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A B S T R A C T   

Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, 
because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not 
impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology 
provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition 
from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new so
lutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the 
treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies 
applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for 
future research in this field.   

1. Introduction 

With rapid growth of the global population and material consump
tion, discharge of various pollutants continues to increase, and envi
ronmental pollution has become one of the most severe issues affecting 
human health [1]. Pollutants refer to substances that can cause envi
ronmental pollution and have an adverse effect on the environment if 
discharged into the atmosphere, water or soil during human daily life 
[2]. Environmental pollution have direct damage to the ecological sys
tems, such as water deterioration, forest destruction, and desertification, 
or indirect damage to human [3]. Among the major environmental 
pollutants, aromatic compounds are of great concern because they will 
be persistent in the environment due to the high thermodynamic sta
bility of the benzene group. How to degrade these pollutants is currently 
a key challenge in environmental pollution control. Thanks to diverse 
types of microbial metabolism, most pollutants can be degraded or 
transformed by certain microorganisms [4]. The microbial degradation 
of aromatic pollutants has been developed for 40 years and has always 
been a hot topic in environmental protection (see Fig. 1). Naturally 
genes involved in aromatic pollutants degradation generally exist in 
clusters and are often located on the plasmids with low copy numbers 

and large sizes [5]. The gene clusters comprise catabolic genes encoding 
enzymes, transport genes encoding proteins for uptake of the aromatic 
compounds, and regulatory genes responsible for regulating the 
expression of both catabolic and transport genes. Gene clusters from 
Comamonas sp. strain E6 can degrade o-phthalate, terephthalate, and 
isophthalate via the protocatechuate 4,5-cleavage pathway [6,7]. Mi
crobes generally only contain the catabolic genes for a single compound, 
and the degradation of multiple compound pollutants by a single strain 
is currently not well resolved [8]. Microbial remediation has been 
drawing increasing attention in the recent years, especially in the rising 
era of synthetic biology. Synthetic biology provides a strategy to 
construct engineered microorganisms that can monitor, aggregate and 
degrade environmental pollutants, with the aim to eliminate water 
pollution, remove garbage, and reduce air pollution [9]. So far, there are 
only limited reports on the construction of microorganism to degrade 
aromatic compounds using synthetic biology [10]. However, many ef
forts have been made to degrade 1,2,3-trichloropropane via synthetic 
biology [11], and synthetic biosensors for rapid detection of water 
contaminants [12], these successful cases bring us the hope to the 
degradation of aromatic compounds. Here, we review current progresses 
in aromatic compounds degradation using microbes and present a 
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proposal for the rational design and construction of microbial strains to 
degrade aromatic compounds (see Fig. 2). Such a proposal usually fol
lows the Chassis selection-Pathway design-Metabolism 
optimization-Tolerance engineering cycle, where iteration of each cycle 
leads to the improvement of the microbes. 

2. Synthetic biology conception of microbial remediation 

In the field of synthetic genomics, the de novo design and synthesis 
capabilities of DNA sequences have evolved from a single gene to the 
entire microbial genome. Viruses, prokaryotic genomes and eukaryotic 
chromosomes have been successfully synthesized in the past research 
studies [13–28]. At the same time, the existing enabling technology 
allows introduction of complex exogenous metabolic pathways into 
specific microbial hosts with particular modifications to achieve specific 
goals. In recent years, with the rapid development of synthetic biology, 
microbial remediation has been drawing increased attention and shown 
the great potential in degrading pollutants compared to traditional 
physical and chemical methods. In the last decade, by the means of 
“top-down” and “bottom-up” engineering approaches, synthetic biology 
has been proven to be a very powerful tool in utilization and modifi
cation of existing genetic materials to redesign organisms with desired 
abilities. Taking “Design-Build-Test-Learn (DBTL)” biological engineer
ing cycle, the standardized and universal biological component modules 
could be designed, constructed, integrated, tested and optimized in 
simple chassis cells to achieve efficient operation of a quantitative and 
controllable platform-based new living system [29]. The reconstruction 
of synthetic pathways in dedicated chassis cells for natural product 
production (e.g. artemisinin, avermectin, resveratrol, or penicillin) has 
been successfully conducted in this strategy [30]. These results have not 
only achieved great academic and commercial success, so that more and 
more researchers are focusing on the synthesis of medicines and raw 
materials (see Table 1). However, synthetic biology is not yet widely 
applied in engineering the catabolism pathways in microbes so far. 
Therefore, the field of synthetic biology is increasingly expanding from a 
focus on natural products to pollutants degradation by engineering 
microbes, and artificially synthesized catabolic pathways provide a new 
approach for environmental bioremediation [33]. 

2.1. Designing and constructing microbes 

Aromatic pollutants may be selected as a degradation target for their 
various toxic effects on humans. For a given aromatic pollutant, the first 
step towards heterologous degradation is selection of an appropriate 

host species in which to engineer the pathway. Within a species, use of 
previously developed strains that efficiently degrade pollutants can 
greatly accelerate progress. And lastly, within a given strain, pre
liminary engineering of the host prior to incorporation of heterologous 
enzymes can facilitate implementation of the non-native pathway in a 
new context. 

2.1.1. Choosing a suitable chassis 
The construction of microbial chassis and their application as arti

ficial cell factories are important factors in microbial degradation [34], 
that is to identify a suitable host organism. Many microbes have been 
used as chassis for natural product production, whereas most studies 
focused on model organisms such as Escherichia coli and Saccharomyces 
cerevisiae [35]. There is still an urgent need for identification of new 
chassis. In nature, microbial strains capable of degrading persistent 
organic pollutants include Pseudomonas [36], Bacillus [37], Sphingomo
nas [38], Rhodococcus [39], Mycobacterium [40], and Dehalococcoides 
[41]. Table 2 provides a partial list of microbial strains containing 
certain gene clusters degrading aromatic pollutants. Using a host which 
naturally is capable of degrading the target pollutant, even not so effi
ciently, could greatly accelerate the engineering progress. Fortunately, 
Pseudomonas putida KT2440 belongs to this type of starting chassis 
strains. Pseudomonas putida is a gram-negative bacterium that can be 
encountered in diverse ecological habitats. This ubiquity is traced to its 
remarkably versatile metabolism, adapted to withstand physicochem
ical stress, and the capacity to thrive in harsh environments in which 
pollutants often exist. The genome-editing methods have been well 
established in Pseudomonas putida KT2440, which has been considered 
as a robust metabolic chassis for catabolic pathway assembly. To date, 
many biodegradation pathways have been integrated into the chromo
some of Pseudomonas putida KT2440 [53–55]. In addition, V. natriegens 
recently emerges as a promising chassis for aromatic pollutants degra
dation because of its fastest-growing and non-pathogenic nature [56, 
57]. A number of tools for genetic manipulation have been established in 
V. natriegens. These methods comprise DNA transformation methods, 
such as electroporation, heat-shock transformation and conjugation, as 
well as genome engineering techniques, such as recombineering, mul
tiplexed genome editing via natural transformation and CRISPR-Cas9. 
Clearly, V. natriegens could reduce the cycle time drastically, thereby 
accelerating the optimization of catabolic pathways and protein 
expression (enzymes). 

2.1.2. Engineering a strain with known heterologous pathways 
Following selection of a suitable host, engineering a strain with the 

Fig. 1. Development of microbial degradation of aromatic pollutants. 
In the 1980s, it was an exciting era of microbe discovery; In the 1990s, naturally occurring microbes already have considerable ability to remove many environmental 
pollutants; In the 2000s, sanger sequencing leads to the discovery of microbial degradation gene clusters; In the future, the emerging of synthetic biology technologies 
brings a new artificial microorganism for pollutants degradation. 

L. Xiang et al.                                                                                                                                                                                                                                    



Synthetic and Systems Biotechnology 6 (2021) 153–162

155

Fig. 2. Schematic overview of synthetic biology strategies applying to microbial degradation of aromatic pollutants (Naphthalene, Toluene, and Phenanthrene). The 
workflow includes chassis selection, pathway design, metabolism optimization, and tolerance engineering. (A) Not just model microbes but also some noncon
ventional microbes can serve as a chassis cell for the degradation of pollutants, such as Naphthalene, Toluene, and Phenanthrene. When selecting a host, consid
eration should be given to the characteristics of the pollutant, the chassis’s genetic manipulation tools, genetic databases, and growth characteristics. (B) 
Biodegradation pathways containing gene clusters can be integrated into the chromosome or plasmid, and pathway design rely on genome data (gene clusters), 
mining tools (KEGG and MRE), and engineering tools (DNA assembly, CRISPR/Cas editing and Enzyme engineering). (C) Recently developed synthetic biology tools 
will accelerate the optimization of catabolism pathways for pollutants (AI-based design parts). (D) Most of the efforts in tolerance engineering have relied on 
improving the native gene function (nah,tmo, xyl and phn) and capabilities of a chassis cell. 

Table 1 
Progress of synthetic biomanufacturing of aromatic compounds.  

Compound Production host Titer (g/L) Refs 

Salicylate E.coli 11.5 [31] 
4-hydroxybenzoate E.coli 1.82 [31] 
3-hydroxybenzoate E.coli 2.18 [31] 
4-aminobenzoate E.coli 2.88 [31] 
2-aminobenzoate E.coli 1.83 [31] 
L-tyrosine E.coli 1.62 [31] 
Phenol E.coli 1.1 [31] 
Muconic acid E.coli 3.1 [31] 
Cinnamaldehyde  S. cerevisiae 0.0003 [32] 
Cinnamyl alcohol  S. cerevisiae 0.0278 [32] 
Hydrocinnamyl alcohol  S. cerevisiae 0.1131 [32]  

Table 2 
Function gene clusters in the aromatic pollutants degradation of microbes.  

Substrates Degrading 
genes 

strains Refs 

Benzene bnz Rhodococcus opacus [42] 
Toluene tmo, xyl Pseudomonas stutzeri [43] 
Xylene xylCMABN Halioxenophilus aromaticivorans [44] 
Phenylpropanoid phd Corynebacterium glutamicum [45] 
Phenol phe Pseudomonas pseudoalcaligenes 

C70 
[46] 

Chlorophenol cph Arthrobacter chlorophenolicus [47] 
Nitrophenol hnp, mnp, pnp Cupriavidus sp. strain CNP-8, 

Burkholderia sp. Strain SJ98 
[48–50] 

Naphthalene nah Pseudomonas putida [51] 
Phenanthrene phn Burkholderia sp. strain RP007 [52]  
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degradation pathways will be designed and executed. When designing 
the suitable degradation pathway for a specific pollutant, the process of 
engineering microbial host would be enhanced if we could identify all 
involved enzymes in the natural degradation pathway. The natural mi
crobial degradation pathways of aromatic compounds mainly involve 
anaerobic reduction dehalogenation, aerobic dehalogenation, ring- 
opening mineralization and other co-metabolic steps. Certain anaer
obic microbes can obtain energy to support their growth and metabolism 
through the reductive dehalogenation process using dehalogenase in 
dehalogenation respiratory reaction, which is an exothermic reaction 
[58]. Generally, the most common hexachlorobenzene degradation 
pathway is anaerobic reduction due to halogenated aromatic com
pounds resistance to aerobic degradation. DDT is converted into DDD 
(Dichlorodiphenyldichloroethane) through removing one chlorine atom 
by the microbes, which requires transition metal and metal complexes as 
reducing agents [59]. DDD undergoes reductive dechlorination to 
generate dichlorodiphenylmethane, and then the benzene ring is 
cracked under aerobic conditions. The biodegradation of hexa
chlorocyclohexane also occurs under anaerobic conditions [60]. The 
anaerobic dehalogenation reaction of aromatic compounds catalyzed by 
microbes is a relatively slow process, which takes up to 7–12 weeks. 
After reductive dehalogenation by microbes, the compounds with 
increased hydrophilicity can become electron donors and enter the mi
crobial aerobic degradation process. Followed further dehalogenation 
and ring-opening decomposition into small molecules, they subse
quently enter the tricarboxylic acid cycle and are oxidized into water 
and carbon dioxide [61,62]. In contrast, the microbial aerobic degra
dation reaction of aromatic compounds is a relatively short-period 
process and does not produce toxic byproducts, which is the major 
way of aromatic compounds mineralization. The microbial aerobic 
degradation pathway of organochloride pesticides (OCPs) is to hy
droxylate OCPs to form the intermediate product chlorinated catechol, 
which ring-opening and dechlorinating by lactonization [63,64]. 
Naphthalene is catalyzed by dioxygenase and dehydrogenase to produce 
1, 2-dihydroxynaphthalene, and further generate salicylic acid, which is 
then converted to catechol under the action of salicylic acid hydroxy
lase, or converted into gentisic acid under monooxygenase, and finally 
undergoes ring-opening degradation [65]. To access degradation po
tential, an innovative discovery pipeline was developed to systemati
cally annotate the degradation abilities of microbes using comparative 
metabolomics and heterologous gene expression. With this platform, 
microbial genomic DNA fragments containing intact biodegradation 
gene clusters are inserted into yeast artificial chromosomes (YACs) and 
are used to transform a yeast host to discover new degradation products. 
For example, we can design a naphthalene metabolism pathway from 
catabolic gene clusters through synthetic biology methods, and recon
structed, cloned, and heterologously expressed a naphthalene gene 
clusters using YACs. Then we employ the YAC-metabolite scoring 
strategy to identify the degradation product of this gene clusters and 
probe its biodegradation pathway. The core metabolic networks of 
model organisms (yeast) are well-characterized and can be used to guide 
overexpression and knockout modifications for metabolic burden and to 
address common challenges (e.g., feedback inhibition or other meta
bolic regulation). The opd gene and the p-nitrophenol degradative op
erons were introduced into P. putida KT2442 to construct a 
parathion-degrading pathway [66]. In the practical application example 
of synthetic biology for the degradation of 1,2,3-trichloropropane, a 
complete, artificial five-step catabolic pathway has been engineered into 
Escherichia coli, which assembled haloalkane dehalogenase from Rho
dococcus rhodochrous, haloalcohol dehalogenase and epoxide hydrolase 
from Agrobacterium radiobacter [67]. Then computational models was 
used to identify bottlenecks in the catabolic pathway and employed 
forward engineering to improve 1,2,3-trichloropropane degradation 
[68]. 

2.1.3. Identifying enzymes and redesigning novel metabolic pathways 
A novel candidate degradation pathway is first outlined through 

selection of stepwise chemical intermediates leading from host meta
bolism to the target compound (e.g., H2O, CO2), followed by selection of 
enzymes to carry out each specified reaction. For certain pollutants, 
detailed knowledge of the native catabolic pathway is available and can 
be used to outline all intermediates and enzymes in a pathway, facili
tating pathway engineering into a heterologous host. In such cases, 
candidate pathway design, enzyme selection, and pathway testing all 
offer distinct challenges which can be solved by computational tools. At 
the design stage, mining the gene clusters involved in aromatic com
pounds degradation is the first step in the construction of engineering 
microbes. Many degradation gene clusters have been identified in 
known metabolic pathways (see Table 2), such as nah, xyl, tmo, phn, bnz, 
phe etc. In addition, some computational tools, KEGG and MRE, can be 
used for genome mining and pathway prediction involved in aromatic 
compounds decomposition. After chosen degrading enzymes, the 
enzyme gene clusters are synthesized in the form of functional clusters 
and introduced into a suitable chassis to achieve the goal of degradation 
of pollutants. Therefore, there are growing interests in engineering mi
crobes through molecular biology manipulation to construct novel 
pathways with improved catalyzing activities for pollution removal. 
With recent advances in high-throughput screening methods, decom
position enzymes receive increased attention in environmental reme
diation. Enzymes are very promising in the degradation of pollutants 
(see Table 3). Among them, oxidoreductases and hydrolases are most 
studied enzymes for degrading pollutants owing to their high catalytic 
activity and ability to target a broad range of organic pollutants [83]. 
Oxidoreductases typically include peroxidases, laccases, and oxy
genases. Peroxidases, such as manganese peroxidases, horseradish per
oxidases, chloroperoxidases, and lignin peroxidases have been used in 
environmental bioremediation [84,85]. Laccase, which is a 
copper-containing oxidase, is capable of exercising one-electron oxida
tion of a broad range of pollutants using oxygen as the electron acceptor, 
and can degrade various persistent organic pollutants such as 
endocrine-disrupting chemicals, pesticides, and drugs [86,87]. In order 
to adapt to natural environment, Phanerochaete chrysosporium secretes 
lignin degrading enzymes, including laccase, lignin peroxidase, and 
manganese peroxidase, which can oxidize and degrade refractory 
organic pollutants [88]. In addition, the monooxygenase cytochrome 
P450 in Pleurotus ostreatus also plays a role in degrading pollutants [89]. 
Hydrolases usually break the large molecule into two small ones, which 
include proteases, esterases, amylases, lipases, acylases, and 

Table 3 
Enzymes for contaminant degradation.  

Enzymes Species Substrate Refs 

Oxidoreductases 

Peroxidases Ganoderma lucidum IBL- 
05 

Dye [69] 

Trametes pubescens strain 
i8 

Lignin [70] 

Phanerochaete 
chrysosporium 

Tetracycline and 
Oxytetracycline 

[71] 

Ganoderma lucidum Phenol [72] 
Oxygenases Pseudomonas putida G786 Chlorofluorocarbons [73] 
Laccases Trametes villosa Bisphenol [74] 

Coriolus versicolor Lignin [75] 
Trametes versicolor Dye [76] 
Bacillus subtilis Polycyclic aromatic 

hydrocarbons 
[77] 

Hydrolases 

Lipase Candida rugosa Polyurethane [78] 
Rhizomucor miehei Slop oil [79] 
Lactobacillus sps. Poly (ε-caprolactone) [80] 

Cellulase Bacillus megaterium Cellulose [81] 
Protease Myrothecium verrucaria Poultry feather [82]  
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phosphatases [90]. These enzymes with high potential in degradation of 
pollutants have been applied in engineering microbes. Recently, Tour
nier V et al. reported that engineered enzyme was able to break down 
200 g of polyethylene terephthalate in 10 h [91]. In engineered Pseu
domonas putida KT2440 for 1,2,3-trichloropropane bioremediation, a 
catabolic pathway composed of haloalkane dehalogenase, haloalcohol 
dehalogenase and epoxide hydrolase was integrated into the chromo
some for the conversion of 1,2,3-trichloropropane into glycerol. In 
addition, combinatorial engineering strategies were implemented to 
improve 1,2,3-trichloropropane mineralization, such as enhancing the 
carbon flux by deleting the glpR gene, improving the oxygen seques
tering capacity through the heterologous expression of hemoglobin, and 
further increasing intracellular energy charge (ATP/ADP ratio) and 
reducing power (NADPH/NADP + ratio) by deleting flagella-related 
genes [92]. 

2.2. Optimizing the degradation system to boost efficiency by biological 
parts 

Many microorganisms often have only one or none catabolic path
ways, so they cannot completely mineralize aromatic pollutants. To 
solve this problem, one strategy in synthetic biology is to construct 
engineered strains which could be used as a bioremediation agent for 
aromatic compounds under complex environmental conditions. For 
example, one uses computational tools to analyze the genes, enzymes 
and metabolic pathways of degrading microorganism in different aro
matic pollutants, and artificially synthesizes various biological parts 
[93], such as regulatory elements, transporters and stress-resistant ele
ments (Table 4), and then integrate them into a microbial chassis to from 
a new metabolic network to achieve complete mineralization of re
fractory aromatic pollutants. When a fine-tuning of gene expression is 
required, the best approach is synthetic biology, which is the recon
struction, rewiring, and complete de novo design of transcriptional 

networks. Applications range from enhancing the understanding of gene 
regulatory and transcriptional mechanisms to the highly controlled 
expression of complete metabolic pathways. Orthogonal systems for 
heterologous protein expression as well as for the engineering of syn
thetic gene regulatory circuits in hosts depend on synthetic transcription 
factors and corresponding cis-regulatory binding sites. Synthetic pro
moters and corresponding synthetic transcription factors can be used to 
regulate the expression of heterologous genes without extensively 
relying on endogenous host transcription factors. A tunable and 
reasonable range of expression strengths is desired, especially when 
novel catabolic pathways are to be implemented. For example, precise 
control of key pathway enzymes can help maximize pollutant degrada
tion, and synthetic promoters, terminators and ribosome-binding site 
can be inserted into the gene clusters in the right place to drive gene 
expression in host (Fig. 2B). 

2.2.1. Regulatory elements 
Synthetic biology builds artificial biological systems, and regulatory 

elements are the basis in this system, such as promoters, terminators, 
operators, open reading frame and ribosome-binding site (RBS). Gene 
expression is the basis for achieving gene function, especially for 
enzyme. The classic strategy to regulate this process is to construct an 
inducible expression system using the repressor protein and operon, 
such as IPTG system with lac operon in Escherichia coli. However, arti
ficial systems constructed directly from natural elements often have the 
disadvantages of higher leakage expression, low induction efficiency, 
and poor stability for protein [109]. To overcome these bottlenecks, 
redesign artificial biological elements is highly desired [110]. We can 
develop high-performance biological elements, and standardize them to 
improve gene expression strength and stability, and achieve ‘plug and 
play’ goal. Samin et al. [94] reported that an engineered haloalkane 
dehalogenase with the constitutive dhlA promoter for improving 1,2, 
3-trichloropropane degradation activity in Pseudomonas putida MC4. 
Gong et al. [96] improved keratinase expression via promoter engi
neering strategies for degradation of feather wastes. In addition, the 
AI-assistant designed promoters have already been experimentally 
demonstrated to be functional in Escherichia coli [95]. Synthetic termi
nator also performs the same function as natural terminator [98]. A 
native promoter of the bph operon was replaced by a constitutive pro
moter through homologous recombination, which greatly improved the 
biphenyl and polychlorinated biphenyl degradation activity of Pseudo
monas sp. strain KKS102 [111]. Curran [97] et al. synthesized a panel of 
short terminators with stronger termination efficiency, which have been 
applied in modulating gene expression in yeast. 

2.2.2. Transporting elements 
In the previous studies, there are few reports on the transporting 

elements involved in microbial remediation process. The transport 
proteins HBT1/HBT2, as a benzoic acid transporter, involved in the 
catabolic degradation of hydroxyaromatic compounds in the pathogenic 
yeast Candida parapsilosis [102]. Xu et al. reported that the gentisate 
transporter GenK was carried in the metabolism of gentisic acid by 
Corynebacterium glutamicum [103]. In addition, the transport proteins, 
which involve in the bioremediation process, have been found from 
Corynebacterium glutamicum. It also contains 4-hydroxybenzoic acid, 
protocatechuic acid, vanillic acid, and benzoic acid transporters [104]. 

2.2.3. Other elements 
In addition to regulatory elements and transporters, there are other 

biological parts including mobile genetic elements, plasmids, genomic 
islands, and transposons. In order to quickly adapt to the stimuli and 
changes in the environment, microorganisms have gradually evolved the 
ability to obtain mobile genetic elements from surroundings [105], so 
that microbes have more and stronger catabolism capabilities for pol
lutants. For example, the resulting catabolic plasmids obtained certain 
genes encoding enzyme for the degradation of contaminants such as 

Table 4 
Boosting degradation efficiency by biological parts.  

Name Description Refs 

promoters An engineered haloalkane dehalogenase with the 
constitutive dhlA promoter for improving 1,2,3- 
Trichloropropane degradation activity in 
Pseudomonas putida MC4. 

[94] 

The AI-designed promoters are experimentally 
demonstrated to be functional in E. coli. 

[95] 

Efficient keratinase expression via promoter 
engineering strategies for degradation of feather 
wastes. 

[96] 

terminators A panel of short (35–70 bp) synthetic terminators 
can be used for modulating gene expression in 
yeast. 

[97] 

Synthetic terminator performs the same function 
as natural terminator. 

[98] 

RBS Automated design of synthetic ribosome binding 
sites to control protein expression. 

[99] 

RBS optimization of the key enzymes was used for 
improving the synthesis of natural product. 

[100,101] 

transport 
proteins 

Transporters for benzoic acid, 4-hydroxybenzoic 
acid, protocatechuic acid and vanillic acid. 

[102–104] 

mobile genetic 
elements 

Many catabolic genes have been found adjacent to 
mobile genetic elements. 

[105] 

genomic islands The genomic islands-deleted Pseudomonas putida 
KT2440 was an optimum chassis for improving 
the γ-hexachlorocyclohexane and 1,2,3-trichloro
propane biodegradation pathways. 

[106] 

plasmid Catabolic plasmids that encode genes for the 
degradation of contaminants such as toluene, 
naphthalene, phenol, and nitrobenzene. 

[107] 

transposons Transposons for the catabolism of toluene 
(Tn4651, Tn4653, Tn4656), chlorobenzoate 
(Tn5271), chlorobenzene (Tn5280), benzene 
(Tn5542) and naphthalene (Tn4655). 

[108]  
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toluene, naphthalene, phenol, and nitrobenzene [107]. Deletion of some 
genes can also improve the degradation rate, and the genomic 
islands-deleted Pseudomonas putida KT2440 was an optimum chassis for 
improving the γ-hexachlorocyclohexane and 1,2,3-trichloropropane 
biodegradation pathways [106]. Transposons are small pieces of DNA 
that can transpose through either RNA or DNA intermediates, and used 
for the catabolism of toluene (Tn4651, Tn4653, Tn4656), chlor
obenzoate (Tn5271), chlorobenzene (Tn5280), benzene (Tn5542) and 
naphthalene (Tn4655) [108]. Though microbes showed the advantages 
in naturally degrading pollutants, they have intrinsic disadvantage that 
they usually possess the metabolic gene only for one specific compound. 
Although their advantages are obvious and proof-of-concept have been 
demonstrated successful in the laboratory, construction of engineered 
strains is time consuming, and it is difficult for a single strain to degrade 
compound pollutants. Thus, few products have entered the market so 
far. However, taking advantages of synthetic biology, we are confident 
that current technical challenges in microbial remediation will be 
overcome in the future. 

2.3. Strategies to improve the chassis tolerance 

The discovery and application of stress-resistant elements is an 
effective method to enhance the viability of microbes under stress 
conditions and thereby improve microbe’s pollutant degradation ca
pacity [112]. The long-term domestication of environmental microbes 
under natural conditions has a special and efficient stress response 
mechanism. Therefore, the tolerance elements in such microbes have 
wider application. However, information related to the unique stress 
response mechanism in environmental microbes remains unclear. 
Although the microbial degradation mechanism of organic pollutants in 
the environment has been studied, such as nicotine and biphenyl 
[113–115], it is still unknown why natural microbes usually appear in 
harsh environments with high temperature, high salt, strong acid and 
alkali, or hypertonicity, which exhibit increased metabolic burden and 
inhibited growth of natural microbes. In practical, engineered strains 
would also encounter various stresses, such as extreme temperature and 
pH, oxidative pressure, organic solvents, osmotic pressure, high con
centrations of substrates, toxic products or byproducts etc. The meta
bolic activity of these strains under such stressful growth conditions is 
severally inhibited or even completely lost, causing dramatically drop
ping pollutants degradation efficiency. In the case of pollutants, the 
harsh environment toxicity is one of the main bottlenecks in achieving 
optimal pollutant degradation. Since overcoming sensitivity to the 
environment often requires engineering tolerance mechanisms, this 
specific area of host optimization has recently been termed tolerance 
engineering. Prominent categories of genes used in tolerance engineer
ing include chaperones, membrane-modifying enzymes, redox enzymes, 
transport pumps, and transcriptional factors. For instance, chaperones 
specifically have emerged as a powerful category of proteins that bestow 
tolerance and often improve degradation efficiency of engineering 
strains. CRISPRi and Red/ET recombineering allow us to target multiple 
genes simultaneously and provide powerful new approaches in toler
ance engineering. Genome shuffling across multiple strains with desir
able phenotypes, coupled with strong screens, can be a potential 
approach to obtain degrading strains. Adaptive evolution is also an 
effective method to obtain engineering strains under specific environ
mental conditions, which is used to screen microorganisms resistant to 
environmental stresses. 

The tolerance of chassis cells against the harsh environments can be 
rationally enhanced if the tolerance elements present in natural mi
crobes are well understood. Tolerance elements are closely related to the 
cell structure, physiological properties, metabolic pathways and regu
latory processes of cells, such as cell wall and cell membrane, efflux 
pump, heat shock proteins, and compatible solutes (Table 5). 

2.3.1. Cell wall and cell membrane 
The cell wall is an important biological barrier separating microor

ganisms from the external environment. The murA gene encoding UDP- 
N-acetylglucosamine enolpyruvyl transferase, is known to catalyze the 
biosynthesis of peptidoglycan, which is an important cellular compo
nent of cell wall in prokaryotes [124]. Yuan et al. reported that over
expression of peptidoglycan biosynthesis murA2 gene from the 
Lactobacillus plantarum could enhance Escherichia coli’s tolerance to al
cohols [125]. On the other hand, cell membrane is the major target 
under external stress conditions, and engineering membrane and 
cell-wall is a good strategy for developing industrial strains with 
increased stress tolerance [126,127]. Cellular analysis and comparative 
transcriptomics revealed that Candida tropicalis raised the tolerance to 
phenol through improvement of cell wall resistance [128]. 

2.3.2. Efflux pump 
Efflux pumps are membrane transporters localized in the cyto

plasmic membrane of various cells, such as TtgABC, TtgDEF, TtgGHI and 
SrpABC in Pseudomonas Putida and AcrAB-TolC in E. coli. AcrAB-TolC is 
involved in the tolerance towards olefin compounds in Escherichia coli 
[129]. The EmhABC in Pseudomonas fluorescens LP6a effluxes phenan
threne and anthracene, and the presence of EmhABC decreased the ef
ficiency of phenanthrene biodegradation. However, the EmhABC is 
involved in naphthalene tolerance and increases the efficiency of 
naphthalene metabolism in Pseudomonas fluorescens LP6a [130]. 

2.3.3. Heat shock proteins 
Heat shock proteins, as chaperones, play an important role in stress 

tolerance, and are induced or overexpressed for degradation and reac
tivation of damaged proteins. Suo et al. reported that overexpression of 
GroESL increased the butyric acid tolerance of Clostridium tyrobutyricum 
ATCC 25755 [131]. The genes groES and groEL from Clostridium aceto
butylicum ATCC 824 were introduced into Clostridium beijerinckii NCIMB 
8052, which enhanced its tolerance to ferulic acid [132]. Over
expressing three heat shock protein genes hsp18.5, hsp18.55 and hsp19.3 
in Lactobacillus plantarum strain WCFS1 improved adaptation to heat, 
cold, and solvent tolerance [133]. Growth competition experiments 
showed that HspX, Y and Z of Pseudomonas putida are involved in 
tolerance against the toxic effects of phenol, and the novel heat shock 
operon hspXYZ, which is a part of the chaperone network could mediate 
stress tolerance in the natural environment [122]. 

2.3.4. Compatible solute 
Accumulation of compatible solutes such as trehalose, proline, and 

betaine in the cell can balance intracellular and extracellular osmotic 
pressure, and maintain the metabolic activity of the cell to adapt to 
stress environment. Betaine, a regulator of osmosis, is synthesized by 
aldehyde dehydrogenase, and heterologous expression of the betaine 
aldehyde dehydrogenase gene from Ammopiptanthus nanus facilitated 
engineered Escherichia coli to confer high heat and salt tolerance under 
high temperature at 55 ◦C and 700 mM NaCl [134]. Intracellular proline 

Table 5 
Examples of tolerance engineering.  

Tolerance 
mechanism 

Proteins Species Stress 
resistance 

Refs 

chaperones GroESL Clostridium 
acetobutylicum 

n-Butanol [116] 

transporters RbsB 
MsmK 

Lactococcus lactis Acid [117] 

membrane Med2 Candida glabrata Acid [118] 
MgtA E. coli Succinic acid [119] 

efflux pumps RcdA E. coli Limonene [120] 
regulators MetR E. coli 3-Methyl [121] 
heat shock 

proteins 
HspX, Y, Z P. putida Phenol [122] 

compatible solute RHD Martelella AD-3 saline [123]  
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protects yeast from damage caused by freezing and ethanol, and is 
important for breeding stress-tolerant industrial yeast strains [135]. A 
phenanthrene-degrading strain, Martelella AD-3, was isolated from high 
salt environments. Label-free proteomics revealed that Martelella relied 
on aromatic ring-hydroxylating dioxygenase and dihydrodiol dehydro
genase to degrade phenanthrene, and accumulated compatible solutes 
for resistance to salt stress [123]. 

3. Challenges and future directions 

Microbial remediation plays a critical role in the treatment of envi
ronmental pollution. Due to the diversity and complexity of environ
mental pollution, the tolerance of microbes under pollution condition 
has become the bottleneck for bioremediation. The application of syn
thetic biology in microbial remediation is still in its infancy but already 
offers exciting possibilities for creating a cleaner, safer, healthier envi
ronment. Many challenges remain to be resolved before the engineered 
cells can be used to treat environmental pollution in practice. For 
example, there may be multiple pollutants in the environment, which 
makes microbes unable to execute the expected degradation function. 
Since after a microorganism targeting a single pollutant is released into 
the environment, other pollutants and environmental factors may affect 
the growth and degradation speed and efficiency of this microorganism. 
We need to create a new design model that takes uncertainty into ac
count and allows us to gradually increase the complexity when 
mimicking the natural environment. In order to solve the problem of in- 
situ treatment of aromatic pollutants, we proposed the following tech
nical routes: (i) Mine genes in microbial systems, such as degradation 
genes, transport genes, molecular switches, and stress resistance genes; 
(ii) Rationally design degradation pathways and systematically optimize 
high-efficiency degradation components; (iii) Improve the movement, 
aggregation, interaction of synthetic microorganisms and the ability to 
adapt to complex environments; (iv) Design, assemble multifunctional 

metabolic networks, and use artificial intervention to build a synthetic 
biological system for the aromatic pollutants degradation; (v) Develop 
artificial degradation metabolic systems in in-situ treatment of pollut
ants and apply it in actual industrial application. 

The more enzymatic steps in a heterologous pathway, the more 
formidable the challenge for construction of the pathway, and discovery 
of the requisite enzymatic components. Advances in synthetic genomics, 
DNA sequencing, synthesis and assembly make it possible to redesign 
and artificially synthesize whole genomes, and these enabling technol
ogies have allowed the discovery and engineering of increasingly long 
catabolism pathways. In the future, the fast development of synthetic 
biology has stimulated the reconstruction of cellular components to 
create synthetic microorganisms for solving the problem of pollutants 
(Fig. 3). By complying with the central dogma, which operates microbial 
catabolism, synthetic biology researchers have reprogramed some or
ganelles, such as nucleus, ribosomes, and mitochondria, and have 
created synthetic microorganisms which can serve as smart chassis for 
pollutant degradation. 

However, commercial applications remain limited due to compli
cated biodegradation processes, and synthetic biology also brings many 
uncertainties to microbes. First, existing synthetic biology tools may not 
be suitable for new chassis and need to be further optimized. Second, 
considering that bioremediation will ultimately be performed in an open 
environment, the ecological safety of engineered bacteria must be 
considered, such as possibility of introducing mobile genetic elements 
and antibiotic resistance marker genes into the environment. Third, the 
change in microbial metabolic pathway, will release unknown toxic 
products for the environment, indirectly acting as opposition microbial 
candidates. 
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