (52.6%)

Coronary artery disease 0.8

• 1-vessel disease 11 (31.4%) (31.6%)

• 2-vessel disease 18 (51.4%) 57.9%)

• 3-vessel disease 6 (17.1%) 2 (10.5%)

Diseased site

• Left main 4 (11.4%) 1 (5.3%) 0.65

• LAD 31 (88.6%) 16 (84.2%) 0.65

• LCX 13 (37.1%) 4 (21.1%) 0.36

• RCA 21 (60%) 14 (73.7%) 0.38

* = p Vale <0.05

‡variables that were not normally distributed were expressed as median (25th, 75th percentile), for acronym key, see Table 1.

doi:10.1371/journal.pone.0168109.t005
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remodeling and remodeling groups is no significant different. Possible because our patients

have preserved EF and the infarcted area is relative small. We hypothesized the adverse remod-

eling depend on the severity of injury other than the extent of injured or infarcted area in

patient with preserved EF. Other LV deformation indices are not predictive for several poten-

tial reasons: According to the previous study [28], the longitudinal strain that is predominantly

governed by the subendocardial regions, is the most vulnerable and sensitive to the presence of

myocardial disease. While mid-myocardial and epicardial regions contribute more to circum-

ferential and radial strain. Circumferential or radial strain are relatively preserved or compen-

sated to maintain the LV systolic function in the initial process. In the present study, we

investigated patients with preserved EF, and thus the likely extent or severity of myocardial

infarctions was probably modest. We suppose that circumferential and radial strains are rela-

tively preserved. Second, the contractility of segments in the remote zone could compensate to

maintain LV systolic function. Global LS, GCS, and GRS represent the global LV contractility

and perhaps do not reflect the severity of the infarct area in a cohort with preserved EF. Our

echography was performed after PCI, and the regional wall motion of the culprit territory

could be improved by the intervention. Myocardial contractility recovery in STEMI can occur

within 2 days, as demonstrated by Ingul et al [29]. Global LS is correlated with EF or WMSI

[12]. Since our cohort had preserved EF, the infarct size could be smaller than that in previous

studies. These potentially explain why GLS, GCS, GRS or EF is not identified as a predictor in

our study. We assume abnormal segments play a more important role in adverse LV remodel-

ing in patients with preserved EF. The present study demonstrated WMSI was a predictor in

ROC analysis but InjLS is more predictive than WMSI in multi-variate logistic regression

Table 6. Echocardiographic findings in STEMI patients.

Nonremodeling (N = 35) Remodeling (N = 19) p Value

Baseline echocardiography after admission (days) 2.9 ± 1.4 3.3 ± 2.1 0.4

Baseline echocardiography after PCI (days) 2.8 ± 1.4 3.3 ± 2.0 0.37

Heart rate (baseline) (bpm) 72 ± 16 77 ± 17 0.36

Heart rate (6th month) (bpm) 72 ± 12 69 ± 11 0.43

Ejection fraction (baseline) (%) 56.6 ± 7.9 57.6 ± 11.3 0.7

Ejection fraction (6th month) (%) 62.8 ± 9.1 54.5 ± 7.9 <0.01*

Left ventricular end-diastolic volume (baseline) (mL) 116 ± 29 88 ± 25 < 0.01*

Left ventricular end-diastolic volume (6th month) (mL) 111 ± 25 121 ± 37 0.31

Left ventricular end-systolic volume (baseline) (mL) 51 ± 16 37 ± 14 < 0.01*

Left ventricular end-systolic volume (6th months) (mL) 42 ± 15 56 ± 24 <0.01*

Stroke volume index (mL/m2) 39.6 ± 11.7 35 ± 10.7 0.18

Left atrial volume index (mL/m2) 33.3 ± 8.3 34.9 ± 11.6 0.59

Mitral inflow

• E (cm/s) 82.6 ± 18.0 86.0 ± 19.1 0.52

• A (cm/s) 79.1 ± 24.1 85 ± 31.3 0.45

• E/A 1.15 ± 0.47 1.14 ± 0.5 0.97

Deceleration time (ms) 204.6 ± 71.7 194.2 ± 66.2 0.62

Tissue Doppler image

• E/e0 14.27 ± 5.14 16.56 ± 6.05 0.16

WMSI 1.31 ± 0.19 1.42 ± 0.26 0.1

* = p Vale <0.05; for acronym key, see Table 2.

doi:10.1371/journal.pone.0168109.t006
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analysis. In subgroup analysis for STEMI, InjLS was also demonstrated as a unique predictor

by multivariate logistic regression or ROC analysis.

Clinical predictors of remodeling

In our study, peak CK-MB was an independent predictor of adverse LV remodeling, as previ-

ous studies reported [6,16,30]. The appearance of LAD as the culprit vessel was not associated

with remodeling, even in subgroup analysis for STEMI. Potential explanations include the fol-

lowing: 68.7% of our population had multi-vessel disease, and LAD stenosis was found in

89.2% patients although it was not the culprit lesion. Further, the TIMI flow of the infarct-

related artery after PCI was Grade 3 in all patients. STEMI had a tendency forward adverse LV

remodeling, but this finding was not statistically significant because of the small group. In the

NSTEMI group, only 5 cases had LV remodeling. In subgroup analysis, the door-to-balloon

time was longer in remodeling group but the symptom-to-balloon time was not different.

Probably because most of our patients live in the countryside and they take more time to arrive

in our hospital, the symptom-to-balloon time was high.

Limitations

The present study has several limitations. Our study cohort was relatively small and was lim-

ited to patients with few complications. Patients who required mechanical ventilation or intra-

aortic balloon pumping were excluded because images with vivid endocardial edges through

Table 7. Left ventricle deformation performance indices in STEMI patients.

Nonremodeling (N = 35) Remodeling (N = 19) p Value

Baseline value

Global longitudinal strain (%) –17.4 ± 3.7 –16.2 ± 4.3 0.27

Global longitudinal systolic strain rate(s–1) –1.06 ± 0.2 –1.06 ± 0.26 0.99

Global circumferential strain (%) –16.5 ± 3.9 –16.7 ± 4.8 0.9

Global circumferential systolic strain rate (s–1) –1.34 ± 0.29 –1.4 ± 0.35 0.53

Global radial strain (%) 35.6 ± 14.3 35.7 ± 12.2 0.98

Global radial systolic strain rate (s–1) 1.76 ± 0.48 1.7 ± 0.29 0.70

Culprit longitudinal strain (%) –16.1 ± 4.0 –14.5 ± 5.4 0.21

Culprit longitudinal systolic strain rate (s–1) –0.96 ± 0.21 0.93 ± 0.31 0.73

Injury longitudinal strain (%) –12.3 ± 1.7 –10.5 ± 1.6 < 0.01*

Injury longitudinal systolic strain rate (s–1) –0.79 ± 0.13 –0.72 ± 0.16 0.13

No of injured segments 5.8 ± 5.1 8.1 ± 5.5 0.14

6th month value

Global longitudinal strain (%) -18.9 ± 3.1 -17.6 ± 4.2 0.23

Global longitudinal systolic strain rate (s–1) -1.1 ± 0.2 -0.9 ± 0.2 0.02*

Global circumferential strain (%) -18.6 ± 4.8 -17.5 ± 4.0 0.51

Global circumferential systolic strain rate (s–1) -1.3 ± 0.4 -1.3 ± 0.2 0.72

Global radial strain (%) 38.7 ± 14.2 25.5 ± 12.5 0.01*

Global radial systolic strain rate (s–1) 1.8 ± 0.5 1.3 ± 0.3 0.01*

Culprit longitudinal strain (%) -18.4 ± 3.9 -16.4 ± 4.8 0.13

Culprit longitudinal systolic strain rate (s–1) -1.1 ± 0.2 -0.9 ± 0.3 0.02*

Injury longitudinal strain (%) -16.3 ± 3.4 -13.6 ± 3.0 0.02*

Injury longitudinal systolic strain rate (s–1) -1.0 ± 0.3 -0.7 ± 0.3 <0.01*

* = p Vale <0.05

doi:10.1371/journal.pone.0168109.t007
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the whole cardiac cycle are required for 2D speckle tracking analysis. Our group was not lim-

ited to STEMI, and some patients with Killip class IV were also enrolled. However, we demon-

strated the feasibility of the 2D speckle tracking technique in the real-world setting of acute

coronary syndrome with patients who were not highly selected. We performed echocardiogra-

phy after PCI (mean 2.7 ± 1.6 days after PCI), which is not like protocols of major published

studies in which echocardiography was performed on the first day of admission or immedi-

ately after PCI. Recovery of myocardial contractility following ischemia or infarction after PCI

can occur early [29]. Our study investigated patients with preserved EF, and the possible extent

or severity of their myocardial infarctions probably were modest. In 5 patients, all segmental

longitudinal strain was smaller than –15%. InjLS was available for 78 patients (94%). We did

not evaluate the circumferential or radial strain of the injury segments for several reasons.

There is rare research to investigate the relationship between infarction size and circumferen-

tial or radial strain. We lack the suggestion for cut-off value of circumferential or radial strain

to define injury segments. Besides, as we mentioned earlier, circumferential or radial strain are

relatively preserved or compensated to maintain the LV systolic function in the initial process

Table 8. Univariate logistic regression for left ventricular remodeling in STEMI patients.

Univariate analysis odds ratio (95% CI) p Value

Age 1.05 (0.99–1.102) 0.08

Male sex 0.11 (0.01–1.07) 0.06

Peak CK-MB (ng/mL) 1.01 (1.00–1.01) 0.06

log BNP (ng/L) 4.41 (1.19–16.28) 0.03*

log hsCRP (mg/L) 1.46 (0.53–4.04) 0.47

eGFR (mL/min/1.73 m2) 0.99 (0.97–1.01) 0.2

LAD disease 1.45 (0.29–7.3) 0.65

LAD culprit lesion 0.69 (0.22–2.12) 0.51

CAD number 0.86 (0.37–2.00) 0.72

D-to-B (min) 1.0 (0.99–1.00) 0.59

S-to-B (h) 0.98 (0.93–1.04) 0.54

ACEI/ARB 1.20 (0.39–3.69) 0.75

Beta-blocker 1.29 (0.41–4.05) 0.67

Statin 0.34 (0.1–1.18) 0.09

Ejection fraction (%) 1.01 (0.95–1.08) 0.71

WMSI 9.16 (0.63–133.0) 0.11

Left atrial volume index (mL/m2) 1.02 (0.96–1.09) 0.59

Global longitudinal strain (%) 1.09 (0.94–1.26) 0.26

Global longitudinal strain rate (s-1) 0.98(0.07–13.04) 0.99

Global circumferential strain (%) 0.99 (0.85–1.15) 0.9

Global circumferential strain rate (s-1) 0.51(0.07–3.97) 0.52

Global radial strain (%) 1.00 (0.96–1.05) 0.98

Global radial strain rate (s-1) 0.74 (0.17–3.276) 0.7

Injury longitudinal strain (%) 1.88 (1.22–2.88) < 0.01*

Injury longitudinal strain rate (s-1) 28.72(0.35–2390.8) 0.14

Culprit longitudinal strain (%) 1.09 (0.96–1.23) 0.21

Culprit longitudinal strain rate (s-1) 1.6(0.16–16.11) 0.69

* = p Vale <0.05; for acronym key, see Table 1.

doi:10.1371/journal.pone.0168109.t008
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since our cohort had preserved EF. And reproducibility of circumferential or radial strain is

not as good as longitudinal strain.

We used CK-MB instead of troponin-I, because troponin-I is checked once only for diag-

nosis in our hospital and is not follow-up routinely. So we don’t have the peak value of tropo-

nin I. Serial CK-MB are collected once acute coronary syndrome is diagnosed.

The criteria of our government insurance for statin is LDL>100 mg/dL or total cholesterol

>200 mg/dL. Only 30.5% patients meet the criteria (non-remodeling vs remodeling group: 17

[28.8%] vs 8 [34.8%], P = 0.6). Then use of statin depended on physicians and patients’ deci-

sion when the government insurance did not cover the cost of statin. This could explain the

low percentage of patients taking statins although about 80% patients have LDL>70 mg/dL in

both groups (53[89.8%] vs 20 [87%]).

Conclusions

LV remodeling occurred in 28.9% of AMI patients with preserved EF even after PCI. The 2D

speckle tracking echocardiography was a promising, feasible, and noninvasive modality to

evaluate myocardial deformation in this cohort. In the present study, InjLS was an indepen-

dent predictor for LV remodeling in patients with preserved EF.

Supporting Information

S1 Dataset. The database of the present study.

(XLSX)

Author Contributions

Conceptualization: JFH JTH.

Data curation: JFH JTH.

Formal analysis: JFH JTH C. Chu.

Funding acquisition: JTH C. Chung.

Investigation: JFH JTH YSL KLP STC.

Project administration: JFH.

Supervision: C. Chung.

Writing – original draft: JFH.

Writing – review & editing: JTH.

References
1. Savoye C, Equine O, Tricot O, Nugue O, Segrestin B, Sautiere K, et al. Left ventricular remodeling after

anterior wall acute myocardial infarction in modern clinical practice (from the REmodelage VEntriculaire

[REVE] study group). Am J Cardiol. 2006 Nov 1; 98(9):1144–9. doi: 10.1016/j.amjcard.2006.06.011

PMID: 17056315

2. Ferrari R. Effects of angiotensin-converting enzyme inhibition with perindopril on left ventricular remod-

eling and clinical outcome: results of the randomized Perindopril and Remodeling in Elderly with Acute

Myocardial Infarction (PREAMI) Study. Arch Intern Med. 2006 Mar 27; 166(6):659–66. doi: 10.1001/

archinte.166.6.659 PMID: 16567606

3. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, et al. Left ventricular

remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prog-

nostic implications. Circulation. 2002 Oct 29; 106(18):2351–7. PMID: 12403666

Strain for LV Remodeling after Myocardial Infarction with Preserved EF

PLOS ONE | DOI:10.1371/journal.pone.0168109 December 29, 2016 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0168109.s001
http://dx.doi.org/10.1016/j.amjcard.2006.06.011
http://www.ncbi.nlm.nih.gov/pubmed/17056315
http://dx.doi.org/10.1001/archinte.166.6.659
http://dx.doi.org/10.1001/archinte.166.6.659
http://www.ncbi.nlm.nih.gov/pubmed/16567606
http://www.ncbi.nlm.nih.gov/pubmed/12403666


4. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations

and clinical implications. Circulation. 1990 Apr; 81(4):1161–72. PMID: 2138525

5. Moller JE, Hillis GS, Oh JK, Reeder GS, Gersh BJ, Pellikka PA. Wall motion score index and ejection

fraction for risk stratification after acute myocardial infarction. Am Heart J. 2006 Feb; 151(2):419–25.

doi: 10.1016/j.ahj.2005.03.042 PMID: 16442909

6. Yoon HJ, Jeong MH, Bae JH, Kim KH, Ahn Y, Cho JG, et al. Dyslipidemia, low left ventricular ejection

fraction and high wall motion score index are predictors of progressive left ventricular dilatation after

acute myocardial infarction. Korean Circ J. 2011 Mar; 41(3):124–9. doi: 10.4070/kcj.2011.41.3.124

PMID: 21519510

7. Kober L, Torp-Pedersen C, Elming H, Burchardt H. Use of left ventricular ejection fraction or wall-motion

score index in predicting arrhythmic death in patients following an acute myocardial infarction. The

TRACE Study Group. Pacing Clin Electrophysiol. 1997 Oct; 20(10 Pt 2):2553–9.

8. Nicolosi GL, Golcea S, Ceconi C, Parrinello G, Decarli A, Chiariello M, et al. Effects of perindopril on car-

diac remodelling and prognostic value of pre-discharge quantitative echocardiographic parameters in

elderly patients after acute myocardial infarction: the PREAMI echo sub-study. Eur Heart J. 2009 Jul;

30(13):1656–65. doi: 10.1093/eurheartj/ehp139 PMID: 19406871

9. Kinney EL, Wright RJ. Echocardiographic score versus wall motion index for risk stratification after

acute myocardial infarction. Angiology. 1990 Feb; 41(2):112–7. PMID: 2407156

10. Park YH, Kang SJ, Song JK, Lee EY, Song JM, Kang DH, et al. Prognostic value of longitudinal strain

after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction. J Am Soc

Echocardiogr. 2008 Mar; 21(3):262–7. doi: 10.1016/j.echo.2007.08.026 PMID: 17904803

11. Bochenek T, Wita K, Tabor Z, Grabka M, Krzych L, Wrobel W, et al. Value of speckle-tracking echocar-

diography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction

treated by primary percutaneous intervention. J Am Soc Echocardiogr. 2011 Dec; 24(12):1342–8. doi:

10.1016/j.echo.2011.09.003 PMID: 22000785

12. D’Andrea A, Cocchia R, Caso P, Riegler L, Scarafile R, Salerno G, et al. Global longitudinal speckle-

tracking strain is predictive of left ventricular remodeling after coronary angioplasty in patients with

recent non-ST elevation myocardial infarction. Int J Cardiol. 2011 Dec 1; 153(2):185–91. doi: 10.1016/j.

ijcard.2010.08.025 PMID: 20843570

13. Zaliaduonyte-Peksiene D, Vaskelyte JJ, Mizariene V, Jurkevicius R, Zaliunas R. Does longitudinal

strain predict left ventricular remodeling after myocardial infarction? Echocardiography. 2012 Apr; 29

(4):419–27. doi: 10.1111/j.1540-8175.2011.01597.x PMID: 22150720

14. Altiok E, Tiemann S, Becker M, Koos R, Zwicker C, Schroeder J, et al. Myocardial deformation imaging

by two-dimensional speckle-tracking echocardiography for prediction of global and segmental func-

tional changes after acute myocardial infarction: a comparison with late gadolinium enhancement car-

diac magnetic resonance. J Am Soc Echocardiogr. 2014 Mar; 27(3):249–57. doi: 10.1016/j.echo.2013.

11.014 PMID: 24368027

15. Joyce E, Hoogslag GE, Leong DP, Debonnaire P, Katsanos S, Boden H, et al. Association between left

ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation

myocardial infarction. Circ Cardiovasc Imaging. 2014 Jan; 7(1):74–81. doi: 10.1161/CIRCIMAGING.

113.000982 PMID: 24186962

16. Lacalzada J, de la Rosa A, Izquierdo MM, Jimenez JJ, Iribarren JL, Garcia-Gonzalez MJ, et al. Left ven-

tricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in

patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Int J

Cardiovasc Imaging. 2015 Jan 18.

17. Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, et al. Longitudinal and circumferential

strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol.

2010 Nov 23; 56(22):1812–22. doi: 10.1016/j.jacc.2010.06.044 PMID: 21087709

18. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for

chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Stan-

dards Committee and the Chamber Quantification Writing Group, developed in conjunction with the

European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc

Echocardiogr. 2005 Dec; 18(12):1440–63. doi: 10.1016/j.echo.2005.10.005 PMID: 16376782

19. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of

Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature

and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002

Feb; 15(2):167–84. PMID: 11836492

20. Tsai WC, Liu YW, Huang YY, Lin CC, Lee CH, Tsai LM. Diagnostic value of segmental longitudinal

strain by automated function imaging in coronary artery disease without left ventricular dysfunction. J

Am Soc Echocardiogr. 2010 Nov; 23(11):1183–9. doi: 10.1016/j.echo.2010.08.011 PMID: 20833507

Strain for LV Remodeling after Myocardial Infarction with Preserved EF

PLOS ONE | DOI:10.1371/journal.pone.0168109 December 29, 2016 15 / 16

http://www.ncbi.nlm.nih.gov/pubmed/2138525
http://dx.doi.org/10.1016/j.ahj.2005.03.042
http://www.ncbi.nlm.nih.gov/pubmed/16442909
http://dx.doi.org/10.4070/kcj.2011.41.3.124
http://www.ncbi.nlm.nih.gov/pubmed/21519510
http://dx.doi.org/10.1093/eurheartj/ehp139
http://www.ncbi.nlm.nih.gov/pubmed/19406871
http://www.ncbi.nlm.nih.gov/pubmed/2407156
http://dx.doi.org/10.1016/j.echo.2007.08.026
http://www.ncbi.nlm.nih.gov/pubmed/17904803
http://dx.doi.org/10.1016/j.echo.2011.09.003
http://www.ncbi.nlm.nih.gov/pubmed/22000785
http://dx.doi.org/10.1016/j.ijcard.2010.08.025
http://dx.doi.org/10.1016/j.ijcard.2010.08.025
http://www.ncbi.nlm.nih.gov/pubmed/20843570
http://dx.doi.org/10.1111/j.1540-8175.2011.01597.x
http://www.ncbi.nlm.nih.gov/pubmed/22150720
http://dx.doi.org/10.1016/j.echo.2013.11.014
http://dx.doi.org/10.1016/j.echo.2013.11.014
http://www.ncbi.nlm.nih.gov/pubmed/24368027
http://dx.doi.org/10.1161/CIRCIMAGING.113.000982
http://dx.doi.org/10.1161/CIRCIMAGING.113.000982
http://www.ncbi.nlm.nih.gov/pubmed/24186962
http://dx.doi.org/10.1016/j.jacc.2010.06.044
http://www.ncbi.nlm.nih.gov/pubmed/21087709
http://dx.doi.org/10.1016/j.echo.2005.10.005
http://www.ncbi.nlm.nih.gov/pubmed/16376782
http://www.ncbi.nlm.nih.gov/pubmed/11836492
http://dx.doi.org/10.1016/j.echo.2010.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20833507


21. Gjesdal O, Hopp E, Vartdal T, Lunde K, Helle-Valle T, Aakhus S, et al. Global longitudinal strain mea-

sured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct

size in chronic ischaemic heart disease. Clin Sci (Lond). 2007 Sep; 113(6):287–96.

22. Bonios MJ, Kaladaridou A, Tasoulis A, Papadopoulou E, Pamboukas C, Ntalianis A, et al. Value of api-

cal circumferential strain in the early post-myocardial infarction period for prediction of left ventricular

remodeling. Hellenic J Cardiol. 2014 Jul-Aug; 55(4):305–12. PMID: 25039026

23. Grabka M, Wita K, Tabor Z, Paraniak-Gieszczyk B, Chmurawa J, Elzbieciak M, et al. Prediction of

infarct size by speckle tracking echocardiography in patients with anterior myocardial infarction. Coron

Artery Dis. 2013 Mar; 24(2):127–34. doi: 10.1097/MCA.0b013e32835b6798 PMID: 23324905

24. Munk K, Andersen NH, Nielsen SS, Bibby BM, Botker HE, Nielsen TT, et al. Global longitudinal strain

by speckle tracking for infarct size estimation. Eur J Echocardiogr. 2011 Feb; 12(2):156–65. doi: 10.

1093/ejechocard/jeq168 PMID: 21131657

25. Eek C, Grenne B, Brunvand H, Aakhus S, Endresen K, Hol PK, et al. Strain echocardiography and wall

motion score index predicts final infarct size in patients with non-ST-segment-elevation myocardial

infarction. Circ Cardiovasc Imaging. 2010 Mar; 3(2):187–94. doi: 10.1161/CIRCIMAGING.109.910521

PMID: 20075142

26. Sjoli B, Orn S, Grenne B, Vartdal T, Smiseth OA, Edvardsen T, et al. Comparison of left ventricular ejec-

tion fraction and left ventricular global strain as determinants of infarct size in patients with acute myo-

cardial infarction. J Am Soc Echocardiogr. 2009 Nov; 22(11):1232–8. doi: 10.1016/j.echo.2009.07.027

PMID: 19815383

27. Gjesdal O, Helle-Valle T, Hopp E, Lunde K, Vartdal T, Aakhus S, et al. Noninvasive separation of large,

medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a

comprehensive tissue Doppler and speckle-tracking echocardiography study. Circ Cardiovasc Imaging.

2008 Nov; 1(3):189–96, 2 p following 96. doi: 10.1161/CIRCIMAGING.108.784900 PMID: 19808542

28. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial

mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc

Echocardiogr. 2010; 23:351–69. doi: 10.1016/j.echo.2010.02.015 PMID: 20362924

29. Ingul CB, Malm S, Refsdal E, Hegbom K, Amundsen BH, Stoylen A. Recovery of function after acute

myocardial infarction evaluated by tissue Doppler strain and strain rate. J Am Soc Echocardiogr. 2010

Apr; 23(4):432–8. doi: 10.1016/j.echo.2010.01.018 PMID: 20202790

30. Abate E, Hoogslag GE, Leong DP, Bertini M, Antoni ML, Nucifora G, et al. Association between multi-

layer left ventricular rotational mechanics and the development of left ventricular remodeling after acute

myocardial infarction. J Am Soc Echocardiogr. 2014 Mar; 27(3):239–48. doi: 10.1016/j.echo.2013.12.

009 PMID: 24433978

Strain for LV Remodeling after Myocardial Infarction with Preserved EF

PLOS ONE | DOI:10.1371/journal.pone.0168109 December 29, 2016 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/25039026
http://dx.doi.org/10.1097/MCA.0b013e32835b6798
http://www.ncbi.nlm.nih.gov/pubmed/23324905
http://dx.doi.org/10.1093/ejechocard/jeq168
http://dx.doi.org/10.1093/ejechocard/jeq168
http://www.ncbi.nlm.nih.gov/pubmed/21131657
http://dx.doi.org/10.1161/CIRCIMAGING.109.910521
http://www.ncbi.nlm.nih.gov/pubmed/20075142
http://dx.doi.org/10.1016/j.echo.2009.07.027
http://www.ncbi.nlm.nih.gov/pubmed/19815383
http://dx.doi.org/10.1161/CIRCIMAGING.108.784900
http://www.ncbi.nlm.nih.gov/pubmed/19808542
http://dx.doi.org/10.1016/j.echo.2010.02.015
http://www.ncbi.nlm.nih.gov/pubmed/20362924
http://dx.doi.org/10.1016/j.echo.2010.01.018
http://www.ncbi.nlm.nih.gov/pubmed/20202790
http://dx.doi.org/10.1016/j.echo.2013.12.009
http://dx.doi.org/10.1016/j.echo.2013.12.009
http://www.ncbi.nlm.nih.gov/pubmed/24433978

