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Abstract

Viruses evolve rapidly, providing a unique system for understanding the processes that influence rates of molecular evolu-
tion. Neutral theory posits that the evolutionary rate increases linearly with the mutation rate. The occurrence of deleteri-
ous mutations causes this relationship to break down at high mutation rates. Previous studies have identified this as an im-
portant phenomenon, particularly for RNA viruses which can mutate at rates near the extinction threshold. We propose
that in addition to mutation dynamics, viral within-host dynamics can also affect the between-host evolutionary rate. We
present an analytical model that predicts the neutral evolution rate for viruses as a function of both within-host parameters
and deleterious mutations. To examine the effect of more detailed aspects of the virus life cycle, we also present a computa-
tional model that simulates acute virus evolution using target cell-limited dynamics. Using influenza A virus as a case
study, we find that our simulation model can predict empirical rates of evolution better than a model lacking within-host
details. The analytical model does not perform as well as the simulation model but shows how the within-host basic repro-
ductive number influences evolutionary rates. These findings lend support to the idea that the mutation rate alone is not
sufficient to predict the evolutionary rate in viruses, instead calling for improved models that account for viral within-host
dynamics.
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1Introduction theory does not hold the majority of the time (Jenkins et al. 2002).

The rate of molecular evolution is a fundamental facet of evolu-
tionary processes. Although many complex factors can influence
the evolutionary rate, the neutral theory of molecular evolution
suggests that most fixations are, in fact, selectively neutral.
Under this assumption, the mutation rate is the sole predictor of
the evolutionary rate (Kimura 1984). While this theory has often
been successful in estimating rates of evolution (Li, Tanimura,
and Sharp 1987; Kimura 1991; Bromham and Penny 2003), its ap-
plication to viruses is not straightforward. Some studies have
found that many rapidly evolving viruses follow typical molecu-
lar clock dynamics (Gojobori, Moriyama, and Kimura 1990;
Leitner and Albert 1999), whereas others have shown that neutral

The lack of consensus on whether viruses conform to the predic-
tions of the neutral theory is complicated by the fact that viruses
often have high mutation rates and complex life cycles.

Viruses have a wide range of mutation rates, with DNA
viruses having rates as low as 1078 substitutions per nucleotide
site per cell infection (s/n/c) and RNA viruses having rates as
high as 1073 (s/n/c) (Drake 1993; Sanjuén et al. 2010). The high
mutation rates of RNA viruses are matched by high evolution-
ary rates (Jenkins et al. 2002; Hanada, Suzuki, and Gojobori
2004); however, high mutation rates are expected to come with
an elevated risk of extinction due to deleterious mutations aris-
ing more rapidly than can be removed by selection (Holmes
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2003; Bull, Sanjuan, and Wilke 2007). This suggests that the evo-
lutionary rate for viruses cannot increase indefinitely with in-
creasing mutation rate but instead is limited by an upper
bound. Indeed, it has been shown that while the neutral theory
applies well to slowly mutating viruses (DNA and double-
stranded RNA viruses), the linear relationship between muta-
tion rate and evolutionary rate breaks down for faster mutating
viruses (single-stranded RNA and retroviruses) (Sanjuan 2012).
This discrepancy can be viewed as evidence in favor of viruses
being close to an error or extinction threshold which restricts
the evolutionary rate in the face of abundant transient deleteri-
ous mutations present in the population (Eigen 1993; Bull,
Sanjuan, and Wilke 2005; Pybus et al. 2007). Sanjudn (2012)
showed that the deviation from the predicted linear relation-
ship can be explained by the effect of background selection,
where neutral diversity is removed due to linkage with deleteri-
ous effects (Charlesworth, Morgan, and Charlesworth 1993; Orr
2000).

Sanjudn’s (2012) analysis revealed that deleterious mutations
are important; however, the underlying model is general and
therefore does not take into account differences in the within-
host dynamics of individual viruses. As a result, while this model
is a useful starting point, it produces the same prediction for vi-
ruses that may have similar mutation rates but drastically differ-
ent life cycle strategies. For example, avian hepatitis B virus and
human immunodeficiency virus (HIV) have similar mutation
rates (2.0 x10™° and 2.4 x107° (s/n/c), respectively (Sanjuén et al.
2010)) yet have evolutionary rates that are quite different (7.32 x
10* and 2.74 %103, subsitutions/site/year (s/n/y), respectively
(Sanjuan 2012)). These differences in the evolutionary rates may
be due to differences in their within-host dynamics.

Viruses have evolved different strategies for entering and
growing within hosts; they are cleared in a variety of ways by im-
mune responses, and they vary in how they exit a host to be
transmitted to the next. Previous studies examining the relation-
ship between the within-host and between-host processes have
shown that specific within-host parameters may influence the
evolution of the virus population at the within-host and/or be-
tween-host scale, such as viral genomic architecture, replication
rate (Luciani and Alizon 2009), life cycle (Duffy, Shackelton, and
Holmes 2008), cell tropism (Hicks and Duffy 2014), cellular im-
mune processes (Lemey et al. 2007; Luciani and Alizon 2009; Fryer
and McLean 2011), and within-host competition (Lythgoe, Pellis,
and Fraser 2013), as well as between-host parameters such as ep-
idemiological dynamics (Scholle et al. 2013) and ecological factors
(Hanada, Suzuki, and Gojobori 2004; Streicker et al. 2012).

The within-host dynamics of viruses are becoming increas-
ingly well understood, with many models accurately predicting
virus population trajectories through parameters such as virus
growth rate, virus clearance rate, cell infection rate, and cell
death rate (Nowak et al. 1996; Perelson et al. 1996; Baccam et al.
2006). Characterizing these dynamics has been useful for exam-
ining the efficacy of drugs/treatments (Neumann et al. 1998;
Perelson and Ribeiro 2008), understanding the evolution of drug
resistance (Rong et al. 2007), the roles of innate and adaptive
immunity during infection (Pawelek et al. 2012), and the evolu-
tion of mutation rates (Regoes, Hamblin, and Tanaka 2013).
Such models have now matured to the point where they can be
used to better understand viral evolution.

Here, we develop two models to investigate the effect of
within-host dynamics on the rate of molecular evolution in
acute viruses. Given the short duration of infection, the dynam-
ics of viral mutants within a host are transitory, but we are
interested in understanding how this process affects the

evolutionary rate at the between-host level. We begin with a
simple analytical model similar to the Luria-Delbriick process
in which mutants appear stochastically in a growing popula-
tion. We include a new critical parameter: the within-host re-
productive number. Our analytical model is wuseful for
understanding the virus evolutionary rate as a function of this
single parameter which summarizes within-host processes. To
further enhance our understanding of the role of acute virus life
cycles, we also develop a computational model that simulates
evolution in a population of viruses that are target cell limited
(Perelson et al. 1996). We compare the performance of our
model incorporating within-host population dynamics to the
deleterious mutation model implemented by Sanjudn (2012) to
explain the evolutionary rates of a range of viruses. We also
consider in more detail the specific case of influenza A virus, for
which parameters have been estimated from patient data
(Baccam et al. 2006).

Viruses provide a unique opportunity to study evolutionary
rates because we can directly witness and measure them within
our lifetime. Additionally, understanding the factors that influ-
ence these rates of evolution can offer insight into both life-
cycle strategies and the epidemiology of currently circulating
virus strains. The analytical and computational models pre-
sented here enhance our understanding of the rate of molecular
evolution in viruses by highlighting the importance of within-
host dynamics for the overall evolutionary rate.

2 Models and methods

2.1 Simple within-host analytical model

We begin with a simple within-host growth process in which a
virus population grows exponentially and selectively neutral
mutations appear randomly. We assume that new mutants are
either neutral or deleterious. Neutral mutants can be lost by
chance (i.e., through genetic drift), but deleterious mutations
are assumed to be removed from the population immediately
due to selection. We assume that transmission to another host
occurs at the peak of infection (Bell et al. 2006) at some time t,.
Mutants that appear after the peak are doomed to extinction
with high probability, and this allows us to neglect the post-
peak dynamics as a first approximation. We note that this as-
sumption would not be suitable for viruses such as HIV and
hepatitis C virus (HCV), which cause chronic infections. We
seek the proportion pn, of the virus population that is made up
of neutral mutants at this peak. We use this proportion to com-
pute the rate of neutral substitution.

The growth of the virus population depends on the within-
host reproductive number (RY?) which is defined as the average
number of second-generation infections produced by a single in-
fected cell (Baccam et al. 2006). This is not to be confused with
the between-host reproductive number R, (Heffernan, Smith, and
Wahl 2005). We scale time such that 1 unit equals the generation
time of an infected cell. In one cellular generation, the virus gen-
erates p new infected cells, but a fraction 1 — 1 of these are lost
due to background selection, that is, because of the deleterious
mutations carried by the new viruses. The reproductive number
of the virus is therefore R™ = p/ where  is the probability that a
genome does not carry a deleterious mutation, given by

)= e—(l—a()uG/SH (1)

where « is the proportion of mutations that are neutral, x is the
per-site per-cell generation mutation rate, G is the genome size,
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and sy is the harmonic mean of deleterious effects (Orr 2000).
Thus, the viral population grows according to Ipe**~ 1t where t is
time measured in infected cell generations and Iy is the initial
number of infected cells.

Neutral mutants appear at a rate of au per site per cell per
generation. If the dynamics of mutant viruses follow a stochas-
tic linear birth-death process, the probability of ultimately
surviving extinction (see Iwasa, Michor, and Nowak 2004) is

1 .
-= 7
1 o7 if pA>1

0 otherwise.

Using the same reasoning as in Luria and Delbriick (1943), the ex-
pected number of mutants at the peak of infection at time t, is

(1 —1/(p2))tploel?*~ '

assuming p4 > 1. Note that unlike the Luria-Delbriick model, we
allow the average offspring number to take any positive value
rather than restricting it to be exactly 2 (that is, RY® need not be
2), and we include the possibility that mutants are lost by
stochastic extinction. Therefore, the proportion p, of mutants
at the peak of infection at time t, is given by

1
1- =)t ifpa>1
au( pi>p e

0 otherwise.

Pm = (2)

The duration of infection measured in years is t,/g where g is
the number of cell generations per year.

The substitution rate Ky per year as predicted by our
within-host analytical model is therefore

1
1-— ifpi>1
Kun = “”< pz)g g (3

0 otherwise

where g is the average number of cell generations per year.
Thus, our model accounts for within-host dynamics (through p)
and deleterious mutation (through 2). This can be compared
with the deleterious mutation model implemented by Sanjuin
(2012) (see also Orr 2000):

Kgel = ac,uAg (4)

Note that the deleterious mutation model indirectly accounts
for RY® through the cell generation time parameter g; a longer
generation time increases the chance of producing more viruses
and infecting more cells. However, our model is more explicit
about the role of RY? (through the parameter p) in determining
the evolutionary rate.

2.2 Within-host computational model

We develop a semi-stochastic computational model of an acute
viral infection to complement the within-host analytical model.
We begin with ordinary differential equations for a model in
which the number of target cells is limited. The model structure
follows that of Baccam et al. (2006) by defining the immune
response implicitly in the infected cell death and virus clear-
ance rates and forgoing the incorporation of a specific immune
response. In these dynamics, the virus population declines
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when the target cell population is depleted. This is realistic be-
cause some immune responses peak along with, or are not de-
tected until after, peak viral replication (Richman et al. 1976;
Ennis et al. 1981; Baccam et al. 2006). By avoiding the complex
and poorly understood immune system dynamics, target cell-
limited models represent a simple way to accurately model
virus infections and have been in wide use for exploring
the kinetics of other viruses such as HIV, HCV, and HBV
(Nowak et al. 1996; Perelson et al. 1996; Neumann et al. 1998).
However, sophisticated models of virus evolution have been
successful in exploring within-host parameters in the context
of the immune response (Luciani and Alizon 2009).

2.2.1 Infection within a single host

The dynamics are specified by a discrete-time stochastic version
of the Baccam et al. (2006) model, expanded to include a neutral
mutation process. Let T(t) be the number of target cells, I(t) be the
number of cells infected by a wildtype virus, M(t) be the number
of cells infected by a mutant virus, V(t) be the wildtype virus pop-
ulation, and W(t) be the mutant virus population, all at time t.
Viruses infect cells with rate parameter $ and are cleared at rate ¢
per virion per unit time. Infected cells are cleared at rate ¢ per cell
per unit time and viruses are produced at rate p per cell per unit
time. The dynamics progress according to

T(t+1) = —Bwt — Bmut
I(t+1) = Bwt — Dut

M(t+1) = Bmut — Dmut (5)
V(t+1) =Pyt — Cut

W(t+ 1) =Pmut — Cnut + A

where the terms on the right hand sides are random variables
described below. The subscripts wt and mut indicate terms
involving wildtype and mutant viruses, respectively. The ran-
dom variables give the numbers of new target cells infected by
wildtype (Bwt) and mutant (Bmyt) viruses; the numbers of cell
deaths among cells infected by wildtype (Dwt) and mutant (Dmut)
viruses; the numbers of viruses produced by cells infected with
wildtype (Pwt) and mutant (Pmut) viruses; the numbers of wild-
type (Cwt) and mutant (Cmy:) viruses cleared by the immune sys-
tem; and the number of new mutants that arise by mutation
(A). Each term above is modeled stochastically using within-
host parameters, with

Bwt ~ Poisson(fiTV), Bmut ~ Poisson(BATW)

Dmut ~ Poisson(5M)
Pmut ~ Poisson(pM) 6)

Cmut ~ Poisson(cW)

Dyt ~ Poisson(dl),
Pyt ~ Poisson(pI),
Cwt ~ Poisson(cV),

A ~ Poisson(uaV).

If any dynamic variables at the next time step become negative,
they are reset to zero. All mutations are neutral except lethal
mutations in the 2 factor and the Poisson distribution permits
more than one mutant to arise during the same time step.

A summary of the parameters can be found in Table 1 along
with default values used in the computational analyses. Each
simulation is initialized with all variables set to zero except
T which is set to To = 4 x 10® and V which is set to Vi, = 10.
Typical dynamics of the populations modeled in Equation (5)
within a single infected host are shown in Fig. 1.


-
as well as 
 (ODEs)
:

4 | Virus Evolution, 2015, Vol. 1, No. 1

Table 1. Summary of infection parameters.

Parameter Description Default value (unit) Source

B Cell infection rate 1.13x10°¢ (hY) Baccam et al. (2006)
0 Cell death rate 0.1(h™)? Baccam et al. (2006)
p Virus growth rate 9.9x107* (W™ Y)° Baccam et al. (2006)
c Virus clearance rate 0.125 (h ™) Baccam et al. (2006)
u Per site mutation rate 2.3 x 107 (s/n/h)° Sanjudn et al. (2010)
o Frequency of neut. mutations 0.25 Sanjudn, Moya, and Elena (2004)
sH Harmonic mean of selection 0.2 Sanjuén (2012)

G Genome size 13588 (bp) NIAID

) Prob. of no del. mutation e~ (1-1uG/su see Equation (1)

To Initial number of target cells 4 % 108 (cells) Baccam et al. (2006)
Vinoc Inoculum size 10 McCaw et al. (2011)¢

2The estimate from Baccam et al. (2006) is 0.167; however, this gives a cell generation time of 6 h (1/6), which is unrealistic for influenza A virus. Baccam et al. (2006) ac-
knowledge this, and the model has an improved fit when a cell generation time of 12h is used. Sanjuan (2012) calculates a cell generation time of 10h (6 = 0.1) and
notes that it is realistic for a range of eukaryotic viruses. Note that cell generation time is not necessarily equivalent to the viral generation time because many viruses

release virions by budding prior to cell lysis.

®The estimate from Baccam et al. (2006) is 5 x 10~%; however, it is more realistic to match the R¥" value to the Baccam et al. (2006) estimate (see Equation 8), where

RYP =11.1.

°The reported value is 2.3 x 10~° substitutions per nucleotide site per cell generation (s/n/c) and we convert it to an hourly rate (s/n/h) using the cell generation time

1/6=10h.

dReports the number of virions per transmission event inferred from ferret infection data as 4.3+9.8 virions.

Population size

100 150 200
time (hours)

o
[
o

Figure 1. Population dynamics in a single infected host. Wildtype virus (V) and
mutant virus (W) population within-host dynamics with corresponding target
cell (T), wildtype virus-infected cell (I), and mutant virus-infected cell (M) popu-
lations shown for a single infection using default parameters (Table 1).

2.2.2 Transmission chain
Our model operates on two scales by (1) tracking within-host dy-
namics of infection and (2) following a chain of disease transmis-
sion events between hosts. We simulate infection across multiple
hosts by taking an inoculum, or sample of viruses, from a given
host to infect the next host in the chain. We assume that trans-
mission occurs when the virus population reaches its peak viral
load (Bell et al. 2006). The time of peak viral load t, is estimated
by modeling the growth of the virus population and taking the
average time to peak population size for 100 replicates.

The probability that a mutant virus is included in the inocu-
lum Vi, for the next host is equal to the proportion pn, of
mutants in the population at the time of transmission:

W)
P = 9lt,) + Wity)

where t, is the time at which the total virus population reaches
its peak size. The number of mutant viruses that will make up
the inoculum sample is then

W(O) ~ Binom(vinoc ’ pm)

The transmission chain stops when a fixation event occurs (i.e.,
when W(0) = Vi) or when the maximum number of hosts H is
reached.

2.2.3 Calculating the neutral evolutionary rate

We calculate the rate of neutral evolution for the computational
model by first estimating the probability of substitution per
transmission as follows. The number of hosts in a transmission
chain until a fixation event occurs is modeled with a geometric
distribution, allowing us to obtain a maximum likelihood esti-
mate of the substitution probability. The likelihood accounts for
right-censored data because a transmission chain can reach H
hosts without undergoing fixation. The maximum likelihood es-
timator of the substitution probability per transmission is

-~ r
p= Zixi + sH

and the variance of the estimator is the reciprocal of the Fisher
information given by

1) r +Zixi —r+sH
P)=5+= —
P> (1-p)y?

where r is the number of cases in which a fixation event oc-
curred, s is the number of cases in which no fixation events oc-
curred, x; is the number of hosts in the transmission chain
before fixation occurred, and H = 2,000 is the maximum num-
ber of hosts simulated.

We then convert the substitution probability per transmis-
sion to a substitution rate Keomp per year (s/n/y):

Keomp — P42 (h/dayt)pf h3)65 (day/year) o)

This value of Keomp can be directly compared with the value cal-
culated by our within-host analytical model, Ky, (Equation 3),
or by the deleterious mutation model implemented by Sanjuan
(2012), K4e1 (Equation 4).


to

3 Results
3.1 Comparison of model fits for viral evolutionary rates

We compare our within-host analytical model with the deleteri-
ous mutation model implemented by Sanjuan (2012) by fitting
our model to the same data analyzed in that study. For these pur-
poses, we reparameterize both models as follows. The deleteri-
ous mutation model can be written as Kgq = aue ?¢ where
a =gz andb = (1 — o)/sy. Using the same parameters, our simple
within-host model can be written as Kyp, = au(1 — 1/(pe %)), We
begin by taking the approach of Sanjuan (2012) by grouping vi-
ruses into Baltimore classes. Note that the evolutionary rate val-
ues are taken from Sanjuan (2012), while the mutation rates for
each class are from Sanjuan et al. (2010). We fit our within-host
analytical model in the same manner as in Sanjudn (2012) to
obtain log,,(a) = 2.198, b = 3.746, and p = 13.80. Computing the
corrected Akaike Information Criterion (AICc) values, the deleteri-
ous mutation model has greater support than our within-host
model, with AICc values of —4.16 and 48.04, respectively (Fig. 2A).

While the mutation rate for Baltimore classes might be
appropriately grouped (i.e., RNA viruses have much higher
mutation rates than DNA viruses), this assumption does not
generally apply to within-host reproductive numbers (Ry?).
Different viruses within Baltimore classes may have substan-
tially different R§™ values (see Section 4). Therefore, a more
appropriate method is to use estimates of K and x for individual
virus taxa (see Fig. 2B for viruses used). Using this approach, we
find log,,(a) = 2.250 and b = 2.132 for the deleterious mutation
model, while our within-host model yields log,,(a) = 2.061,
b =2.800, and p = 28.097. While we find that our model does
slightly better than the deleterious mutation model estimate
with AICc values of 28.52 and 36.75, respectively (Fig. 2B), the
statistical evidence is not strong. The standard error for our
parameter estimates is too high to draw firm conclusions, and
more data would be needed to resolve this comparison.

3.2 Comparison of model predictions for influenza A
virus

The within-host dynamics of influenza A virus have been care-
fully studied, and the parameters underlying these dynamics
have been estimated from patient data (Baccam et al. 2006).
This allows a more specific comparison of the models for this
particular virus without the need for model fitting, in contrast
to the analysis of Fig. 2 where we fitted our models assuming a
common RY™ value across a range of viruses. Using a target cell-
limited model, Baccam et al. (2006) found the R for influenza
A virus to have an average value of 11.1. We therefore used
parameter values in our simulations such that R¥" = 11.1 where
R¥M is defined as

Wl AT
Ry h= %' ®)

Note that 2 is a function of the per-site per-generation mutation
rate p (Equation 1) and so we convert the per-hour mutation
rate (Table 1) to a per-generation rate via the cell-generation
time 1/4.

We simulate the evolution of influenza A virus using empiri-
cal parameters (Table 1) across a range of y values. For compari-
son, we use the same parameter values for the deleterious
mutation model implemented by Sanjudn (2012) (Equation 4)
and our within-host analytical model (Equation 3). Figure 3
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shows that all models capture the property that the evolution-
ary rate increases with an increasing mutation rate up to a
point, beyond which the evolutionary rate decreases as the pop-
ulation is overcome with deleterious mutations. This trend is
consistent with both empirical work and theoretical expecta-
tions (Orr 2000; Crotty, Cameron, and Andino 2001; Anderson,
Daifuku, and Loeb 2004; Bull, Sanjuan, and Wilke 2007; Sanjuan
2012). The location of the empirical data point for influenza
among the simulated points offers strong support for the
dynamics of our computational model. The output of the com-
putational model is based on externally estimated parameters
and is not fitted to the data point shown in Fig. 3.

Neither the deleterious mutation model (Equation 4) nor the
within-host analytical model (Equation 3) match the empirical
point perfectly. The deleterious mutation model underesti-
mates the simulated and empirical evolutionary rates, suggest-
ing that mutation rate alone may not be enough to generate an
accurate prediction. Our analytical model overestimates the
evolutionary rates suggesting that although it does not quite
capture reality, within-host dynamics are likely to play a role in
the evolutionary rate of viruses. Note that this overestimation is
eliminated when a simplified version of our computational
model is implemented, that is, when the proportion of mutants
for a single infection is used to calculate the substitution rate
instead of the probability of fixation across a simulated trans-
mission chain (Supplementary Figure 1). A key observation is
that the analytical model and simulations yield a sharper peak
in the evolutionary rate than the deleterious mutation model.
This can be attributed to the inclusion of within-host dynamics;
when R¥" is high, it can compensate to some degree for an in-
creasing mutation rate.

3.3 The effect of within-host dynamics

In the comparison between models in Fig. 3, only the mutation
rate is varied; however, the mutation rate is an intrinsic compo-
nent of RY" (Equation 8). Higher values of y lead to lower RY®
due to the increased burden of deleterious mutations.

To understand the effect of other viral within-host parame-
ters on the evolutionary rate Keomp, we held the mutation rate
constant and varied R§™ in our computational model by chang-
ing the individual parameters: virus infection rate $, virus pro-
duction rate p, virus clearance rate c¢, and initial target cell
population T, (Equation 8). By varying one parameter at a time,
we see that the evolutionary rate increases with increasing RY™
and approaches a plateau (Fig. 4). The evolutionary rate Keomp is
most sensitive to RY? when RY™ is low; here, a slight change in
R¥M can have a larger impact on the probability that a mutant
survives stochastic loss (1 — 1/R¥"). We find that varying a spe-
cific parameter does not change the relationship, suggesting
that Rg’h is an effective predictor of Kcomp—that is, no particular
combination of parameters (i.e., §, p, ¢, and Ty) drives the result.
We also used three different mutation rates (1 x 107, 2.3 x 107>,
and 5 x 107° (s/n/c)) to demonstrate that large RY® values can
facilitate high rates of evolution at high mutation rates.

The finding that evolutionary rate can increase with an in-
creasing RY™ indicates that the mutation rate may not be suffi-
cient in explaining Kcomp. The prediction of the deleterious
mutation model yields a constant K value in Fig. 4 (solid line) be-
cause it does not explicitly account for R§™. Note that the higher
estimates of K in the analytical model are consistent with other
parameter sets (see Fig. 3, with evolutionary rate plotted on a
log scale compared with Fig. 4 plotted on a linear scale.).
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Figure 2. Fitting the within-host analytical and deleterious mutation models to virus data. (A) Log-scale mean evolutionary rates against mutation rates for each
Baltimore class (data from Sanjuédn (2012) and Sanjuan et al. (2010), respectively). (B) Evolutionary rates against mutation rates for individual viruses. For both (A) and
(B), the solid line represents the deleterious mutation model prediction, while the dashed line indicates the prediction from our within-host analytical model. TMV, to-
bacco mosaic virus ((+)ssRNA); PV-1, poliovirus-1 ((+)ssRNA); HCV, hepatitis C virus ((+)ssRNA); FLUVA, influenza A virus ((-)ssRNA); HIV, human immunodeficiency vi-
rus (retro); HSV1, herpes simplex virus 1 (dsDNA); AHBV, avian hepatitis B virus (retro).
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Figure 3. Between-host evolutionary rate K (s/n/y) against the mutation rate
u (s/n/c) for influenza A virus (Ry™® = 11.1). Data simulated using the computa-
tion model (open points, Keomp) predicted by the deleterious mutation model
implemented by Sanjuan (2012) (solid line, Kq4¢1), and predicted by our within-
host analytical model (dashed line, Kyy). Lines represent values calculated
from the models based on independently estimated parameters and are not
fit to the simulation (open) points. The simulation data closely approximates
the reported value of influenza A virus evolutionary rate (closed point).
Parameter values for both the computational and analytical models are de-
fined in Table 1.

3.4 The effect of between-host dynamics

The computational model allows us to investigate the effect of
inoculum size on the rate of molecular evolution. Under neutral
theory, the rate of molecular evolution is a function of the
mutation rate but not the population size; thus the inoculum
size is not expected to influence K. We used different inoculum
sizes to simulate the evolution of influenza A virus along a
transmission chain. We find that the mean evolutionary rate is
not affected by inoculum size (Vi,o.), which is consistent with

standard neutral theory (Fig. 5). Note that under the nearly neu-
tral theory, evolutionary rate is influenced by the effective pop-
ulation size because it determines the proportion of effectively
neutral mutations. However, we do not alter the underlying mu-
tation rate, thus preserving the expectation of an evolutionary
rate independent of population size.

4 Discussion

The high mutation rates of viruses provide an opportunity to
study evolutionary processes on short timescales and to exam-
ine the factors that cause variation in evolutionary rates.
Sanjuan (2012) showed that while the neutral theory can
explain the evolutionary rates seen for slowly mutating viruses,
the linear relationship between mutation rate and substitution
rate breaks down as mutation rates increase. In populations of
viruses with high mutation rates—in particular, RNA viruses—
transient deleterious mutations are common and slow down
the fixation of neutral or advantageous mutations (Sanjuin
2012). Population genetics theory suggests that in addition to
the mutation rate and the presence of deleterious mutations,
population dynamics can also influence neutral substitution
rates (Waxman 2012). In line with this idea, we have shown
here that within-host dynamics are a key determinant of the
rate of viral evolution. We quantified this by developing a model
that incorporates both deleterious mutations and within-host
dynamics parameterized explicitly through the within-host
basic reproductive number R§? (Equation 3).

Reanalysis of Sanjudn’s (2012) data provides some support
for our model, but more data are required for a definitive analy-
sis. At this stage, accurate empirical measurements are unfortu-
nately difficult to come by. Methods of mutation rate
estimation are variable and complex (Sanjudn et al. 2010), while
rates of molecular evolution are difficult to estimate precisely
because they are variable (Jenkins et al. 2002). Additionally, em-
pirical measurements of R¥" values are scarce due to current
methods for obtaining within-host parameter values requiring
patient data in a controlled setting (Perelson et al. 2005; Baccam
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et al. 2006; Perelson and Ribeiro 2008). Despite the paucity of
empirical estimates, we expect viruses to have different R}™ val-
ues based on variation in life cycle properties such as the repli-
cation rate, the type and number of target cells available, the
efficiency of cell entry, the rate at which the immune system
recognizes and clears infection, how transmission occurs, and
the number of virions required to establish an infection.

In comparison to the deleterious mutation model used by
Sanjudn (2012), our model incorporating viral growth can main-
tain the linear relationship between mutation rate and evolu-
tionary rate for longer as the mutation rate rises. This is
because the viral growth rate can compensate for a higher dele-
terious load and thus modulate the height of the peak. This flex-
ibility in our model is important because it allows us to make
different predictions for individual viruses, particularly about
their potential peak evolutionary rate. We note that in
Sanjudn’s (2012) analysis, the observed rates of evolution for
three out of four viruses (hepatitis C virus, poliovirus 1, and in-
fluenza A virus) are higher than the predicted curve under the
deleterious mutation model (Fig. 3 in Sanjuan (2012)). This re-
sult is also consistent with theoretical models of deleterious
mutations in growing populations (Waxman 2011; Gazave et al.
2013). We note that model fitting to Sanjudn’s data involved as-
suming common RY" values and similar levels of deleterious
mutations, which may in fact vary considerably between vi-
ruses. However, in the case of influenza A virus for which pa-
rameter estimates are available (Baccam et al. 2006), we find
that our computational model matches the empirical value
more closely, suggesting that including within-host dynamics is
a step in the right direction.

Our results describing the effect of the within-host reproduc-
tive number have several implications for virus evolution. First,
the effect of R§™ depends on the mutation rate, so that in-
creased RY™® will not necessarily result in a substantial increase
in evolutionary rate. It is only at high mutation rates that an in-
crease in R} will increase the evolutionary rate (Fig. 4). Second,
viruses that evolve a greater RY? can tolerate higher mutation
rates; an increase in R§™ may be a prerequisite for evolving
higher mutation rates. While we do not consider the evolution
of mutation rates in this study, the virus growth rate and the
mutation rate are recognized to be intimately connected (Furio,
Moya, and Sanjudn 2007; Belshaw et al. 2008; Regoes, Hamblin,

and Tanaka 2013). It would be interesting to experimentally test
whether there is strong selective pressure to maintain R¥" once
viruses reach the maximum mutation rate value before passing
the extinction threshold. Third, our results suggest a possible
source of variation in rates of viral molecular evolution, namely
variation in the within-host reproductive value. Such variation
may contribute to the departure from a strict molecular clock
observed among numerous viruses (Jenkins et al. 2002).

Within-host factors other than R¥" may influence the rate of
virus evolution. The importance of understanding the role of
within-host replication is highlighted by a recent study by Hicks
and Duffy (2014) which found that viruses infecting more rap-
idly proliferating epithelial cells have higher rates of evolution.
Interpreting cell tropism in the context of R¥" lends support to
the importance of within-host dynamics because different tar-
get cells have different turnover rates (Savage et al. 2007) and
may have varying cell infection and death rates, and impose
varying rates of virus production and clearance.

Between-host factors can also influence evolutionary rates
(Berry et al. 2007; Frost and Volz 2010; Scholle et al. 2013). For
example, human T-cell lymphotropic virus type II has different
rates of evolution depending on whether it was spread by
needle sharing or by breast-feeding (Salemi et al. 1999).
Additionally, different rates of evolution were found for flavivi-
ruses, depending on whether they were tick- or mosquito-borne
(Zanotto et al. 1996). Other studies have found that HIV-1 evolu-
tionary rates are influenced by whether transmission occurs by
intravenous drug use or spread by heterosexual individuals,
with the former resulting in lower rates and mixed epidemics
resulting in intermediate rates (Berry et al. 2007). Additionally,
the within-host evolutionary processes differing between het-
erosexual and male-male partners were found to influence be-
tween-host evolutionary rates, with the latter group resulting in
higher rates (Vrancken et al. 2015). Here, we have examined one
aspect of transmission, namely the inoculum size. Inoculum
size plays a relevant role in the spread of viruses, with small in-
oculum sizes representing transmission of aerosolized viruses
(e.g. sneezing), while large inoculum sizes represent spread via
direct contact (e.g. mucus). Note, however, that this is not al-
ways the case: HIV is spread by direct contact but most infec-
tions are established by a single infectious unit or a small
number of variants (Abrahams et al. 2009). The population bot-
tleneck imposed by the inoculum may influence traits under
selection such as virulence (Bergstrom, McElhany, and Real
1999). Here, however, it has no influence over the rate of neutral
evolution.

For future work, it may be useful to include different trans-
mission modes, which have been implicated in affecting rates
of evolution. In a comprehensive study of how transmission
mode influences the rate of synonymous substitutions in RNA
viruses, it was found that viruses that spread rapidly among
hosts (i.e., aerosol, contagious, and fecal-oral routes) had higher
substitution rates than viruses that spread by blood, bite, or vec-
tor routes (Hanada, Suzuki, and Gojobori 2004). In fact, arbovi-
ruses have been found to have significantly lower substitution
rates than directly transmitted viruses (Hanada, Suzuki, and
Gojobori 2004; Combe and Sanjuadn 2014; Hicks and Duffy 2014).
Combe and Sanjudn (2014) suggest that this difference may be
explained by a lower viral mutation rate in insect cells com-
pared with mammalian cells, but it may be interesting to exam-
ine the contribution of additional factors.

To better understand the rate of evolution in chronic viral
infections, our model would need to be modified appropriately
because it specifically models acute infections. For example, in


b
-
to 

an extended model, early clearance would not occur and
between-host transmission would occur any time rather than
at the peak of infection. In this case, we expect R¥" not to play a
strong role in the rate of evolution. The relationship between
within-host and between-host evolution has previously been
modeled to understand virus evolution, particularly for such
chronic infections (see Pybus and Rambaut 2009). Chronic vi-
ruses may have very different rates of evolution at the within-
host and between-host scales (Gray et al. 2011; Lythgoe and
Fraser 2012). Traits favored at the within-host level may result
in reduced fitness at the between-host level. For example, in
HCV, an increased viral replication rate enhances fitness at the
within-host level but slowly replicating viruses lead to more
secondary infections and have a higher epidemiological fitness
(Luciani and Alizon 2009). Similarly, as within-host competition
increases in HIV infections, the epidemiological fitness
decreases (Lythgoe, Pellis, and Fraser 2013).

Our computational model can be extended in a number of
other ways. It would be interesting to consider the effect of se-
lection in more depth by including adaptive mutations (i.e., pos-
itive selection). More complex immune responses to infection
within a single host could be considered with different levels of
immunity for different hosts in a transmission chain. Our
modeling framework can be used to explore other viruses and
compare the outcomes to influenza A virus. Overall, viral infec-
tion dynamics are highly complex and there is considerable
scope for future work. The models presented in this article pro-
vide a basis for understanding how some aspects of the viral life
cycle affect evolutionary dynamics.

Data availability

All data used for model fitting can be found in Sanjuan et al.
(2010) and Sanjuan (2012). C code and output for the computa-
tional model are available upon request.
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Supplementary data is available at VEVOLU Journal online.
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