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Abstract: Rice is a global food grain crop for more than one-third of the human population and a
source for food and nutritional security. Rice production is subjected to various stresses; blast disease
caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total
crop under severe conditions. In the present review, we discuss the importance of rice and blast
disease in the present and future global context, genomics and molecular biology of blast pathogen
and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene
interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of
noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes;
and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs
and R genes for blast resistance through conventional breeding and transgenic approaches. Finally,
we review the demonstrated examples and potential applications of the latest genome-editing tools
in understanding and managing blast disease in rice.

Keywords: rice; Magnaporthe; resistance; R-genes; QTLs; resistance-breeding; CRISPR/Cas

1. Introduction

Rice, being the major staple food and one of the main sources of income and employ-
ment, is an important crop all over the world. Almost 90% of the global production and
consumption of rice is reported from Asia, where a considerably large part of the world’s
population resides (www.fao.org; accessed on 20 January 2022).

Since 2000, global rice consumption has exceeded its production and the annual
shortage of rice is estimated to increase from 400,000 tons in 2016 to 800,000 tons by
2030 [1,2]. As the global population is expected to reach 9.77 billion by 2050, the rice
production needs to be doubled from the present levels to ensure both global food and
nutritional security. The total rice production can be enhanced by either increasing area
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of cultivation, productivity, or by avoiding the yield losses. However, the global analysis
shows no scope for expanding the area due to the unavailability of arable land [3]. Therefore,
avoiding the losses due to adverse environmental factors and post-harvest losses is the
only feasible way to enhance the productivity and overall production.

Rice crop is challenged by a number of biotic and abiotic stresses in the various rice-
growing regions of the world. Among these, blast disease caused by M. oryzae is considered
as the most serious disease of rice [4]. The average losses due to this disease range from
10 to 30%, with up to 100% loss having been reported under severe conditions. In this
article, we presented a critical analysis of the literature on the recent developments in
understanding the rice–M. oryzae interaction, and understanding the complex mechanism
of host resistance. Further, we elaborated on different approaches for the development of
blast-resistant rice lines to counteract the imminent threat posed by the emergence of new
M. oryzae races.

2. Global and National Significance of Rice Blast in Present and Future Context

Among the biotic stresses, rice blast is the most serious constraint that restricts the
global rice production [4,5]. The major blast epidemics covering vast areas occur on a
regular basis, resulting in 10–30% crop losses annually which represents a yield loss of
about 157 million tons worldwide. The disease was reported for the first time in China in
1637 and was recognized as rice fever disease. Further, it was described as imochibyo in
Japan in 1704 and as brusone in Italy in 1828. Now this disease covers almost 85 nations,
posing a major threat to food security and farmers’ revenue in the regions of South Asia
and Africa [6,7]. M. oryzae causes blast in more than 50 grass species [8], and among
agriculturally important crop species, it infects rice, wheat, rye, barley, pearl millet, and
finger millet.

Several blast epidemics have been recorded in rice. In the epidemic year 1953, an
estimated loss of about 800,000 tons of rice was recorded in Japan. In India, blast disease was
first reported in 1913, and in the year 1919 an epiphytotic was reported from the erstwhile
Madras state [4]. Further, seven epidemics of rice blast were recorded in Himachal Pradesh,
Andhra Pradesh, Tamil Nadu, and Haryana between 1980 and 1987 [4]. Even though huge
yield losses have resulted due to rice blast epidemics, proper information on yield loss data
during the last 30 years is not available for India. Frequent outbreaks have been recorded
in hilly areas of Uttaranchal, Himachal Pradesh, and Jammu and Kashmir, where about
65% yield is lost to blast disease due to the prevailing blast-favorable condition during the
kharif season [9]. Further, eastern India experiences frequent occurrences of the blast due to
the favorable climatic conditions for the growth and development of the pathogen. About
564,000 tons of rice is lost yearly due to blast in eastern India alone, nearly 50% of which is
lost under the upland ecosystem [9]. Blast disease incidence has also been reported in the
rice-growing areas of peninsular and plain regions of India.

3. Molecular Interplay between Rice and M. oryzae
3.1. The Pathogen: M. oryzae

Magnaporthe oryzae, the causal agent of blast disease in rice, is a hemibiotrophic
pathogen belonging to the Magnaporthaceae family. This fungus attacks rice plants at all
developmental stages and infects leaves, stems, nodes, panicles, and roots. The process of
infection begins with the landing and attachment of a conidium to the rice leaf cuticle. An
adhesive from the germinating conidium helps to stick to the cuticle. The conidium under
favourable conditions germinates to produce germ-tube, which further differentiates into
appressorium. The appressorium has a differentiated cell wall and a distinct melanin layer
between its cell wall and the cell membrane. This layer helps in the generation of turgor
pressure, which is later translated into mechanical force through the penetration peg and
helps in penetration through the leaf cuticle. Once inside the cell, hyphae multiply rapidly,
leading to disease development and visible blast symptoms. A graphical representation of
the infection cycle of M. oryzae in rice is given in Figure 1. For detailed information about
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the infection process of M. oryzae in rice, readers can refer to the article by Wilson and
Talbot [10].
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3.1.1. Magnaporthe oryzae Genomics

To develop durable and effective blast resistance in rice crop against M. oryzae, a com-
prehensive understanding of the molecular mechanism underlying the blast pathogenesis
and host resistance in rice required. The developments in the field of genomics, associated
with various molecular biology techniques, are enabling researchers to dissect out the
molecular mechanism of rice–M. oryzae interaction.

Among the phytopathogenic fungi, M. oryzae is the first one to have its genome
sequenced [11]. This fungus has emerged as a model system for studying the host–
pathogen interactions and understanding the pathogenicity mechanisms of plant pathogens.
M. oryzae displays an exceptional genomic plasticity due to frequent occurrences of repeat
elements in its genome. Such genome instability leads to a rapid evolution of new races in
the population. Genome resequencing of M. oryzae provides an opportunity to investigate
and understand the host–pathogen interaction processes of a particular strain at the molecu-
lar level for effectively managing the rice blast disease [12]. Consequently, genomes of more
than 74 strains of M. oryzae have been sequenced (Table 1). On average, the genome size of
M. oryzae is 40.12 Mb and contains 12,684 genes (Table 1). However, the estimated genome
size with a gap was reported to be 40.3 Mb [11]. Repeat elements distribution throughout its
genome is the main factor that determines the genome plasticity and several studies have
reported the influence of repeat elements in the genomic features [12,13]. Many avirulence
and effector molecules have been characterized in this pathogen and were found to have
association with the repeat element for their functional activities [12]. The repeat elements
are known to play a vital role in M. oryzae genome variation and genome evolution, and
largely impact the virulence spectrum at the individual strain level [13–15]. Interestingly,
every sequenced M. oryzae strain had isolate-specific genomic regions as well as genes.
Such isolate-specific genes and genomic regions determine racial evolution, environmental
adaptation, chromosomal variability, variation in repeat element distribution, and host
range specificity during the course of evolution [14,16]. It is also hypothesized that the
isolate-specific genes might be an event of the gene gained or lost during the evolution
process [13]. The resequencing of different M. oryzae genomes assists in constructing a
pan-genome that describes a consensus genome sequence derived from multiple or indi-
vidual genomes of different strains, species, or genera, and could be utilized as a complete
reference sequence. Pan-genome has many prospective applications and helps to analyze
multi-omics data. It could be used for genome-wide association study, metagenomics,
population genetics, phylogenomics, etc. Pan-genome also provides information about
the presence and absence of variation, core genes, dispensable genes, etc. Using the pan-
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genome approach in M. oryzae, Singh et al. [12] identified a retro-transposable element
that displayed a significant difference in copy number and distribution between virulent
and avirulent strains. The knowledge gathered through different genomics resources by
applying bioinformatics approaches such as comparative genome analysis, pan-genome
analysis, and metagenomics analysis can shed light on the mechanisms of frequent emer-
gence of new races of M. oryzae, and advances our understanding about the host–pathogen
interactions for the effective management of blast disease.

Table 1. List of Magnaporthe oryzae genome sequenced.

Strain Genome
Size (Mb) N 50 Value No. of Genes % of Repeats in

Genome Reference

70-15 38.8 1.6 Mb 11,109 9.7 [11]

Ina168 38.0 28.4 Kb NA NA [16]

P131 37.95 12.3 Kb 12,714 3.15 [13]

Y34 38.87 11.6 Kb 12,862 3.41 [13]

FJ81278 37.3 151.7 Kb 10,453 2.73 [14]

HN19311 37.1 147.4 Kb 10,256 2.83 [14]

98-06 42.1 88.6 Kb 14,019 9.3 [17]

B157 41 92.4 Kb 12,535 10.4 [15]

MG01 43 54.6 Kb 13,135 10.39 [15]

GFSI1-7-2 39.1 88.3 Kb 12,468 NA [16]

Br48 40.7 97.5 Kb 12,671 NA [16]

Br58 40.2 91.1 Kb 12,626 NA [16]

Z2-1 39.5 64.1 Kb 12,383 NA [16]

Dig41 41.3 24.3 Kb 11,457 NA [16]

RML-29 42.2 10.4 Kb 12,746 11.78 [12]

RP-2421 44.85 35.35 Kb 12,957 12.28 [12]

2539 38.08 107 Kb 12,116 NA [18]

RMg_Dl 42.42 524.2 Kb 10,555 NA [19]

FR13 46.45 5.39 Mb 14,322 13.23 [20]

US71 45.61 2.81 Mb 14,348 13.23 [20]

CD156 43.39 5.53 Mb 14,304 6.21 [20]

BR32 41.85 5.09 Mb NA 6.26 [20]

QJ08-2006 38.41 127.4 Kb 10,432 2.28 [21]

QJ10-10 38.28 105.1 Kb 10,418 2.22 [21]

QJ10-3001 38.40 133.1 Kb 10,401 2.28 [21]

RMg-Dl 34.82 45.894 Kb 12,747 NA [22]

70-15 40.90 NA 12,991 11.1 [23]

FR13 42.40 0.104 Mb 14,384 1.56 [23]

GY11 39.00 0.226 Mb 14,781 1.00 [23]

PH14 40.00 0.757 Mb 13,816 1.16 [23]

TH12 40.10 0.716 Mb 14,026 1.46 [23]

TH16 39.10 0.939 Mb 13,571 1.60 [23]

US71 41.20 0.814 Mb 13,803 2.40 [23]

BR32 41.90 1.760 Mb 14,336 2.00 [23]
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Table 1. Cont.

Strain Genome
Size (Mb) N 50 Value No. of Genes % of Repeats in

Genome Reference

CD156 42.70 1.066 Mb 14,067 1.47 [23]

BR29 40.90 0.955 Mb 12,283 1.60 [23]

V86010 38.9 93.4 Kb 11,857 5.1 [24]

76_3 38.35 0.159 Mb NA NA [25]

82_0835 40.07 0.136 Mb NA NA [25]

90_4_1 39.92 0.151 Mb NA NA [25]

BF17 39.72 0.138 Mb NA NA [25]

BF32 40.18 0.120 Mb NA NA [25]

BF48 40.01 0.144 Mb NA NA [25]

BF5 40.96 0.122 Mb NA NA [25]

BN0293 38.14 0.178 Mb NA NA [25]

EG308 41.56 0.149 Mb NA NA [25]

Glhn3 39.39 0.134 Mb NA NA [25]

Glhn4 39.52 0.134 Mb NA NA [25]

JUM1 40.50 0.127 Mb NA NA [25]

KE002 40.25 0.147 Mb NA NA [25]

KE016 40.27 0.156 Mb NA NA [25]

KE017 40.10 0.141 Mb NA NA [25]

KE019 39.37 0.176 Mb NA NA [25]

KE021 40.07 0.152 Mb NA NA [25]

KE029 41.03 0.154 Mb NA NA [25]

KE041 39.00 0.146 Mb NA NA [25]

KE210 38.85 15.86 Kb NA NA [25]

KE255 39.83 0.119 Mb NA NA [25]

KE332 41.00 35.0 Kb NA NA [25]

KE415 39.45 33.91 Kb NA NA [25]

KE443 40.88 36.41 Kb NA NA [25]

KE473 40.61 37.27 Kb NA NA [25]

KE491 40.05 34.50 Kb NA NA [25]

NG0110 39.60 0.115 Mb NA NA [25]

NG0135 39.85 0.109 Mb NA NA [25]

NG0153 39.80 0.130 Mb NA NA [25]

NGO104 38.94 0.128 Mb NA NA [25]

TG004 39.96 0.125 Mb NA NA [25]

TH3 37.30 22.62 Kb NA NA [25]

TZ090 38.95 0.127 Mb NA NA [25]

UG08 39.18 0.122 Mb NA NA [25]

V0104 40.34 0.126 Mb NA NA [25]

V0108 39.90 0.153 Mb NA NA [25]

V0113 39.75 0.151 Mb NA NA [25]
NA: Not available
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3.1.2. Pathogenicity Related Factors of M. oryzae

i. Analysis of Avr and effector genes. Pathogen-associated molecular patterns (PAMPs)
are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to acti-
vate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant
immunity that restricts pathogen proliferation. To establish a successful infection, the
M. oryzae has to overcome the PTI. Therefore, a successful isolate switches to the deploy-
ment of effector proteins, leading to a response known as effector-triggered susceptibility
(ETS) [26]. In ETS, the effector plays with host defense regulators, such as the Secreted
LysM protein 1 (Slp1) with two LysM domains; acts as a competitive inhibitor for the
binding of chitin with host chitin elicitor-binding protein (CEBiP); and thereby subverts the
PTI [16]. A recent study demonstrated a similar mechanism, where chitinase 1 (MoChia1)
competitively inhibits the binding of host tetratricopeptide repeat protein (OsTPR1) with
PAMP, chitin, and compromises PTI [27]. More recently, effectors such as MoHTR1 and
MoHTR2 were found to be directly targeted into the rice nucleus to undermine PTI [28].
Till-date, 26 Avr/effector genes have been mapped in M. oryzae, and 14 of them, including
two unmapped Avrs, MoHTR1 and MoHTR2, have been cloned and characterized (Table 2).

Table 2. List of Magnaporthe Avr/effector genes cloned.

Avr Gene Protein Size (aa) Chromosome Effector Type * Cognate R Gene Reference

PWL1 147 2 Glycine-rich Unknown [29]

PWL2 145 2 Glycine-rich Unknown [30]

AVR1-CO39 89 1 ToxB like Pi-CO39 [31]

AVR-Pita 224 3 Zinc
metalloprotease Pi-ta [32]

ACE1 4035 1 PKS/NRPS Pi33 (not cloned) [33]

AVR-Pia 85 5 or 7 ** ToxB like Pia [16,34]

AVR-Pii 70 7 Unknown Pii [16]

AVR-Pik/km/kp;
(AVR-Pikh) 113 (5 alleles) 1 ToxB like Pik/Pik-m/Pik-p,

Pik-h [16,35]

AvrPiz-t 108 7 ToxB like Piz-t [36]

AVR-Pi9 91 7 Six cysteine Pi9 [37]

AVRPib 75 3 Unknown Pib [38]

AVR-Pi54 153 4 ToxB like Pi54, Pi54rh, Pi54of [39]

MoHTR1 Unknown Unknown zinc-finger TF Unknown [28]

MoHTR2 Unknown Unknown zinc-finger TF Unknown [28]

PKS, polyketide synthase; NRPS, non-ribosomal peptide synthetase. * Magnaporthe Avrs and ToxB like (MAX)-
effectors are classified based on protein 3-D models [38–40]. ** AVR-Pia is located on chromosome 5 (isolates
Ina168 and Y93-165g-1; [34,41]) and chromosome 7 (isolate JS153; [42]).

The first discovered Pwl effectors (Pwl1–Pwl4) belong to a small, glycine-rich rapidly
evolving effector family that provides avirulence on weeping lovegrass and finger millet,
but has no effect on rice. Except for cell death-induction/suppression or interacting with
resistance proteins features, the identification of candidate effector proteins is a difficult
task due to their unique sequence features. Recent structural studies have shown that
despite sequence divergence, several effector proteins can share structural similarities. An
NMR-based study on diverse ascomyceteous effectors from M. oryzae and Pyrenophora tritici-
repentis revealed these proteins to possess conserved 6 β-sandwich structures stabilized by
conserved cysteines. A detailed study showed that previously characterized effectors such
as Avr Piz-t and ToxB also possess those folds, forming a conserved MAX effector family
(Magnaporthe Avrs and ToxB like). Additionally, 5–10% of the effectors expressed in the
biotrophic phase of M. oryzae possess MAX, and more than 50% of cloned effectors also
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belong to the MAX effector class. The computation prediction of the effector proved to be a
useful method to highlight potential candidates with conserved folds.

Among the 26 reported Avr-genes, 15 were mapped near the chromosome ends, and
5 of the cloned Avr genes were flanked by transposons. These transposons are active
companions of the Avr genes and play a role in the loss and gain of these genes. The
molecular interaction studies of the reported seven R-Avr pairs showed that five of them,
namely, Pi-ta/AVR-Pita, Pik/AVR-Pik, Pia/AVR-Pia, Pi-CO39/AVR1-CO39, and Pi54/AVR-
Pi54 interact directly, whereas Piz-t/AvrPiz-t and Pii/AVR-Pii have indirect interaction.
Besides the one-to-one interactions, two other types of interactions were also reported.
One, where two R proteins (homologs) interact with one Avr protein, such as in Pik-1
and Pik-2 with AVR-Pik [43], and a similar mechanism is predicted in the case of recently
cloned Avr MoHTR1 and MoHTR2, which are predicted to interact with the same target
protein [28]. In another interaction, two different Avr proteins could be recognized by
a single R protein complex, such as two NLR proteins, RGA4 and RGA5 hetero-dimers
interacting with AVR-Pia or AVR1-CO39 [44,45].

ii. Small non-coding RNAs in pathogenesis. Eukaryotic organisms produce small
RNAs (sRNAs) that include microRNAs (miRNAs) and short interfering RNAs (siRNAs)
of approximately 18–25 base pairs. These sRNAs modulate the diverse cellular activities
through a process known as RNA interference (RNAi) [46]. These RNAs also take part
in the mechanisms to subvert the host immune system during infection [47]. Most of the
sRNAs produced by the organisms’ function endogenously, however, there are reports
suggesting that these sRNAs can travel beyond the organismal boundaries and regulate
the genes in interacting organisms through a mechanism commonly known as “trans-
kingdom RNAi” [46,48]. This bidirectional movement of sRNAs has been reported between
animal/plant hosts and microorganisms interacting with them [48–53].

Magnaporthe oryzae possess functional RNAi pathway genes such as Dicer, Argonaute,
and RNA-dependent RNA polymerase. These genes are required for the biogenesis of
sRNAs that are involved in the regulation of fungal growth, virulence, and stress tol-
erance [54,55]. Nunes et al. [56] characterized the sRNA repertoire in this pathogen by
using the next-generation sequencing approach. They reported tissue-specific enrichment
of sRNAs from mycelia and appressoria-specific small RNA libraries. Raman et al. [54]
analyzed the expression sRNAs in M. oryzae by subjecting it to different in-vitro stresses
and observed two distinct peaks of sRNAs of 24 nt and 26 nt during mycelial and in-planta
growth, respectively [55]. The majority of sRNAs produced by this pathogen were aligned
to intergenic (54%) and repeat regions (41%) and only 4% of the total sRNAs matched to
protein-coding genes. Although the numbers of sRNAs mapped to intergenic and repeat
regions was high, the proportion of uniquely mapped sRNAs was higher in protein-coding
regions [54]. The sRNA expression profiles of the pathogen indicated differential preference
for 5′ nucleotide; the most abundant nucleotide at the start of sRNAs was Uracil followed
by Guanine in mycelial and Adenine in in-planta libraries. By employing a knockout
mutant of Argonaute (∆moago3) and RNA-dependent RNA polymerase (∆mordrp1), Ra-
man et al. [55] demonstrated that sRNAs produced by the pathogen are involved in the
regulation of pathogenesis-related genes such as MGG_01662 (4-aminobutyrate amino-
transferase), MGG_02329 (isotrichodermin C-15 hydroxylase), and MGG_02378 (glutamate
decarboxylase). M. oryzae mutants lacking moago3 and mordrp1 failed to infect barley during
wound assays, and both mutants showed reduced production conidia. The deletion of a
single Dicer (∆modcl2) or double knockout for Dicer genes (∆modcl1+∆modcl2) upregulated
many genes involved in pathogenicity such as MGG_10932 coding for C2H2 zinc-finger
transcription factor involved in the formation of appressorium; MGG_14068, encoding a
putative FAD oxidoreductase; MGG_02065 encoding kinesin light chain; and MGG_10027
encoding a calcium-transporting ATPase 1.

The above studies clearly demonstrated that the RNAi pathway genes and sRNAs play
an important role in the regulation of the pathogenicity during rice–M. oryzae interaction.
Besides several proteinaceous and non-proteinaceous effector molecules [57], many fungal
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pathogens have developed novel virulence mechanisms and deliver sRNAs as effector
molecules to overcome immunity during interaction with the host plant [52,58,59]. In M.
oryzae, the comparative expression profiling of sRNAs during vegetative phase and rice
infection revealed a significant upregulation of 366 M. oryzae sRNAs during infection. Out
of these differentially expressed sRNAs, 14 were identified as potential candidates, which
may act as effectors during rice–M. oryzae interaction [60]. In another study, Zhao et al. [46]
computationally created a regulatory network of M. oryzae sRNAs during rice–M. oryzae
interaction by utilizing the available transcriptomics and proteomics resources. These
researchers identified 22 sRNAs and 77 secretory proteins of M. oryzae that may participate
in the infection process. Though both the above studies predicted M. oryzae sRNAs as
possible mediators of rice–M. oryzae interaction, the accuracy of in-silico findings needs to
be further verified through extensive laboratory studies.

3.1.3. Editing Pathogenicity Genes in M. oryzae

CRISPR-Cas systems have been extensively used in editing the genomes of diverse
organisms for a wide range of applications [61,62]. For a wide range of filamentous
fungus, including various plant pathogens, CRISPR/Cas-based genome-editing strategies
have already been demonstrated [61,62]. They are usually based on Cas9 and gRNA
transgenic expression. Cas9 and gRNA coding plasmid can be transformed to fungal
cells; however, sometimes they might prove cytotoxic. To avoid cytotoxicity, Cas9 and
gRNA can also be complexed into a functional ribonucleoprotein (RNP) in-vitro and then
introduced through transformation, as established in M. oryzae [62,63]. gRNA molecules
may be synthesized in vitro and co-transformed alongside Cas9-encoding cassettes. In
microalgae, in vitro synthesized and characterized gRNAs were supplied as RNPs along
with Cas proteins [64–67]. In the rice blast fungus M. oryzae, concurrent double editing
was accomplished using this approach [63]. Similarly, Cas12a RNP was successfully used
for M. oryzae genome editing in a recent report [68]. However, there are no reports on
CRISPR/Cas-based transformation of M. oryzae for changing pathogenicity or creating
novel variants of the pathogen.

3.1.4. Magnaporthe Host-Shifting

Magnaporthe oryzae is known to infect many crops including rice, wheat, several millets,
and grasses among the others. The rice blast pathogen (M. oryzae pathotype Oryza: MoO)
is ranked top in the list of 10 most destructive fungal plant pathogens [69], whereas wheat
blast (WB) pathogen M. oryzae pathotype Triticum (MoT) was a lesser known disease with
its confinement to parts of Africa. The recent wheat blast epidemics in Bangladesh and
Zambia [70,71], however, put the MoT on the global map for having a serious consequence
on the world wheat production. Besides other factors, the prevailing weather conditions
during the wheat-growing season seem to have played a major role in wheat blast epidemics
in Bangladesh [72,73]. Though initially it was assumed that WB is an event of host-shift
of MoO from rice to wheat, recent molecular studies have confirmed that MoT from
Bangladesh and South America have highly similar genetic content [74], and they are also
distinct from other Magnaporthe pathotypes [75–78]. Interestingly, among the Magnaporthe
pathotypes, only Triticum (MoT) infects other hosts than its main host, wheat [79,80]. These
findings highlight the potential host-shift/jumping of Magnaporthe pathotypes and the
associated threat to the crop production, specifically to cereals and millets.

3.2. The Host: Rice
3.2.1. Genomes Sequenced

The genome Oryza is the smallest cereal crop genome with an estimated size of
400–430 Mb [81]. Oryza sativa japonica cultivar Nipponbare was the first rice genome se-
quenced [81]. However, the O. sativa indica rice, which further has indica and aus subpopula-
tions, is the most widely planted rice globally [82]. Several draft genomes of indica rice have
been assembled [83]. A highly contiguous and near-complete indica rice genome reported



J. Fungi 2022, 8, 584 9 of 44

is for the cultivar Shuhui 498 (R498) [84]. The developments in the field of next-generation
sequencing (NGS) technologies have revolutionized the field of genome sequencing in
plants [85]. In a major effort, a core collection of 3,000 rice accessions from 89 countries were
sequenced with an average sequencing depth of 14 X, average genome coverage of 94.0%,
and average mapping rates of 92.5% [86]. After aligning these genomes to the reference
genome, i.e., Nipponbare, a total of 18.9 million single nucleotide polymorphisms (SNPs)
were discovered. SNP data were used for the phylogenetic analyses to differentiate O. sativa
gene pool into five varietal groups (indica, aus/boro, basmati/sadri, tropical japonica, and
temperate japonica). Besides O. sativa, genomes of different wild species of rice have been
sequenced. The list of wild rices with their genomes sequenced include, O. longistaminata
(2014; ID: 11285); O. glaberrima, an African wild rice (2010; ID:458); O. minuta, a perennial
wild rice from southeast Asia (2014; ID: 10965); O. meridionalis, a wild rice from Australia
(2012; ID: 11319); O. coarctata, a wild rice from Bangladesh (2019; ID: 11313); O. australiensis,
an Australian wild rice variety (2021; ID: 10966); O. officinalis, a tropical and sub-tropical
wild rice (2014; ID: 10964); O. punctata, an African wild rice (2014; ID: 10963); O. nivara,
a wild rice from India (2014; ID: 2841); O. rufipogon, a wild rice species from tropical and
subtropical regions of Australia and Asia (2014; ID: 457),;O. meyeriana var. granulata, a wild
rice from Thailand (2012; ID: 11287); and O. glumipatula (2013; ID: 11318) [72].

With the availability of a large number of genome sequences within rice, such as in
3K database [87], efforts are being made to study the rice genome at the pan-genome level.
Zhao et al. [88] constructed a pan-genome dataset of the O. sativa–O. rufipogon species
complex through sequencing and de novo assembly in 66 diverse accessions. Most of the
stress response-related genes, including those coding for NBS-LRR proteins, were detected
only in a subset of accessions, thus suggesting the existence of a diverse repertoire of biotic
stress-resistance genes in the species studied. Therefore, pan-genome studies in rice hold a
greater potential for the identification of new blast resistance genes.

3.2.2. Resistance Genes as Solo Protectors

Resistance (R) genes are an integral part of the plant defensome complex, and R and
defense response (DR) genes contribute to broad-spectrum blast resistance in rice [89,90].
The immune responses governed by most of these R genes have intertwined networks
and they mostly regulate downstream general defense pathways [91]. To date, more
than 100 blast R genes have been mapped in rice and 38 of them have been cloned and
characterized [Tables 3 and 4]. As a result of comprehensive genetic studies in rice, vis-
à-vis its pathogen, M. oryzae, the rice–M. oryzae interaction has emerged as a premier
model system for understanding the plant–fungal pathogen interactions [4,92]. The narrow
race-specificity of R-genes and the ability of the pathogen to quickly evolve new races
compatible with resistance genes are major hurdles in achieving long-lasting protection
against the blast disease [93]. The identification and utilization of R genes that confer
broad-spectrum resistance against a large number of pathogen races is the most effective
approach to manage the disease [91]. Interestingly, among these 38 blast R genes, eight,
namely Pi9 [94], Pi54 [95], pi21 [96], Pi50 [97], Pi7 [98], Pi57 [99], Pigm [100], and Ptr [101],
are reported to provide broad-spectrum blast resistance, and only three, Pi5-1, Pi63, and Pb1
are pathogen-inducible, and the rest are expressed constitutively. Recently, Wang et al. [102]
performed genome-wide analysis of NBS-LRR genes in a broad-spectrum resistant rice
genotype Tetep, and functionally validated the role of 90 NBS-LRR genes in blast resistance.
Since these genes have not been assigned designations as per the standard conventions
for naming blast resistance genes in rice, these genes have not been included in the list of
cloned R genes provided in Table 4.

The R genes generally act solo to induce the immune response in rice. However,
the downstream pathways leading to resistance response encompass one or more DR
proteins [91]. It is found that at least some of the reported R and DR gene combinations
show positive association for conferring blast resistance in rice e.g., Pid2 with OsPUB15,
Pik-H4 with OsBIHD1, and Pita with lesion mimic (sl) gene [103–105]. Besides R genes, five
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DR genes bsr-d1, bsr-k1, OsBBI1, spl11, and spl33 are reported to confer broad-spectrum
blast resistance [69]. Among the DR genes identified for broad-spectrum blast resistance in
rice [91], rice lesion mimic mutants (lmm) genes form a major section of these genes. These
LMM mutants, through programmed cell death (PCD), mimic the blast symptoms and
the natural HR response by inducing the resistance response. There are more than 30 lmm
genes reported in rice for blast resistance. However, most of these genes have associated
yield penalties while imparting the immune response. Hence, lmm genes are of limited use
for rice blast-resistance breeding [91,106].

Table 3. Information on mapped rice blast resistance genes.

Sl. No. Gene ID Chr. No. Position (cM) Source Cultivar Reference

1 Pit 1 9.08–12.17 Tjahaja [107]

2 Pi27(t) 1 24.29–27.90 IR64 (Indica) [108]

3 Pi24(t) 1 20.97–22.22 Azuenca (Japonica) [109]

4 Pitp(t) 1 100.54–108.43 Tetep [110]

5 Pi35(t) 1 132.0–136.6 Hokkai 188 (Japonica) [111]

6 Pi37 1 132.44–133.95 St. No. 1 (Japonica) [112]

7 Pish 1 135.3-138.7 Shin2 (Japonica) [113]

8 Pid1(t) 2 87.5–89.9 Digu [114]

9 Pig(t) 2 137.38–140.54 Guangchangzhan (Indica) [115]

10 Pitq5 2 150.5–157.9 Teqing [116]

11 Piy1(t) 2 153.2–154.1 Yanxian No. 1 [117]

12 Piy2(t) 2 153.2–154.1 Yanxian No. 1 [117]

13 Pib 2 153.2–154.1 Tohoku IL9 [118]

14 Pi25(t) 2 137.44–150.90 IR64 (Indica) [119]

15 Pi14(t) 2 1–26.90 Maowangu [120]

16 Pir-2-3(t) 2 96.8–99.3 IR64 (Indica) [121]

17 Pitq2 2 Teqing (Indica) [122]

18 Pirf2-1(t) 2 109.6–112.2 O. rufipogon (W) [121]

19 Pi16(t) 2 1–26.91 Aus373 (Indica) [123]

20 Pitq3 3 Teqing (Indica) [122]

21 Pi68 3 6.8-9.7 O. glumaepatula (W) [124]

22 pi21 4 20.97–22.22 Owarihatamochi [125]

23 Pikur1 4 98.44–134.23 Kuroka (Japonica) [126]

24 Pi39(t) 4 107.4–108.2 Chubu 111 (Japonica) [127]

25 Pitq4 4 Teqing (Indica) [122]

26 Pi(t) 4 9.08–12.17 Tjahaja [128]

27 Pi26(t) 5 35.00–46.70 Gumei 2 (Indica) [119]

28 Pi23(t) 5 43.02–76.70 Sweon 365 [125]

29 Pi10 5 58.08–75.41 Tongil [129]

30 Pi22(t) 6 19.5–24.09 Suweon365 (Japonica) [125]

31 Pi26(t) 6 35.00–46.70 Azucena (Japonica) [130]

32 Pi27(t) 6 22.22–2.97 IR64 (Indica) [108]

33 Pi40(t) 6 65.09–70.12 O. australiensis (W) [131]

34 Piz 6 40.6–42.07 Zenith (Japonica) [132]
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Table 3. Cont.

Sl. No. Gene ID Chr. No. Position (cM) Source Cultivar Reference

35 Piz-t 6 58.7 Toride 1 [107]

36 Pi9 6 41.5–41.55 O. minuta (W) [133]

37 Pi25(t) 6 72.32–77.03 Gumei 2 [119]

38 Pi8 6 19.5–24.09 Kasalath (Indica) [120]

39 Pi3(t) 6 Pai-kan-tao (Japonica) [134]

40 Pitq1 6 92.6-98.2 Tequing (Indica) [135]

41 Pi13(t) 6 56.8-60.5 Kasalath (Indica) [136]

42 Pii1 6 88.8-90.6 Fujisaka 5 (Indica) [120]

43 Pid2 6 68.63–68.65 Digu [137]

44 Pigm(t) 6 41.47–41.68 Gumei 4 [138]

45 Pi17(t) 7 89.00–99.9 DJ 123 [120]

46 Pi36 8 11.48–11.53 Q61 (Indica) [127]

47 Pi33 8 23.66–24.61 IR64 (Indica) [134]

48 Pizh 8 17.48–84.04 Zhai-Ya-Quing8 (Indica) [108]

49 Pi11 8 Zhai-Ya-Quing8 (Indica) [128]

50 Pi29(t) 8 38.65–64.96 IR64 (Indica) [108]

51 Pii2(t) 9 4.09–28.89 Azucena [139]

52 Pi5(t) 9 31.3–33.0 RIL125, RIL249 and
RIL260(Moroberekan) [140]

53 Pi3(t) 9 31.3–33.1 Kan-Tao [128]

54 Pi15 9 38.56–38.74 GA25 (Japonica) [120]

55 Pii 9 9.16–113.72 Ishikari Shiroke (Japonica) [141]

56 Pi28(t) 10 78.26–90.67 IR64 (Indica) [108]

57 Pia 11 1.01–2.09 Aichi Asahi (Japonica) [126]

58 PiCO39(t) 11 25.21–27.55 CO39 (Indica) [142]

59 Pilm2 11 54.54–113.5 Lemont [116]

60 Pi30(t) 11 1.76–26.31 IR64 (Indica) [108]

61 Pi7(t) 11 71.4–84.3 RIL29 (Japonica) [143]

62 Pi34 11 77.69–77.96 Chubu32 (Japonica) [144]

63 Pi38 11 76.55–87.91 Tadukan (Indica) [145]

64 PBR 11 80.5–120.3 St. No. 1 [146]

65 Pb1 11 85.7–91.4 Modan [147]

66 Pi44(t) 11 91.4–117.9 RIL29 (Japonica) [148]

67 Pik-h (Pi54) 11 99.0–99.05 Tetep [95]

68 Pi1 11 105.99–113.49 LAC23 (Japonica) [149]

69 Pik-m 11 109.25–110.13 Tsuyuake (Japonica) [150]

70 Pi18(t) 11 107.18–113.50 Suweon365 (Japonica) [132]

71 Pik 11 109.25–110.13 Kusabue (Indica) [151]

72 Pik-p 11 109.25–110.14 HR22 (Indica) [107]

73 Pik-s 11 109.25–110.15 Shin 2 (Japonica) [152]

74 Pik-g 11 109.25–110.16 GA20 (Japonica) [120]
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Table 3. Cont.

Sl. No. Gene ID Chr. No. Position (cM) Source Cultivar Reference

75 Pise1 11 22.96–66.92 Sensho [153]

76 Pi f 11 98.78–113.84 Chugoku 31-1 (St. No. 1) [154]

77 Mpiz 11 16.29–66.92 Zenith (Japonica) [155]

78 Pikur2 11 11.36–73.49 Kuroka (Japonica) [125]

79 Pish 11 110.3–111.8 Nipponbare (Japonica) [113]

80 Pib2 11 105.99–113.49 Lemont (Japonica) [122]

81 Pi44 11 85.7–89.7 Moroberekan (Japonica) [148]

82 Pi47 11 Xiangzi (Indica) [116]

83 Pise 11 22.96–66.92 Sensho [153]

84 Piis1 11 11.36–76.11 Imochi Shirazu (Japonica) [153]

85 Pi24(t) 12 20.97–22.22 Azuenca (Japonica) [156]

86 Pi62(t) 12 9.7–77 Tsuyuake (Japonica) [157]

87 Pitq6 12 23.0–30.92 Tequing (Indica) [116]

88 Pi6(t) 12 1–1.68 Apura (Indica) [158]

89 Pi12 12 27.95–60.48 Moroberekan (Japonica) [159]

90 Pi21(t) 12 20.94–22.22 Owarihatamochi (Japonica) [125]

91 Pi31(t) 12 30.92–47.66 IR64 (Indica) [108]

92 Pi32(t) 12 52.41–75.46 IR64 (Indica) [108]

93 Pi157 12 49.5–62.2 Moroberekan (Japonica) [123]

94 Pita 12 42.41–42.43 Tadukan (Indica) [107]

95 Pita-2 12 40.31–52.84 Shimokita (Japonica) [160]

96 Pi19(t) 12 35.30–53.67 Aichi Asahi (Japonica) [161]

97 Pi39(t) 12 - Chubu 111 (Japonica) [127,162]

98 Pi20(t) 12 51.5–51.8 IR24 (Indica) [163]

99 Pi20 12 49.6-50.4 IR24 (Indica) [164]

100 Pi42(t) 12 58.9-56-7 DHR9 (Indica) [151]

101 Pi48 12 Xiangzi 3150 (Indica) [116]

102 PiGD-3(t) 12 55.8 Sanhuangzhan 2 [138]

The blast R gene, Pi54, cloned from indica rice Tetep, is of particular interest as
it is one of the smallest reported blast R genes. Pi54 confers broad spectrum, durable
resistance against M. oryzae infection [95,165]. The functional role of Pi54 in blast resistance
was validated using transgenic and RNAi-mediated approach [165–169]. Subsequently,
orthologs of Pi54 gene; Pi54rh and Pi54of, also show broad spectrum and overlapping
patterns of resistance against multiple strains of M. oryzae [89,170,171]. We also cloned and
characterized Avr-Pi54; this effector interacts directly with Pi54 protein through LRR and
non-LRR domain [39]. The in silico analysis predicted that variations in LRR domain of
Pi54 and its orthologs alter their interaction with the counterpart Avr-Pi54 [89,172]. The
major domain of interaction of Avr-Pi54 with Pi54 and its orthologs is the non-LRR domain.
A schematic diagram depicting the molecular mechanism of Pi54 locus-mediated resistance
is given in Figure 2. The predicted model for the mechanism of action of Pi54 consists
of the inactive OsRac1 protein bound to Sti1. The OsRac1 protein is activated by GEF
molecule by interacting with the RhoGEF domain. The M. oryzae-derived chitin, a major
PAMP, induces the activation of GEF, which further triggers OsRac1. Further, the PAMP
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receptor, OsCERK1, transfers the signal to downstream targets through the Hop/Sti1a and
Hsp90 complex, which interact with OsCERK1 through its transmembrane domain [173].
Once activated, OsRac1 recruits RACK1A, which further interacts with N-terminus of
RAR1 and SGT1 proteins and regulates the ROS production by interacting directly with the
N-terminus of membrane bound Rboh, an NADPH oxidase [174]. Besides, the activation
of rice MAPK6-mediated signaling cascade requires OsRac1, which forms a complex with
MAPK6 in rice cell extracts [175]. In the process of Pi54-mediated resistance, it induces the
expression of various defense response genes such as callose, laccase, peroxidase, and PAL,
and genes related to TFs such as Dof zinc finger, MAD box, NAC6, bZIP, and WRKY. Our
further analysis of transgenic rice with Pi54 and its wild type control plant revealed that
miR815c, which targets DR gene OsWAK129b, was downregulated in transgenic plants. The
upregulated miRNAs include miR164c, miR164e, miR1849, miR1854-3p, miR2925, miR396c-
5p, miR396c-3p, and miR812f. We concluded that the Pi54 gene-mediated resistance
response against M. oryzae infection is also regulated by a set of microRNAs through both
PTI and ETI pathways [176].
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Figure 2. Schematic presentation of mechanisms of Pi54 locus-mediated blast disease resistance. The
Avr-Pi54 effector binds to Pi54 and its orthologs (blue) mainly at the non-LRR region, upstream to
the LRR domain. The Pi54 loci perceive the M. oryzae signals through STI1, an anchor for defensome
complex involving multiple proteins such as OsRac1 (Rac/Rop GTPase), RACK1A (Receptor of
Activated C Kinase), RAR (Required for Mla12 Resistance), SGT1 (Suppressor of the G2 allele of
skp1), MAPK6 (a rice Mitogen-Activated Protein Kinase), and Rboh (NADPH oxidases). The MAPK6-
mediated downstream signaling pathways might induce various DR genes. Besides, a set of miRNAs
induced by the Pi54 loci are playing a role disease-resistance response. This figure is partially adapted
and modified with the latest information [89].

3.2.3. Chemical Modulators

The tug-of-war between the blast fungus M. oryzae and the host plant rice is an ongoing
process involving various chemical molecules. In a broader sense, the general resistance
response mediated by PAMP-triggered immunity and the more specific effector-triggered
ETI comprise of various signaling pathways [177]. However, recently scientists stated
that this model has failed to capture the stochastic process linking the initial detection of
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the pathogen and action of pathogen effectors, PAMPs, and damage-associated signals.
The rationality of a conceptual division between PTI and ETI at a molecular or cellular
level in plants has also been questioned [178]. In the view of the above observations, very
recently, the famous Zig-Zag model was extended and an improved model was reported
by Ngou et al. [179]. Subsequently, the new ‘Circular Model’ of plant–pathogen interaction
was proposed by Yuan et al., [180], and it is also schematically represented in Figure 3. The
pathways underlying the resistance response largely have a common set of overlapping
defense-response mechanisms mediated by various chemical molecules. The very process
of onset of resistance response, which is initiated immediately after the penetration of
pathogen into rice cells, leads to atypical burst in the ROS, which is a hallmark of PTI.
The ROS, which were once considered as harmful molecules for cells, are the essential
components of the signaling process, leading to cell death and resistance response. Be-
sides, ROS is also involved in the reinforcement of the cell wall during blast pathogen
infection [181,182]. Other pathogen-inhibitory metabolites that have been shown to inhibit
M. oryzae include, cyanides, Bayogenin 3-O-cellobioside, and phytoalexins. Cyanide is
reported to contribute to restricting blast fungal growth [183], whereas saponin bayogenin
3-O-cellobioside confers cultivar-independent resistance against the pathogen [184]. Phy-
toalexins such as momilactone, oryzalexin, sakuranetin, and phytocassanes are reported to
be induced in rice plants in response to fungal infection and have a greater activity against
M. oryzae [185,186]. Diterpenoid gene cluster (DGC7) coding for diterpenoids, a major
group of phytoalexins in rice, was characterized for its role in disease resistance [187]. The
rice DR gene ethylene insensitive 2 (OsEIN2) possibly activates phytoalexin production
after infection with M. oryzae to promote resistance [188].
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Among the chemical modulators, phytohormones have their own significance when it
comes to disease resistance in plants. These hormones, mainly salicylic acid (SA), jasmonic
acid (JA), and ethylene (ET) have a clear dichotomy, while regulating the defense response.
Against biotrophic pathogens, the regulation of immunity is mediated by SA, whereas JA
and ET are the key regulators of immune response against necrotrophs and insect pests [189].
Intriguingly, rice plants challenged with M. oryzae and leaf blight pathogen Xanthomonas
oryzae pv oryzae show no elevation in SA levels, however, the external application of SA does
induce immune response [189]. Besides, at least a couple of studies indicate that M. oryzae
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manipulates the rice JA-signaling pathway and interfere with SAR [190,191]. In one study,
M. oryzae was found to suppress transcription factor gene OsTCP21, a positive regulator
of blast resistance, through targeted induction of miR319 [190]. Hence, M. oryzae could
reduce the biosynthesis of JA in rice via inducing rice miR319. Secondly, M. oryzae modifies
the rice active JA molecule to an inactive 12-OH JA, thereby denting the host-resistance
response [192]. In rice, infection with M. oryzae represses the auxin signaling pathway in the
distal healthy leaves by repressing the auxin-responsive genes such as ARF1 and IAA9 and
thereby inducing systemic acquired resistance (SAR) against this pathogen [193]. On the
contrary, the accumulation of auxins leads to rice susceptibility to M. oryzae [194]. Similar to
auxins, cytokinins (CKs) were also found to be induced upon M. oryzae infection. Defense
response genes OsPR1b and PBZ were induced by the CKs accumulated post-M. oryzae
infection, and this resistance response is in synergy with the SA signaling pathway [195].

Unlike auxins and CKs, ABA has an antagonistic effect on disease resistance through
the suppression of SAR mediated by SA, JA, and ET signaling pathways [196]. It was
observed that a reduction or disruption of ABA signaling enhanced blast resistance, whereas
exogenous ABA application enhanced the susceptibility towards M. oryzae in rice [193,197].
A schematic diagram depicting the role of reported phytohormones in rice blast disease
response is presented in Figure 4.
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Figure 4. Representation of role of phytohormones in rice during M. oryzae infection. (A) Auxin: Upon
infection with M. oryzae, rice reduces the production of auxin and thereby induces SAR. However, the
pathogen secretes auxins to counteract this host-induced SAR. (B) Cytokinin: The host CKs at higher
concentration induce SA-mediated SAR. (C) Jasmonic acid: JA through induction of OsJAR1 induces
resistance, whereas M. oryzae counteracts this through activation of miR319, which suppresses the
expression of rice OsTCP21 and blocks the SAR-induced resistance. (D) Abscisic acid: ABA generally
has antagonistic effects on blast disease resistance. M. oryzae induces the expression of rice NCED3
gene and thereby ABA biosynthesis and increased susceptibility to pathogens by inhibiting SAR.

3.2.4. Modulation of Coding RNA (mRNA) of Rice upon M. oryzae Infection

The R gene-mediated resistance in rice blast is well established. So far, eight R genes
(Pi9, Pi54, Pigm, Pi50, pi21, Pi7, Pi57, and Ptr) have shown to confer broad spectrum
blast resistance. Defense response (DR) genes also generally mediate broad-spectrum
resistance to pathogens. Till now, seven DR genes or factors have been identified that
positively and negatively regulate blast resistance. These DR genes mainly belong to TFs
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and kinases. R and DR genes work in concert to induce resistance against M. oryzae [91].
Several other co-operations may exist among R and DR genes but are still to be explored.
The information on prevalent race flora of M. oryzae is required to stack the correct R genes
in rice lines. In the absence of this information, stacking R genes together with DR genes
may prove more useful for better disease management [91]. Transcriptome of rice upon
Magnaporthe infection at different time points has been studied extensively in different
rice genotypes [198]. These studies mainly reveal the expression levels of different coding
transcripts and their probable functions in different temporal and spatial conditions. The
compatible and incompatible interactions of M. oryzae with different rice lines (resistant or
susceptible) lead to the expression of different sets of coding transcripts.

The majority of studies on rice transcriptomes upon M. oryzae infection provide
a comparative picture of changes in expression level of DR genes in compatible and
incompatible interactions. Transcriptome studies of rice NILs differing in a single-blast R
gene give a clear picture to understand the mechanism of R–Avr and DR gene-mediated
resistance. Comparative studies of NILs carrying different blast resistance genes (Pi9,
Pi54 and Pi1) compared to susceptible control have shown that the transcripts related
to cell wall structure (suberin biosynthesis) and secondary metabolite (JA biosynthesis,
salicylate biosynthesis, 13-lox and 13-hpl, divinyl ether biosynthesis, and phenylpropanoid
biosynthesis) were differentially expressed in all three NILs upon M. oryzae infection [199].
The study revealed that the NILs containing different blast resistance genes in a common
background have some common set of functionally important transcript whose expression
changes upon M. oryzae infection. Similarly, each NIL had a unique set of transcripts
that change their expression upon blast pathogen infection. Further, at 24 hpi with M.
oryzae, a significant change was recorded in the expression of genes related to biosynthesis
of trehalose, flavonoids, aminopropanol, cellulose, UDP-D glucarate, xylose, serine and
choline, cyclopropane FA and Cyclopropene FA, phaseic acid, and phytocassane. Whereas
at 72 hpi, a significant change in the expression levels of genes involved in triacylglycerol
biosynthesis, flavonoids biosynthesis, GDP-mannose metabolism, trehalose biosynthesis-I,
stachyose biosynthesis, mannose degradation, and nitrate reduction was recorded [199,200].

Transgenic lines help in understanding the basic mechanism of disease resistance
by over expressing the genes responsible for disease resistance. During early stages of
infection, rice cell wall offers the first level of a physical barrier to M. oryzae appressorium.
So, genes related to cell wall modification show significant change in their expression
upon pathogen infection. Callose (1, 3-β-glucan) and lignin are important components
of the plant defense response and are involved in the blockage of plasmodesmata, thus
posing a physical barrier for the penetration of fungal mycelia into nearby plant cells [198].
Two genes coding for callose biosynthesis were very highly upregulated in transgenic
rice line TP-Pi54 in comparison to non-transgenic control lines upon challenge with M.
oryzae [182]. In the case of Pi54, the role of callose in rice blast resistance has already been
reported [165].

During the early stages of infection, enzymes such as beta-glucanase and chitinase
enhance the resistance against fungus by catalyzing the hydrolytic cleavage of glycosidic
linkages in β-glucans present in the fungal cell wall [201]. In rice, it was reported that
beta-glucanase is highly induced in response to M. oryzae infection [202,203]. In the incom-
patible interactions [174,182], class III peroxidase gene was found to be highly up-regulated
after blast pathogen infection [182,200]. Peroxidases are found to be involved in lignin
biosynthesis [204] and cross-linking of cell-wall components, thus fortifying the cell wall
against pathogen infection. Redoxin, glutathioredoxin, peroxidase, and catalase are major
ROS-scavenging enzymes that fine tune ROS signaling and restrict ROS-dependent dam-
age [205]. In both compatible and incompatible interactions, changes in the expression level
of genes involved in cell wall biosynthesis, cell wall modulation, and cell wall degradation
have been observed with a number of upregulated genes being higher in incompatible inter-
action compared to compatible interaction [198]. The studies suggest that during the initial
phase of interaction with M. oryzae, rice plants enforce the defense mechanism by cell wall
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fortification in both resistant and susceptible rice lines [198]. Once the primary defense me-
diated by cell wall reinforcement is breached, the next level of defense response is induced.
Transgenic rice line Pi21-RNAi showed changes in the expression levels of 43 receptor
kinases (belonging to WAK, L-LEC, LRR, CAMK, MEKK, LRK10L-2, SD, DUF26, RLCK,
and CR4L subfamilies) associated with PAMP recognition and calcium ion influx [206].
These kinases are involved in perceiving internal and external signals. As a result, a more
robust PTI was observed in the Pi21-RNAi line compared to susceptible control, and 53 TF
genes (WRKY, NAC, DOF, and ERF families) were observed to be differentially expressed in
the Pi21-RNAi line. Cell wall-associated kinases participate both positively and negatively
in basal defense against rice blast fungus [207]. The BAK1 is a coreceptor of receptor-like
kinase RLKs [208] and acts as a central regulator in PTI [209]. During the later stages of
fungal infection, MAPK (mitogen-activated protein kinase) cascades play an important
role in downstream signaling processes leading to ETI. Receptor kinase and MAPK act as
signaling molecules in both PTI and ETI [198–200]. As a part of ETI, several TF genes are
induced. WRKY genes are one of the major families among them, and many of them such
as WRKY76, WRKY47, WRKY45, WRKY55, WRKY53, WRKY62, and WRKY71 are induced
in rice upon M. oryzae infection [201,210,211]. Similarly, differential expression of 53 TFs
such as WRKY, NAC, DOF, and ERF families, and 62 PR genes was recorded between
Pi21-RNAi and Nipponbare [51]. The role of WRKY genes in the activation of several
PR genes was also reported [210,212]. A higher number of WRKY genes is reported to
be upregulated in blast-resistant genotype GV (WRKY 45, WRKY79) and near-isogenic
line-carrying blast-resistance gene Pi9 compared to susceptible control [213,214].

Phytohormones play a significant role during compatible and incompatible rice–M.
oryzae interactions. JA–ET and SA pathways act synergistically in pathogen-triggered
immunity (PTI) response, while ETI uses the JA-ET pathway when SA signaling is not
present in the plant [215]. Several reports confirm that changes in JA expression act as
a powerful mediator of resistance against M. oryzae [216,217]. A high upregulation of
genes involved in ET and JA metabolism has been reported in incompatible rice–M. oryzae
interactions [6,199]. A common upregulation of transcripts involved in JA biosynthesis
was observed in NILs carrying blast-resistance gene Pi9, Pi54, and Pi1 following M. oryzae
inoculation [199]. A higher level of upregulation of lipoxygenase (Lox), a gene involved in
JA biosynthesis, was reported in resistant lines compared to susceptible control [51,199,200].
Similarly, an upregulation of genes related with ethylene, salicylic acid (SA), and jasmonic
acid (JA) signaling was reported in incompatible interactions involving M. oryzae [203].

Genes governing secondary metabolism are another set of genes that are upregulated
in resistant and susceptible rice lines after M. oryzae infection. A large number of enzymes
that are part of phenylalanine and shikimate biosynthesis as well as downstream phenyl-
propanoid biosynthesis show upregulation in resistant Pi9 NILs [199,214] and transgenic
lines carrying the Pi54 gene [182]. The phenylpropanoid pathway plays an important role
in the rice–M. oryzae interaction, because phenylpropanoids are important antimicrobial
compounds. This pathway is involved in synthesizing lignin and phytoalexins that pre-
vent pathogen invasion of the host cells. Rice plants accumulate diterpene, phytoalexins,
phytocassanes, oryzalexins, and momilactones to counteract M. oryzae invasion [218,219].
The important genes involved in the biosynthesis of diterpene phytoalexin, momilactone,
and phytocassanases are reported to be upregulated in the blast-resistant genotype after
M. oryzae infection [213]. The diterpene phytoalexin biosynthetic (DPB) gene OsKSL8
(LOC_Os11g28530; oryzalexin S synthesis) shows higher expression in the resistant than
in the susceptible genotype after M. oryzae infection [213]. A higher accumulation of phy-
toalexins Momilactone A and Sakuranetin has been observed in incompatible compared to
compatible interactions [213]. These phytoalexins inhibit germination of M. oryzae spores in
infected leaves [220–222], thus suggesting the importance of genes of diterpene phytoalexin
biosynthesis in resistance to M. oryzae.

A comparison of the rice–M. oryzae interaction transcriptome from our laboratory with
previous six studies indicated that the cytochrome P450 gene was commonly upregulated
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in all these studies. We also observed that the transcriptome of rice varies quantitatively
rather than qualitatively during incompatible and compatible interactions with functional
categories of differentially expressed genes remaining similar in both the cases [198].

3.2.5. Small and Long Non-Coding RNA Play a Regulatory Role in Rice upon M. oryzae Infection

Small non-coding RNA include microRNA (miRNA), small interfering RNA, piwi-
interacting RNAs, trans-acting siRNAs, and natural antisense transcript siRNAs. In rice,
miRNAs are well known to control many important agronomic traits such as tiller devel-
opment, flowering time, panicle establishment, grain formation, and yield production,
and also regulate a plant’s response to both abiotic and biotic stresses [223,224]. Few
conserved novel miRNAs and miRNAs families have been found to be responsive to
blast fungal elicitors, which suggests their possible involvement in rice–M. oryzae inter-
action [225]. Among eight rice DCL genes, till now only OsDCL1a has been studied and
was found to negatively regulate PTI against M. oryzae, while the knock-down of OsDCL1a
enhanced resistance to the blast disease [226]. Four miRNA families, namely miR160,
miR166, miR398, and miR7695 have been reported to act as positive regulators of rice im-
munity against M. oryzae [227]. OsDCL1s is known to act as a key molecule in the miRNA
signaling pathway that mediates cross talk between rice-M. oryzae interaction and miRNA
network. Our group recently deciphered the role of miRNAs in Pi54 mediated incompati-
ble interaction with blast pathogen. Upregulated expression levels of miR164c, miR164e,
miR1849, miR1854-3p, miR2925, miR396c-5p, miR396c-3p, and miR812f have been found
in the resistant line in comparison to susceptible control [182].

3.3. Interplay between Rice-M. oryzae: A Classical Example for Plant-Pathogen Interactions

Antagonistic interactions between rice plants and the fungus, M. oryzae, result in ‘arms
races’. While the plant attempts to recognize the pathogen and subvert its growth and
spread, the pathogen tries to subvert recognition and suppress the host responses [228].
Several hypothesis and models were proposed to explain the race that underpins disease
resistance. We discuss here three models: Gene-for-gene (GFGM) model, Guard model
(GM), and Decoy model (DM), with diagrammatic representation (Figure 5).
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molecular pattern) with DR protein (pattern recognition receptor, PRR), resulting in PAMP-triggered
immunity (PTI); physical interaction of Avr (effector) with R protein (NBS-LRR), resulting in effector-
triggered immunity (ETI); Guard Model (GM): Interaction of effector with guardee triggers effector-
triggered immunity (ETI) by their interaction with R protein (NBS-LRR). However, in the absence
of R protein, binding of guardee with effector enhances the susceptibility/fitness of the pathogen
(ETS); Decoy Model (DM): Interaction of effector with decoy triggers effector-triggered immunity
(ETI) with the interaction of R protein (NBS-LRR), however, in the absence of R protein, there is no
increase in the virulence/fitness of the pathogen.

3.3.1. Gene-for-Gene Model

The gene-for-gene concept, initially discovered in the flax-rust pathosystem by Harold
Henry Flor [229], essentially describes an interaction between a matching gene in a host
(called resistance R gene) and pathogen (called avirulence or Avr gene) that interact physi-
cally in a receptor–ligand mode to initiate the defense response. R-genes and their structure
were described earlier [230,231]. The majority of the R-genes harbor signature nucleotide
binding site—leucine rich repeat (NBS-LRR) or pattern recognition receptors (PRR). Avr,
on the other hand, can be effectors, the pathogen-secreted proteins that manipulate host
cell functions, or molecular motifs conserved across many pathogen species known as
pathogen-associated molecular patterns (PAMPs). LRRs (approximately 24 amino acid
motifs) are principally involved in protein–protein (R–Avr) interaction, and the greatest
variation in this class emanates from the LRR domain. The classic examples of R–Avr
interaction include pairs of R–Avr proteins such as Pi54 and AvrPi54 [39], and Pi-ta and
Avr-Pita [184]. PRR, on the other hand, recognize generic motifs of the pathogen and
initiate reaction, e.g., rice Xa21-resistance gene recognizes the tyrosine-sulphated protein,
RaxX [232]. Currently, more than a dozen examples of direct physical interactions are
available, and interestingly, other domains are reported to interact physically to initiate
defense response [89].

3.3.2. Guard Model

The Guard Model envisages an indirect physical interaction between R and effector
proteins. The model predicts that R proteins act by monitoring/guarding the indispensable
effector target (called guardee) and any modification of this target by the effector results in
the activation of the R protein [233]. This indirect perception could explain how multiple
effectors could be perceived by a single R protein, thus enabling a handful of R genes
to provide protection against a great variety of pathogens. Classical examples of the
hypothesis are tomato RCR3 and Pto and Arabidopsis RIN4 and PBS1 [133,234]. In rice,
three gene pairs coding for CC-NLRs are understood to act in a Guard Model. These genes
include RGA4/RGA5, Pik-1/Pik-2, and Pi5-1/Pi5-2 [44,235–238]. The proteins RGA4/RGA5
is necessary for AVR-Pia- and AVR1-CO39-induced and Pia- and Pi-CO39-mediated blast
resistance in rice. Similarly, Pikh-1 proteins act as guardees and perceive AvrPik-h protein,
which further induces Pikh-2-mediated resistance response.

3.3.3. Decoy Model

The Decoy Model envisages that the arms race of host–pathogen interaction leads
to the evolution of ‘decoys’, which mimics effector targets to trap the pathogen into a
recognition event, but itself has no function either in the development of disease or re-
sistance. Decoys might evolve from effector targets by two ways: (a) gene duplication
and evolution and (b) mimicking effector targets (target mimicry) [177,234]. The current
understanding suggests that these interactions drive the evolution of ‘decoys’ in pathogens
as well. Interestingly, decoys undergo a similar manipulation as the component they mimic,
but play an opposite role, either by preventing manipulation of the component they mimic
or by triggering a molecular recognition event. Three different types of decoy are reported:
(a) Receptor decoys: mimics to absorb ligands, (b) bodyguard decoys: protecting secreted
virulence factors, and (c) sensing decoys: mimics effector targets acting as coreceptors with
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two different modes: sponge and bait [239]. Currently, there are few cases illustrating decoy
mechanisms, however, much remains to be discovered. The discovery of more decoys shall
enhance our understanding of disease resistance and provide a means to improve host
immunity e.g., decoy engineering of PBS1 in Arabidopsis plants confers a broader resistance
spectrum [240]. Interestingly, a putative decoy protein, zinc finger–BED type (ZBED),
was investigated for its role in rice resistance and susceptibility to the blast fungus [241].
Similarly, the RATX1 domain of RGA5 acts as a decoy domain for recognizing the M. oryzae
effector AVR-Pia [242].

4. Resistance Response of Rice to Blast Disease
4.1. Resistance Response Based on Quantitative Trait Loci (QTL)

Resistance to rice blast in some cases is known to be inherited as quantitative trait reg-
ulated by many genes. Contemporary approaches that are employed for other polygenetic
traits are also applicable for studying the quantitatively inherited blast resistance. The basic
QTL mapping approaches such as single marker analysis (SMA), simple interval mapping
(SIM), and interval mapping approaches (IM) have been extensively used for detecting ma-
jor and minor QTLs linked with complete/partial resistance to rice blast [108,243]. Mapping
genomic regions for quantitative blast resistance has gained importance due to race non-
specificity of the resistance, which provides stable protection against the pathogen [244].
For the first time, blast-resistance QTL was identified in a widely grown African variety, Mo-
roberekan [143]. There are also instances in which the blast resistance has been shown to be
regulated by race-specific resistance genes such as Pi34, Pif, Pi21, and Pb1. [146,245–248]. To
date, more than 500 QTLs controlling resistance to blast disease in rice have been identified
and mapped on different rice chromosomes [91]. Most of these QTL were identified from
bi-parental populations derived from japonica and indica subspecies, with the assistance of
various marker systems such as RFLP, SSR, and SNP [249]. The QTLs exhibiting modest
individual effect with race non-specific or broad-spectrum resistance provide durable re-
sistance [250]. Thus, it is important to identify and use novel QTLs with broad spectrum
resistance for the development of resistant cultivars.

4.2. Resistance Gene Mediated Resistance
4.2.1. The Blast Resistance Genes Identified, Mapped, and Cloned in Rice

Deploying host plant resistance for disease management is an eco-friendly and most
viable approach to manage the disease as a wide range of resistance alleles are available
in diverse rice germplasms [123]. In rice, nearly 100 rice blast resistance genes have been
identified and mapped in rice till date (Table 3, Figure 6) [3]. Among the identified resistance
genes, 38 have been cloned and are known to encode proteins with nucleotide-binding sites
(NBS) and leucine-rich repeat (LRR) domains (Table 4) [101,251]. Exceptions include Pi-d2,
which encodes a B-lectin kinase domain protein, pi21 that encodes a proline-rich protein
with a heavy metal domain, and Ptr that encodes an atypical protein with an armadillo
repeat [4,101]. Pik, Pikm, Pik-p, Pi1, Pike, Pi5, Pia, and Pi-CO39 contain two NBS-LRR
protein structural genes for blast resistance. Pi5-1, Pb1, pi21, and Pi63 genes are induced by
pathogen infection, while the remaining genes express constitutively. The majority of the
cloned R genes induce resistance against leaf blast at the seedling stage, while only a few R
genes, such as Pb1, Pi25, Pi64, and Pi68 confer resistance to panicle blast [252–255]. Most
of the identified blast resistances are clustered on chromosomes 6, 11, and 12 (Figure 6),
while cloned blast resistance genes are clustered on chromosome 6 and 11 (Figure 7).
Notably, a large number of R genes (28 R genes) are mapped on to chromosome 11, and
chromosomes 3, 7, and 10 carry solitary R genes, respectively. The genes Pi2, Pi54, Pi9, Pigm,
and Pizt mapped on to chromosome 6 are known to provide broad spectrum resistance,
and so is Pi54, which is mapped on to chromosome 11. A great majority of blast resistance
genes are distributed into clusters of tightly linked genes. At least three major clusters of
blast resistance genes have been detected in rice on chromosomes 6, 11, and 12 (Figure 6).
Several studies have demonstrated that the genetic control of blast resistance is complex and
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involves both major and minor genes with additive/complementary interactions [256]. To
be ahead in the evolutionary race between pathogen and host, there is a need for continuous
identification of new R genes from the previously untapped genetic resources [177].
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Table 4. The cloned and functionally characterized rice blast resistance genes.

Genes & Alleles Encoded Protein Chr. No
Cognate

AVR Gene Chromosomal Location Donor Reference

Pish NLR 1 - 33,136,846–33,145,541 Nipponbare [257]

Pi35 NLR 1 - 33,838,140–35,206,760 Hokkai 188 [111]

Pi37 NLR 1 - 33,116,117–33,124,371 St. No. 1 [112]

Pi64 NLR 1 - 33,098,072–33,104,550 Yangmaogu [254]

Pit NLR 1 - 2,686,729–2,687,700 K59 [258,259]

Pi-b NLR 2 AVR-Pib 35,979,234 Tohoku IL9 [38,118]

pi21 Proline-rich metal
binding protein 4 - 19,836,301–19,835,131 Owarihatamochi [96]

Pi63 NLR 4 - 31,553,065–31,558,406 Kahei [260]

PiPR1 NLR 4 - 316,00,121–31,604,201 [261]

Pi9 NLR 6 AVR-Pi9 2,410,176–2,418,568 75-1-127 [37,133]

Pi2 NLR 6 1,043,5816–10,441,907 Jefferson [262]

Piz-t NLR 6 Avr-Pizt 10,387,509–10,390,465 Zenith [36,262]

Pi50 NLR 6 - 10,375,846–10,380,263 Er-Ba-zhan
(EBZ) [97]

Pizh NLR 6 - 10,087,244–10,478,622 [263]

Pigm NLR 6 - Near to 10,435,816–10,441,907 Gumei4 [100,264]

Pi-d2 B-lectin receptor
kinase 6 - 17,164,851–17,160,330 Digu [137]

Pi-d3 NLR 6 - 13,058,027–13,055,162 Digu [265,266]

Pi25 NLR 6 - 13,058,027–13,055,162
(Pid3 allele) Gumei2 [253]

Pid3-A4 NLR 6 - 13,058,027–13,055,162
(Pid3 allele)

A4 (Oryza
rufipogon) [267]

Pi36 NLR 8 - 2,878,953–2,890,634 Kasalath [268]

Pi5 NLR 9 - 9,674,695–9,674,000 RIL260 [236]

Pii NLR 9 AVR-Pii 9,674,695–9,674,000 Hitomebore [16,269]

Pi56 NLR 9 - 9,777,527–9,780,698 Sanhuangzhan
No. 2 [270]

Pb1 NLR 11 - 14,705,215–14,714,572 Modan [252,271]

Pik NLR 11 AVR-Pik 27,984,697–27,989,134 Kusabue [16,272]

Pik-p NLR 11 AVR-Pikp 27,978,568–27,980,621 K60 [237]

Pikm NLR 11 AVR-Pikm 27,984,697–27,989,134 Tsuyuake [235]

Pike NLR 11 - 27,984,697–27,989,134
(Pik allele) Xiangzao143 [273]

Pik-h NLR 11 - 27,984,697–27,989,134
(Pik allele) K3 [238]

Pi1 NLR 11 - 27,984,697–27,989,134
(Pik allele) C101LAC [274]

Pi54 NLR 11 AVR-Pi54 25,262,834–25,264,520 Tetep [39,275]

Pi54rh NLR 11 Avr-Pi54 25,262,834–25,264,520
(Pi54 allele)

Oryza
rhizomatis

(nrcpb 002)
[171]

Pi54of NLR 11 AVR-Pi54 25,262,834–25,264,520
(Pi54 allele)

Oryza
officinalis

(nrcpb004)
[89]

Pia NLR 11 AVR-Pia 6,546,026–6,541,924 Sasanishiki [16,44,276]

Pi-CO39 NLR 11 AVR-CO39 6,888,057-6,291,466 CO39 [142,277]

Pi-ta NLR 12 AVR-Pita 10,612,068–10,606,359 Yashiro-mochi [32,162]

Pi65 LRR-RLK 12 28,376,327–28,379,731 GangYu129 [278]

Ptr ARM repeat
domain protein 12 - 10822534–10833768 M2354 [101]

NLR, nucleotide-binding leucine-rich repeat; AVR, avirulence; Chr. No, Chromosome number.
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4.2.2. Resistance Response Mediated by Alleles of Known R Genes

The deployment of cultivars introgressed with resistance (R) genes is most effective and
eco-friendly approach to control blast disease [4]. Among the 38 cloned and characterized
blast R genes (Table 4), except for pi21, which is a recessive R gene, the remaining 37 are
dominant genes. Most of the cloned blast resistance genes are alleles of the previously
cloned rice blast R genes and few of them represent a new rice blast R locus [260,279].
Considering that more than 400 NBS–LRR gene sequences are identified in a rice genome
and alleles of rice blast R genes may confer distinct resistance spectra to M. oryzae isolates,
allele mining of cloned rice blast R genes in rice germplasms would reveal more favorable R
alleles for rice blast resistance breeding [89,280]. TILLING (Targeting Induced Local Lesions
in Genomes) and PCR based mining are the two main approaches for the identification of
better, new and superior alleles of disease resistance genes [281,282]. Natural mutations
such as transition, transversion, point mutation, and insertion, and deletions (InDels) are
the main driving forces for the generation and evolution of new alleles. With the availability
of enormous database information, desired and superior alleles can be easily identified
and retrieved [282]. The allele mining approach identifies new haplotypes and evolution
patterns of R genes [282]. The superior allelic variants with novel resistance specificities
can be deployed in breeding programs to achieve broad spectrum resistance to blast.

Many studies have reported allele mining of blast resistance genes from wild and culti-
vated species of rice [170,283–286]. Studies of Pi-ta gene in wild (AA and CC genome) and
cultivated species of rice indicated a consensus conserved sequence before divergence [287].
In another study, Pi-ta orthologs identified in 26 rice accessions from 10 different coun-
tries were shown to display a dimorphic pattern of nucleotide polymorphism and low
nucleotide diversity at the LRD region of the orthologs [16]. To study allelic variants and
flanking sequence of Pi-ta, 159 geographically diverse accessions of Oryza species (AA
genome) have been used [288]. The Pi-ta and Pi9 alleles have been studied extensively
in Indian landraces [289,290]. Five unique and novel Pi-ta variants were identified from
local landraces of rice. Notably, strong selective sweeps as indicated by the high value of
Pi (non/syn) on the LRD were inferred to shape the evolution of the new alleles at Pita
locus [290]. Other blast resistance loci such as Pid3 and Pi9 have been explored to study
the nucleotide polymorphism and evolutionary pressure [265,291]. A nucleotide polymor-
phism study of the Piz-t locus of Indian landraces indicated positive selection pressure on
the locus and the role of diversification of the LRR domain in the evolution of a gene [292].
PCR-based allele mining for blast resistance gene Pi54 from six cultivated rice lines and
eight wild rice species was undertaken to understand its structural variation and its impact
on the phenotypes. A high nucleotide variation was recorded between cultivated and
wild species (35–90%) compared to variation in cultivated species (1–20%) [177]. The Pi54
allele mining in 92 rice lines indicated an extensive variability in the allelic sequences and
unique haplotypes linked to resistance alleles. InDel polymorphisms in the allelic variants
have been targeted for developing markers for the identification of better allele(s) and
their introgression in commercial rice cultivars, employing marker-assisted selection [293].
Similarly, the allelic diversity of Pi54 gene has also been studied in 885 Indian rice laces that
have shown resistance to naturally existing pathogens as well as against 5 unique strains
of the blast pathogen. Nine new alleles of Pi54 were identified based on the sequence
comparison to the Pi54 reference sequence as well as to already known Pi54 alleles [279].
Allelic mining of the blast resistance Pid3 locus in 3000 rice genome project (3 K RGP)
genomes revealed that most japonica rice accessions harbored pseudogenes due to prema-
ture stop mutations, while Pd3 alleles in most of the indica rice accessions were identical
to the functional haplotype, which had a similar resistance spectrum as the previously
reported Pid3 gene [294]. In another study, 13 novel alleles of Pi9 were identified based on
tandem-repeat regions from 361 resistant rice varieties [295].
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5. Molecular Mechanisms of Leaf and Panicle Blast

Blast infects the rice crop at all stages of its growth, starting from the nursery to
the grain filling stage, under favorable environmental conditions. Blast pathogen likes
leaf wetness, high humidity, longer free moisture periods, a night temperature between
18–24 ◦C, and an absence of wind at night time. Fungal spores are produced and spread
under high relative humidity conditions, however, no spore production is observed below
89% relative humidity. The sporulation process increases with relative humidity above 93%.
The most appropriate temperature for spore germination, lesion formation, and sporulation
is 25–28 ◦C [296].

Of the two commonly recognized phases of the disease, the leaf blast occurs during
the plant’s vegetative stage, while the neck blast (a near synonym of panicle blast) appears
during the reproductive stage. The flow of photosynthates to growing grains is blocked
at the base of the panicle during neck blast infection, resulting in chaffy grains or empty
panicles. Under epidemic conditions, the damage inflicted by neck blast infection could
be twice as severe as leaf blast with losses approaching up to 70% of the anticipated
yield [297]. Although more than 100 R-genes for leaf blast resistance are known, very few
genes for resistance to neck blast have been identified and located on the rice genome. The
disease response of leaf and panicle to blast infection is different, and the varieties that are
susceptible to leaf blast are resistant to neck blast and vice versa [297,298]. Some of the
cultivars resistant at the seedling stage become susceptible to neck blast [299]. The reported
susceptibility of leaf blast resistance genotypes to neck blast and vice versa has suggested
that the different genes are involved in resistance to leaf and neck blast [297,300]. In other
studies, the gene/QTLs for panicle blast resistance were mapped to the genomic locations
harboring major leaf blast resistance genes, thereby suggesting the existence of common
genes for resistance to both phases of the disease [301]. Pb1 gene mapped on the long arm
of chromosome 11 in an indica cultivar ‘Modan’ is the first panicle blast resistance gene to
be identified from rice [147]. The gene was introgressed into several varieties in Japan and
has shown durable resistance to blast for almost 30 years [252]. The gene exhibits lower
expression levels at the seedling stage but its expression reaches peak during full-heading
stage, thus accounting for its strong resistance to panicle blast. These findings have been
taken to reflect that the temporal and spatial expression pattern of a blast resistance gene is
a major factor in deciding whether the gene will offer protection to leaf or neck blast or both
phases of the disease [302]. Zhuang et al. [156] identified a blast resistance gene Pi25(t) that
provides resistance to both leaf and neck blast. Ma et al. [254] identified a resistance gene
Pi64, which is constitutively expressed in all the tissues and provides protection against
both leaf and neck blast. Noenplab et al. [301] reported co-localization of QTLs for leaf and
neck blast resistance on the same genomic regions on chromosomes 1, 11, and 12.

Ishihara et al. [303] identified a major QTL, qPbm11, for panicle blast resistance in
the genomic region on chromosome 11, from where panicle blast resistance locus, Pb1,
has previously been identified in cultivar Modan. However, the absence of Pb1-encoded
transcripts in the panicles of qPbm11 genotype Miyazakimochi has suggested that the
qPbm11 is different from Pb1. Fang et al. [304] identified a panicle blast resistance QTL,
qPbh-11–1, located on the long arm of chromosome 11. The gene occupies a different
genomic position compared to two panicle blast resistance loci Pb1 and qPbm11 previously
identified from the same chromosome. The gene expression studies have suggested that
the genes such as Pb1 that are expressed during the heading stage shall display neck
and panicle blast resistance, while those showing constitutive expression such as Pi64 are
expected to provide protection against both the phases of the disease. These studies have
provided a plausible explanation for observed inconsistencies in the reaction of leaf blast
resistance varieties to neck blast and vice-versa, which were previously ascribed solely to
either shifts in race composition of the pathogen or changes in environmental conditions
during the crop season.
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6. Management of Blast Disease Using Host Resistance
6.1. Introgression of QTLs for Blast Resistance

The introgression of R and QTLs genes in rice is considered to be one of the best ways
to control blast disease [305]. Therefore, deploying single or multiple QTLs that impart the
partial resistance and non-race specificity is a priority in rice breeding nowadays [306,307].
Though there are more than 500 reported QTLs for blast resistance, only few of them have
been deployed under field conditions. There are various reports in which QTLs have
successfully been transferred in rice to achieve broad spectrum resistance against rice blast
disease. Pyramiding of resistance QTLs in cultivated varieties has been practiced to increase
disease resistance levels, e.g., two QTLs (qBl1 and qBl11) identified from the rice cultivar
Jao Hom Nin (JHN) were introgressed into the Thai glutinous jasmine rice cultivar RD6
MAB [308]. Using the MAS approach, elite indica rice lines were developed by bringing
together multiple QTLs from IR64 and JNJ into a single background, and resulting lines have
shown broad spectrum resistance against Thai blast isolates [309]. A new glutinous rice
variety was developed by pyramiding Sub1, badh2, qBl1, and qBl11 loci from the rice lines
IR85264 (Sub1), TDK303 (badh2), and RGD07529 (qBl1+qBl11) into a single background [310].
Further, Fukuoka et al. [311] combined the partial resistance genes and QTLs (pi21, Pi34,
qBR4-2, and qBR12-1) to enhance the blast resistance in rice. Suwannual et al. [312] used
four blast resistance QTLs from two rice lines for the development of pyramided broad
spectrum blast resistance rice lines of a popular variety RD6. The RD6 introgression lines
carrying a high number of QTLs displayed broad-spectrum resistance to prevalent blast
pathogen races. Recently, the introgression of a major QTL qBL3 for leaf and neck blast
resistance into a susceptible rice variety BPT5204 resulted in progeny lines showing field
resistance to leaf and neck blast [123].

6.2. Introgression of R-Genes for Blast Resistance

Of the various means available to curb the blast disease, breeding resistance varieties
is the most suitable, ecologically safe, and cost-effective strategy. Since the resistance
to blast in rice involves gene-for-gene interactions, the varieties carrying single R genes
often succumb to disease due to the appearance of virulent races of the pathogen, which
is due to the mutation of avirulence gene to evade detection by the corresponding host
R-gene [313]. Pyramiding of multiple R-genes has been advocated to foster enduring
resistance to blast [314]. Genetic mapping and molecular cloning of different blast resistance
genes has provided a gamut of linked or gene-based markers for the efficient selection of
resistance genes in breeding programs. Several blast resistance genes have been deployed
in rice using different genomics-assisted approaches for achieving long-lasting resistance
to blast (Table 5). Of the various R genes, the Pi54 gene cloned from rice line Tetep in
our laboratory [95] has been deployed more extensively, both globally and in India, in
combination with other blast resistance genes for achieving durable resistance to blast
(Table 6).

6.3. Transgenic Approach for Blast Management

The transgenic approach is one the important components in rice blast disease man-
agement. The initial cloning and characterization of the R genes was performed using
the transgenic approach by expressing these genes in susceptible rice lines (Table 3). As
discussed in details in the earlier section, 38 blast R were transformed into different rice
lines. Although large-scale field release of these transgenic lines is not reported, the de-
veloped lines are a valuable resource for deployment whenever regulatory approval is
given. Among the 38 cloned blast R genes, Pi54 and its orthologs are widely studied using
different methods through transgenics (Table 6).
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Table 5. Resistance genes introgressed in rice for blast improvement program.

Target Gene Recipient Parent Chromosome Marker Used Reference

Pi2 C815S 6 RM527 [315]

Pigm Kongyu 131, Longjing 26,
Kenjiandao 6 6 M80362 [316]

Pigm KT27S 6 G8900 [316]

Pi9 E32 6 Ins2-3 [317]

Pi9 R288 6 Clon2-1 [318]

Pi9 Q211S 6 Nbs21 [319]

Pi40 Osmancik-97, Halilbey 6 9871.T7E2b [320]

Pi1 BPT5204 11 RM224 [321]

Pi54 BPT5204 11 Pi-54MAS [322]

Pi54 R1, R2 11 RM224 [323]

Pi54 MTU1010 11 Pi54MAS/RM206 [324]

Pi46/Pi-ta Hanghui 179 11, 12 RM224, YL155/YL87//YL155/87 [325]

Pi1/Pi54/Pi-ta Mushk Budji 11, 12, 12 Pi54MAS, RM224,
YL155/YL87//YL155/87 [323]

Pib/Pik K6415 2, 11 NSb, K6415 [326]

Pib/Pi54 MR219 2, 11 RM208, RM206 [107]

Pi1/Pi2 GD-7S 6, 11 RM144, AP22 [327]

Pi1/Pi2 Pusa RH-10 6, 11 RM5926, AP5659-5 [326]

Pi1/Pi2, Pi1/Pigm GZ63S, 97S, R084, R609 6, 11 RM224, ZJ58.7, AP22 [328]

Pi2/Pi54 PB1121 6, 11 AP5659-5, RM206 [329]

Pi2/Pi54 PRR78 6, 11 AP5930, RM206 [330]

Piz-t/Pi54, Pi9/Pi54 07GY31 6, 11 Z4794, Pikh-1 [331]

Pi2/Pi1/Pi54 Swarna-Sub1 6, 11 Pi54MAS, RM224, AP5659-5 [332]

Pi1/Pi2/D12 Jin 23B 6, 11, 12 RM144/RM224, PI2-4/HC28,
RM277/RM309 [333]

Pi9/Pi-ta Pusa Basmati 1 6, 12 AP5659-5, YL155/YL87//YL155/87 [334]

Pi1/Pi2/Pi33 Kuboyar 6, 8, 11 RM224, RM527, RM310 [335]

Pi1/Pi2/Pi33 ADT43 6, 8, 11 RM224, RM527, RM25 [336]

Pi2/Pi54 Sambha Mahsuri 6,11 Pi54MAS, AP5659-5 [337]

Table 6. Applications of Pi54 gene in developing blast resistance rice.

Country Approach Applications Cultivar Developed Reference

China; Beijing MAS-Gene
pyramiding Pi9, Pizt, and Pi54 for blast resistance NILs [331]

China; Yangzhou MAS-Gene
pyramiding

Combination of major R genes including Pi54 for
blast resistance NILs [338]

China;
Wuhan

MAS-Gene
pyramiding

Pi54, Pi37, Pit, Pid3, Pigm, Pi36, Pi5, Pikm, and Pb1
for blast resistance

Improved Y58S,
GuangZhan63S (GZ63),

C815S and HD9802S
[339]

India (ICAR-IIRR) MAS-Gene
pyramiding Pi54 blast and Xa21, xa13 blight resistance MTU1010 [324]

India (ICAR-IARI) MAS-Gene
pyramiding Pi2, Pi54 blast and xa13, Xa21 blight resistance PB1121-NILs and

PB6-NILs [329]

India (ICAR-IIRR) MAS-Gene
pyramiding Pi54 blast and Xa2 blight resistance DRR17B [340]

India (ICAR-IIRR) MAS-Gene
pyramiding Pi54 and Pi2 blast resistance Improved Samba Mahsuri [337]
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Table 6. Cont.

Country Approach Applications Cultivar Developed Reference

India (ICAR-IARI) MAS-Gene
pyramiding Pi54, Pi1, Pita, Pi2, and Pi9 PB1 NILs [314]

India (PJTSAU,
Hyderabad)

MAS-Gene
pyramiding Pi54 and Pi1 for blast resistance Tellahamsa [341]

ICAR-IARI MAS-Gene
pyramiding Piz5 and Pi54 blast resistance Basmati restorer PRR78 [342]

ICAR-IIRR MAS-Gene
pyramiding Pi54 blast and Xa2 blight resistance IR58025B [343]

ICAR-IARI MAS-Gene
pyramiding

Pi54 blast, xa13, Xa21 blight and QTL qSBR11-1
ShB resistance Improved Pusa Basmati 1 [344]

ICAR-IIRR MAS Pi1, Pi2, Pi33, and Pi54 for blast resistance ADT 43 NIL [345]

ICAR-IIRR MAS Pi1, Pi2, and Pi54 16 introgressed lines [346]

Universiti Putra, Malaysia MABB Pi54 (Pi-kh) and Pi-b MR219 [327]

ICAR-IIRR MABB Pi54 blast resistance Swarna [347]

ICAR-IIRR MABB Pi54 introgression for blast resistance Samba Mahsuri [322]

ICAR-IIRR MABB Pi2, Pi54, Xa21, xa13, and xa5 Improved Samba Mahsuri [348]

UAS & Tech, Kashmir MABB Pi54, Pi1, and Pita Mushk Budji [323]

ICAR-IIRR MAS-Gene
pyramiding PizPi1, Pi2, and Pi54 Swarna-Sub1 [332]

China: Yangzhou MAS-Gene
pyramiding Pi1, Pi33, and Pi54, Piz 15-pyramided lines [349]

TNAU MAS Pi54 introgression for blast resistance Restorer lines [350]

ICAR-IIRR MAS-Gene
pyramiding Pi54, Pi1, Xa21, and xa13 Tellahamsa [341]

ICAR-IARI Allele mining Pi54 allele mining land races and wild rice - [351]

Switzerland (ETH Zurich) Allele mining Pi54 mining from 885 Indian rice genotype - [279]

ICAR-NRCPB Allele mining Pi54 mining from 92 rice lines - [293]

ICAR-IARI Allele mining Pi54 mining from 100 rice germplasm - [352]

ICAR-NRCPB Allele mining Pi54 mining from land races and wild rice - [170]

Tohoku University, Japan Allele mining Pi54 evolution in the Oryza genus - [353]

China; Yancheng Allele mining Field resistance for blast Pi-ta, Pigm, and Pi54 for
blast disease Rice accessions [354]

Malaysia Over-expression Constitutive expression of Pi54 homologue from
rice line PH9 Transgenic- MR219 [355]

ICAR-NRCPB Over-expression Pi54 orthologue from O. officinalis Transgenic TP309 [89]

ICAR-NRCPB Over-expression Pi54 orthologue from O. rhizomatis Transgenic TP309 [171]

ICAR-NIPB Over-expression Pi54 TP309 [169]

China;
Chengdu Over-expression Pib, Pi25, and Pi54 Kasalath, Zhenghan 10 [356]

6.4. Genome Editing of Immunity Regulators

Sequence-specific nucleases (SSNs), such as zinc finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENs), and clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR-associated (Cas) 9 (CRISPR/Cas9) have recently proven
to be extremely effective tools for plant genome editing [357]. Since it has become feasible
to use the bacterial CRISPR/Cas mechanism in eukaryotes, which in itself is simple to
design, fairly affordable, and multiplexing compliant [358], it has consequently superseded
other approaches. CRISPR/Cas9 has proved to be the most effective SSN to date and has
been used to alter the genomes of key crops including rice [359].
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Susceptibility factor-encoding genes are often potential targets for genome editing as
knockout of a single gene can significantly improve tolerance [360]. Müller and Munné-
Bosch found that plant ethylene responsive factors (ERF) have a role in stress tolerance
regulation [361]. Furthermore, RNAi silencing of rice ERF922 in cultivar Zhonghua 17 im-
proves resistance to M. oryzae, suggesting that this gene may function as a resistance
negative regulator [362]. Consistent with these findings, the CRISPR/Cas9-targeted knock-
outs of ERF transcription factor have shown an improved resistance to rice blast [363]. The
gene-edited mutants exhibited a reduced number of blast lesions following pathogen infec-
tion compared to wild-type plants at both the seedling and tillering stages. Furthermore,
no significant differences were observed between mutant lines and the wild-type plants for
different agronomic traits tested.

To investigate the functional relevance of exocyst subunit proteins in plants defense
mechanisms, CRISPR/Cas9 was used to alter OsSEC3A, which is reported to be associated
with rice defense responses. The two exons of the OsSEC3A were targeted with two
sgRNAs [364]. Edited rice plants showed enhanced immunological response and enhanced
resistance to the blast disease. Blast resistance can also be realized by fine-tuning the
multifunctional genes involved in rice defense signaling. CRISPR/Cas9 multiplex genome
editing system was used for targeted alteration of the thermosensitive male sterile 5 gene
(TMS5), rice blast susceptibility gene pi21, and bacterial leaf blight susceptibility gene
xa13 [365]. Triple mutants (tms5/pi21/xa13) with homozygous frame-shift mutations in all
three genes displayed thermosensitive genic male sterility with enhanced resistance to rice
blast and bacterial blight.

Besides, CRISPR/Cas9 has also been used for functional validation of blast resistance
genes. The R gene, Pi-d2, has been targeted for editing using the hAID*D-XTEN-Cas9n-NLS
chimeric gene (dubbed rBE5) base editor to validate its role in resistance to M. oryzae [366].
Similarly, Zhao et al. [101] used CRISPR/Cas9 to confirm the function of the Ptr, a con-
stitutively expressed resistance gene that imparts broad spectrum resistance to M. oryzae.
Therefore, genome editing through CRISPR/Cas has more potential application in rice for
developing varieties with enhanced blast resistance and also for the functional validation
of potential defense response genes. Advanced genome-editing technologies such as base
editing and prime editing could be used to install superior allelic variations precisely for
developing blast resistance. In this direction, the editing of the susceptibility factors holds
a great promise provided the targeted genes are chosen carefully to prevent fitness cost or
yield reduction.

7. Conclusions and Future Perspective

Rice blast disease is a major threat to global rice production. Besides, M. oryzae is
considered as the most potent potential biological weapon. Blast pathogen affects all
parts of the rice plant from roots to panicles [4]. Since its detection dating back to 1637,
constant efforts are being made to develop strategies for the effective management of rice
blast disease. To date, more than 500 blast resistance QTLs have been reported, about
102 blast R genes have been mapped in rice, and 38 of these mapped genes are cloned
and functionally characterized. The reported QTLs and R genes have been deployed in
the genetic background of elite rice lines for resistance breeding using both conventional
and genomics-assisted breeding approaches. The pathogen on the other hand displays an
exceptional genomic plasticity that enables it to adapt to changes in the host, thus making
it difficult for the rice breeders and researchers to rest on the present achievements to
deal with the threat. There is always a chance of emergence of new virulent strains of
a pathogen that can subvert the existing resistance responses [12]. Continued efforts to
study the rice–Magnaporthe interaction, in order to understand the molecular mechanism of
pathogenicity and resistance, are required to devise means to counteract the adaptability
potential of the pathogen.

Though considerable success has been achieved in managing the disease through host
resistance, the present changing climatic scenarios may alter this advantage in favor of
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the pathogen in the near future. As was reported in the case of the recent outbreak of
wheat blast disease in Bangladesh, climate change is going to be a big challenge to manage
various major as well as minor diseases [72]. The outbreak of wheat blast, reported to
be an event of host-jump of Magnaporthe to wheat, highlights the potential host jump of
Magnaporthe from other crops to rice, thereby risking everything we have achieved in rice
blast management. The centuries of research and recent revelations in genomics indicate
that we have almost exhausted our rice genetic resources for the identification of novel,
potent resistance genes for tackling emerging strains of blast pathogen. Therefore, to this
end, the recent developments in the field of genome editing, mainly in CRISPR-Cas systems,
appears to hold on to the future challenges. Knock-out of single and multiple genes and
induction of targeted genetic variation with conventional CRISPR-Cas tools and precise
editing with base editors and prime editors empower us with the ability to decipher a great
deal of host–pathogen interactions and improve rice plant for blast resistance. This is largely
true because till now researchers have focused on the positive regulators of blast disease
resistance in rice. There lies a plethora of rice negative regulators—many of which are yet
to be identified—that have the potential to provide more stable and durable resistance.
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