
Introduction

MicroRNAs represent a class of endogenous single-stranded non-
coding small RNAs of about 22 nucleotides. It is currently
assumed that the human genome encodes approximately 1000
microRNAs that are involved in the regulation of about 30% of all

genes [1]. Until now, 678 human microRNAs have been identified
and annotated in the miRBase database release 11.0 at the Sanger
Institute (http://microrna.sanger.ac.uk/).

MicroRNAs are important regulators in gene expression at
the transcriptional and translational levels [2] and seem to play
an important and possibly a dominant role in tumour biology.
The first description of microRNAs linked to human disease
identified the down-regulation of single microRNAs in B-cell
chronic lymphocytic leukaemia [3]. Subsequent studies proved
the deviant expression of microRNAs in many different tumours
in comparison with normal tissues of lung [4], pancreas [5],
colon [6], breast [7], liver [8], prostate [9] or other solid
tumours [10]. Also, an association of microRNAs with tumour
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stage and grade, prognosis of disease and progression under
therapy or survival of patients was demonstrated for various
cancer types [11, 12]. These studies constitute the promising
potential of microRNAs as tumour classifiers and as prognostic
and predictive biomarkers [5, 13, 14]. Recently, we summarized
the current state of knowledge about microRNAs in urological
tumours [15]. However, although renal cell carcinoma (RCC) is
1 of the 10 most frequent tumours [16], the published data on
microRNA in human RCC are surprisingly sparse [17, 18].
There were a few microarray-based studies including expres-
sion data from kidney only in comparison with other organs but
not to RCC [10, 19–21]. During the revision of this paper, a
report on microRNAs on RCC was published [22]. On the other
hand, there are reports on the role of microRNAs in non-
tumoural kidney pathology. For example, 20 differently
expressed microRNAs were recently identified in acute rejection
after renal transplantation [23].

This lack of data prompted us to (i ) determine and compare
the expression profiles of microRNA in RCC in comparison with
normal renal tissue, (ii ) explore possible associations between
microRNA expression patterns and clinico-pathological data, (iii )
test the potential clinical usefulness of microRNAs as diagnostic
and prognostic markers and (iv ) provide a reliable differential
microRNA profile as a solid basis for further functional studies.
This study focussed on clear cell RCC (ccRCC), the most com-
mon (75% of cases) renal cancer sub-type with the most serious
prognosis [24].

Materials and methods

Patients and tissue samples

The study was successively performed on two independent sample sets.
Set one included 12, set two 72 kidney tissue sample pairs (malignant and
non-malignant tissue samples from the same kidney) derived from adult
patients undergoing radical nephrectomy at the University Hospital Charitè
between February 2004 and August 2008 (Table 1). The use of the patient
material for the research study was approved by the Medical Ethics
Committee of the Charité. All tumour types were ccRCC. Tumour classifi-
cation and stage were established according to the 2002 TNM System and
the 2004 WHO Classification (Table 1).

RNA extraction

Matched malignant and non-malignant specimens from the same kidney
were collected in RNAlater Stabilization Reagent (Qiagen, Hilden,
Germany). Total RNA including microRNAs was isolated using the
miRNeasy Mini Kit (Qiagen). RNA yield and quality were determined with
a NanoDrop 1000 Spectrophotometer (NanoDrop Technologies,
Montchanin, DE) and a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA).

Table 1 Clinico-pathologic characteristics of the clear cell renal cell
carcinoma patients studied in two sample sets

Patient characteristics Set 1 Set 2 Both sets

Age (median years; range) 63 66 65 (40–92)

Sex (number)

Male 7 50 57

Female 5 22 27

Tumour characteristics

Pathological stage

pT1 2 41 43

pT2 1 2 3

pT3 9 26 35

pT4 - 3 3

Grading

G1 - 6 6

G2 9 54 63

G3 3 9 12

G4 - 3 3

Surgical margins

R0 12 61 73

R1 - 5 5

R2 - 4 4

Rx - 2 2

Lymph node stage

N0 10 31 41

N1 - - -

N2 1 3 4

Nx 1 38 39

Metastases

M0 8 61 69

M1 4 11 15

Follow-up (mean month) 27.4 25.1 26.0

Survival

Deceased 4 18 22

Alive 8 54 62

Abbreviations: T, tumour classification; G, histopathological grading; 
N, lymph node classification; M, metastasis classification; R, surgical
margin classification.



3920 © 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

MicroRNA microarray experiments

Microarray experiments were carried out as one-colour hybridizations on
human catalog 8-plex 15 K microRNA microarrays (AMADID 016436) from
Agilent encoding probes for 470 human and 64 human viral microRNAs
from the Sanger database v9.1. Analyses were done initially with 12
matched malignant and non-malignant sample pairs of set 1 (Table 1). All
reaction steps were carried out after the miRNA Microarray System
Protocol Version 1.0, April 2007 (Agilent). An amount of 100 ng total RNA
was dephosphorylated with Calf Intestine Alkaline Phosphatase (GE
Healthcare, Chalfont St. Giles, Buckinghamshire, UK), denaturated with
DMSO and used as RNA acceptor in a T4 RNA ligase–mediated reaction
with the RNA donor 3�,5�-cytidine bisphosphate having a single Cy3 label
attached to the 3� phosphate of the nucleotide (Cy3-pCp). The labelling
reaction was performed at 16�C for 2 hrs, then column purified, dried down
and re-suspended in blocking and hybridization buffer. Labelled samples
were prepared after the Agilent Microarray Chamber Kit instruction
hybridized at 55�C for 20 hrs and microarrays were washed, scanned and
processed according to the supplier’s protocol. After scanning at 5-µm res-
olution with DNA microarray laser scanner (Agilent), features were
extracted with an image analysis tool version A.9.5.3 using default proto-
cols and settings (Agilent). Data analysis was carried out on the Rosetta
Resolver System Version 7.0. Intensity experiments were created with the
Intensity Experiment Manager from Resolver by combining all hybridiza-
tions derived from malignant and non-malignant samples, respectively. 
‘In silico’ ratio profiles and ratio experiments were generated by the Ratio
Experiment Wizard after selection of either malignant and non-malignant
samples derived from individual patients or by combining malignant and
non-malignant intensity experiments.

Microarray data discussed in this publication have been deposited in
NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)
and are accessible through GEO Series accession number GSE12105.

MicroRNA real-time quantitative RT-PCR analysis

A two-step RT-PCR was performed using TaqMan MicroRNA Assays
(Applied Biosystems, Foster City, CA) that detect only mature microRNAs.
Reverse transcription was performed in 15 �l using 10 ng of total RNA,
0.25 mM of each dNTP, 50 U AB Multiscribe Reverse Transcriptase, 25 nM
microRNA RT-primer, 3.75 U AB RNase Inhibitor and 1� RT-buffer. The
PCR reaction volume of 10 �l included 1 �l microRNA-specific cDNA, 1�

TaqMan Universal PCR Master Mix NoAmpErase UNG and gene-specific
1� TaqMan MicroRNA real-time PCR-Assay solution. The PCR was per-
formed according to the suppliers instructions on an AB 7900HT instru-
ment with SDS Software version 2.1.1 (Applied Biosystems) in 384-well
plates for sample set 1 and on a LightCycler 480 with Software version
1.3.0 (Roche Applied Science, Mannheim, Germany) in 96-well plates for
sample set 2. All PCR reactions were carried out in triplicates. Each PCR
run included a no template control with water instead of cDNA. To minimize
the analytical variation, paired malignant and non-malignant samples were
always analysed on one PCR plate. Expression values were calculated
using a relative standard curve. Standard curves of diluted microRNA-spe-
cific cDNAs as well as of snRNA RNU6B from pooled kidney tissues were
generated and the PCR efficiencies calculated. The undiluted sample was
set 100. The resulting standard curve was given in arbitrary units. In each
PCR run, diluted secondary standards were used for calibration in the gen-
erated gene-specific standard curves. The analytical reliability of PCR
methods was characterized by the efficiency of amplification between 1.96

and 2.03 and the precision of repeated measurements tested with
snRNU6B and miR-16 (n � 10) of 0.43% and 0.75% at threshold cycles
(Ct values) of 29.76 � 0.13 and of 23.08 � 0.17, respectively.

All microRNAs were normalized to the expression of the endoge -
nous reference gene snRNA RNU6B, which was stably expressed in non-
 malignant and malignant samples. The ratio of target microRNA expression
to RNU6B expression was calculated for each individual sample, and the
 multiples of the ratios in malignant tissue samples compared with non-
malignant matched samples were tested for significance.

Prediction of microRNA targets

Prediction of putative target genes was performed using the three 
programs: TargetScan 4.2 (http://www.targetscan.org), miRanda (http://
microrna.sanger.ac.uk) and PictTar (http://pictar.mdc-berlin.de).

Statistical analysis

For validation of microarray results, a two-sample Student’s t-test was
applied on all intensity profiles, although a one-sample t-test was applied
to the ratio experiments comprising individual patients. Principal compo-
nent analysis (PCA) was used for data reduction on either experiment or
reporter level. Cluster analysis was done on features or reporter levels with
the 2D Matrix Wizard from Resolver with an agglomerative algorithm using
average link as heuristic criteria and Manhattan distance as metric similar-
ity measure on both intensity profiles and ratio experiments. All analysis
criteria were combined making the microarray results extremely robust
and highly reproducible.

For validation of RT-PCR results, statistical analyses were performed with
software packages SPSS version 15.0 (SPSS Software, Munich, Germany)
and GraphPad Prism for Windows, version 5.01 (GraphPad Software, San
Diego, CA). Depending on the distribution of data (D’Agustino-Pearson
omnibus normality test), statistical comparisons were done with parametric
(paired or un-paired Student’s t-test) or non-parametric tests (Wilcoxon test
for paired samples; Mann–Whitney test). Correlations were characterized by
the Spearman’s correlation coefficient rs. P 	 0.05 values (two-sided) were
considered as statistically significant. Receiver operation characteristics
(ROC) analysis was used to characterize the capacity of a single microRNA or
a combination to discriminate between malignant and non-malignant tissue
samples. Cox regression analysis was performed to assess the validity of
microRNAs as prognostic markers of survival of RCC patients.

Sample size determinations and power calculations were performed using
the softwares GraphPad Statmate for Windows, version 2.0 (GraphPad
Software) and MedCalc, version 10.0.2 (Mariakerke, Belgium) on the basis of
a two-sided alpha error of 5% and a power of 80% (Supplemental Text S1).

Results

Characteristics of RNA samples

The mean A260/A280 ratio of all 84 RNA samples amounted to 1.99 �
0.04 (arithmetic mean � S.D.), and the RNA integrity values
obtained by Bioanalyzer 2100 measurements were 8.2 � 0.85
(range: 6.0–9.2).
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MicroRNA microarray expression data

Analyses were done initially with 12 matched malignant and non-
malignant sample pairs of set 1 (Table 1). The stepwise statistical
analyses of microarray intensity data are described and shown in
the Supplemental Figure S1 as well as in Figs. 1 and 2. At first all
single 24 intensity profiles were analysed, then the 12 intensity
ratios of malignant to non-malignant samples and the pres-
ence–absence of sample signal intensities. As a result of these 
calculations and by application of a Venn diagram, 134 signal

features were detected as differently expressed microRNAs and
were used for further analysis.

This group of 134 candidate reporters was used for PCA on
intensity profile levels (Fig. 1) to compress the multi-dimen-
sional data to lower dimensions. The PCA-plot visualizes that all
tissue samples were classified into two distinct groups. Only two
samples, a non-malignant and a malignant sample, showed an
exception (Fig. 1).

Furthermore, a hierarchical 2D-cluster analysis was applied
without any statistical cuts on all 24 intensity profiles and 134

Fig. 1 Principal Component Analysis (PCA) for distinct separation of malignant and non-malignant sample groups. Intensity profiles of 12 different
ccRCC tissue samples and matched non-malignant samples were reduced to lower dimension by PCA, a mathematical procedure that transforms a 
number of variables in expression data into a number of uncorrelated variables called principal components. PCA was used to identify uncorrelated 
variables and differences between sample groups and identified those components that explain the maximum amount of variance possible in the 
linearly transformed components between the sample groups. The dot plot illustrates the dimensionality reduction in intensity profiles by retaining those
characteristics of the data set that contribute most to its variance, by keeping lower-order principal components and ignoring higher-order ones. Thereby
two distinct and separated groups of samples were identified, namely, ccRCC tissue samples in green (on right) and non-malignant samples in pink 
(on left). All samples were grouped accordingly, except one non-malignant tissue sample (light pink dot on right) and one malignant tissue sample (light
green dot on left).
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reporters derived from the primary data-analysis steps. The 
Z-score was cropped to �2 to 
2 in the heat map (Fig. 2).
MicroRNA reporters are displayed as dendrogram on top, and
intensity profiles are displayed as tree on the left of the heat map.
The heat map depicts two clearly separated clusters. One group
corresponds to up-regulated (red squares) reporters, and the
other cluster matches to down-regulated (green squares)
reporters in ccRCC samples, respectively. Note that the 134
reporters comprise only 76 different human microRNAs. Most
samples (left side of the heat map) were grouped correctly into
two well-separated ccRCC and non-malignant clusters. Only two
misclassified samples were detected. Again, one non-malignant
sample (named 3NN) was found in the ccRCC cluster, and one
sample (named 14NC) was sorted into the non-malignant cluster.
Hence, the cluster analysis was in complete concordance with the
PCA analysis.

To render the analysis more robust and to reduce the high
number of differentially identified results, reporters comprising
individual microRNAs were combined into single values, and a
cut-off at two-fold absolute change between ccRCC and matched
non-malignant ratio experiments was applied. We identified 33
microRNAs that were regulated over two-fold change (Table 2).
Among this result, 13 microRNAs were over-expressed, and 
20 microRNAs were down-regulated in malignant ccRCC samples
compared with the matched non-malignant samples.

MicroRNA RT-PCR expression analysis

Based on the microarray results, we examined the expression level
of 16 (highlighted in grey) out of the 33 microRNAs with RT-PCR
(Table 2). These microRNAs showed at least three-fold changed
expression between malignant and the non-malignant samples by
microarray analysis. For that purpose, two RNA pools from the
same 12 matched RNA samples used for the microarray experi-
ments were prepared mixing equal parts. In addition, we deter-
mined miR-16, RNU6B, RNU19 and Z30 as possible reference
genes [25]. We excluded microRNAs from further quantifications
if Ct values were �35 in one of the both pooled samples
(microRNAs in italic letters in Table 2). Therefore, only 10
microRNAs (microRNAs in bold letters in Table 2) were quantified
in the individual samples. The RNU19 as possible reference gene
showed a Ct difference of 0.98 between both pools of the malig-
nant and non-malignant samples and was also excluded from the
following analyses. The Ct differences for miR-16, RNU6B and
Z30 were 	0.5 between the pool samples and were furthermore
investigated by PCR.

Subsequently, two sample sets were analysed with RT-PCR:
set 1 for validation of the microarray results and set 2 as an inde-
pendent control (Table 1). In set 1, we used the same 12 sample
pairs as used in the microarray analysis and carried out quantita-
tive PCR of 11 microRNAs, RNU6B and Z30. The miR-16 expression

Fig. 2 Two-dimensional cluster analysis across intensity profiles (on left) and microRNA reporters (on top). The Matrix Viewer displays hierarchical trees
(on top and left) and a heat map (bottom). In the heat map, the log(ratio) data threshold was set at �2 to 
2, and items are depicted by colour 
saturation with green squares encode for down-regulation and red items encode for up-regulated microRNAs. The dendrogram on the left comprises
12 different ccRCC tissue samples and matched non-malignant samples. The dendrogram on top depicts microarray probes that were identified with
high significance. Note that depicted cluster results were generated on reporter level, as individual microRNAs were represented redundantly on the
array with different sequences.
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was significantly higher expressed in malignant samples com-
pared with matched non-malignant samples (mean � S.D.: 21.84 �
11.8 versus 12.45 � 4.8; P � 0.016; Wilcoxon test) and was 
considered as regulated microRNA, thus inappropriate for proper
normalization. From the two studied snRNAs RNU6B and Z30, the
expression of RNU6B did not differ between the sample pairs 
(P � 0.315), whereas that of Z30 did (P � 0.049). Thus, RNU6B
could be used as reference gene for normalization of microRNA
data. The multiples of the ratios target microRNA to RNU6B of
malignant samples to non-malignant sample pairs were calculated
(Fig. 3, left blank columns � set 1). The PCR results were in
accordance with the microarray results since the same
microRNAs were up- or down-regulated.

To improve the accuracy and reliability of the study accord-
ing to a sample size and power calculation (Supplemental Text
S1), we included 72 additional sample pairs as set 2 (Table 1).
The six strongest up- and down-regulated microRNAs of 
the mentioned microRNA panel (miR-210, �155, 224 and 
miR-514, �141, 200c) were quantified in all samples by PCR,
the others were measured in 12 random kidney sample pairs of
this set 2 (Table 1; Fig. 3). Multiples of the relative microRNA
expression in the malignant to the non-malignant sample pairs
were not significantly different between both study sets (P �

0.230–0.977; Mann–Whitney test) and were therefore combined
for further calculations. All 11 microRNAs were differently
expressed in malignant and non-malignant samples (P 	

0.0001; Wilcoxon test). The down-regulation of miR-141 and
miR-514 in tumour samples was more distinct as the strongest
up-regulation of miR-210.

Correlation between microRNAs 
and clinico-pathological data

The microRNA expression ratios were correlated among each
other (Supplemental Table S1). The statistically significant
Spearman’s correlation coefficients ranged from rS � �0.186
(miR-155 to miR-200c; P � 0.041) to rS � 0.940 (miR-200b to
miR-200c; P 	 0.001).

No significant associations between all microRNAs and the
pathological factors were found (G-groups: P � 0.176–0.869; 
pT-groups: P � 0.186–0.846; M-groups: P � 0.093–0.830;
Mann–Whitney test).

ROC analyses were performed to characterize the ability of
microRNAs to discriminate malignant and non-malignant samples
(Table 3). The high areas under the ROC curves and the overall
correct classification rates illustrate the high discriminatory power
of the microRNAs. Particularly, the combination of miR-141 and
miR-155 resulted in a 97% overall correct classification of sam-
ples (Table 3). However, none of the microRNAs was associated
with the survival of the patients (P � 0.203–0.864; Cox regression
and Kaplan–Meier analysis), whereas the classical risk factors as
tumour stage, grade and size were verified in our study group
(Supplemental Table S2).

MicroRNA Fold changes † P values

Over-expressed

1‡ hsa-miR-122a 41.4 	0.0001

2‡ hsa-miR-18a* 6.8 0.0023

3‡ hsa-miR-452* 5.1 0.0001

4‡ hsa-miR-224 4.4 	0.0001

5‡ hsa-miR-210 4.3 0.02479

6‡ hsa-miR-34b 3.5 	0.0001

7‡ hsa-miR-155 3.2 0.01047

8 hsa-miR-34a 2.9 	0.0001

9 hsa-miR-130b 2.8 	0.0001

10 hsa-miR-21 2.5 0.0009

11 hsa-miR-142–5p 2.2 0.0171

12 hsa-miR-193a 2.2 	0.0001

13 hsa-miR-18a 2.0 	0.0001

Under-expressed

1‡ hsa-miR-184 �12.1 0.0004

2‡ hsa-miR-514 �9.5 0.0366

3‡ hsa-miR-200c �8.8 0.0075

4‡ hsa-miR-510 �8.1 0.0012

5‡ hsa-miR-141 �7.3 0.0262

6‡ hsa-miR-138 �5.2 0.0078

7‡ hsa-miR-429 �3.4 	0.0001

8‡ hsa-miR-200b �3.1 	0.0001

9‡ hsa-miR-363 �3.0 	0.0001

10 hsa-miR-532 �2.7 	0.0001

11 hsa-miR-660 �2.7 	0.0001

12 hsa-miR-362 �2.7 	0.0001

13 hsa-miR-200a �2.6 	0.0001

14 hsa-miR-10a �2.5 	0.0001

15 hsa-miR-502 �2.3 0.0005

16 hsa-miR-204 �2.3 0.0065

17 hsa-miR-30a-3p �2.2 	0.0001

18 hsa-miR-500 �2.1 	0.0001

19 hsa-miR-30c �2.1 	0.0001

20 hsa-miR-30a-5p �2.0 	0.0001

Table 2 MicroRNAs differentially expressed in malignant to matched
non-malignant tissue samples of clear cell renal cell carcinoma
(microarray results)

Abbreviation: hsa-miR, Homo sapiens microRNA
† Mean fold changes of redundant microRNA sequences from 12 tissue
pairs (paired t-test). MicroRNAs (‡) showed at least three-fold
changed expressions between malignant and the non-
malignant samples by microarray analysis. MicroRNAs in italics
showed Ct values �35 in RT-PCR of the pooled samples from set 
1 and were excluded from further analyses (see text); microRNAs in
bold letters were studied with RT-PCR in the sets 1 and 2.
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Putative miRNAs target genes

The putative targets of the dysregulated microRNAs provides a
sound basis for further functional studies in ccRCC. For that pur-
pose, various in silico methods for target gene prediction using
different algorithms and ranking criteria have been developed
[26]. To demonstrate an example, the corresponding targets of
the strongest up- and down-regulated microRNAs were predicted
using the computational programs TargetScan, PicTar and
miRanda (Supplemental Table S3). Genes identified by at least
two of the three programs were considered [27]. For the up-
regulated miR-210 and miR-155, 10 and 163 putative targets
were identified, whereas 291 and 411 targets were found for the
down-regulated miR-141 and miR-200c, respectively. Out of
these potential 875 targets in total, 157 were commonly recorded
by all three algorithms.

Discussion

The limited number of known microRNAs makes their analysis
comparatively convenient, and a wealth of studies have attempted
to use microRNAs for diagnostic purposes to classify tumours [28,
29]. Although few cases of human clear cell renal cell carcinoma
(ccRCC) have already been included in comparative microRNA
studies, a larger series of renal tumours has not been profiled yet
[17, 30]. Nakada et al. [22] very recently published the microRNA
profiles from 16 ccRCC and 4 chromophobe RCC samples in com-
parison with those from 6 normal renal tissue samples.

We used an array-based screening step analysing 12 matched
pairs of histologically confirmed tumours with adjacent normal
tissue. To further validate the most significantly dysregulated

microRNAs, a complex three-step validation was conducted. The
first step was establishing stem-loop primer RT-PCR protocols
using pooled sample material for the 16 microRNAs with a two-
fold change (tumour versus normal) in the array profiles. We
found Ct values �35 for six microRNAs, which were therefore
excluded from further analysis. The next step was to measure all
11 (including miR-16) differentially expressed microRNAs in
those samples that had been subjected to array analysis.
Generally, a good concordance of both techniques was seen. The
third validation step was to confirm differential miRNA expression
in an independent test cohort. Importantly, the analysis of the test
set could fully reproduce the fold changes described in the train-
ing set, which clearly illustrates the high reproducibility of this
microRNA profile.

These data demonstrate the power of microRNAs to differenti-
ate between malignant and non-malignant tissue samples (Table 3).
Several single microRNAs like miR-200c and miR-141 classified
more than 90% of all samples correctly and the combination of the
two microRNAs miR-141 and miR-155 identified 97%. To clarify,
if this microRNA profile is specific to ccRCC, further analysis of
other solid tumours is mandatory and underway. Other studies
have demonstrated that microRNA profiles hold promise to clas-
sify tumours of uncertain histogenetical origin [31]. This is inter-
esting, for conventional mRNA profiling techniques have yielded
unsatisfactory results [32].

In a brief global assessment of our findings, we found more
microRNAs down-regulated (n � 20) than up-regulated (n � 13)
considering a fold change of two, which is in line with previous
studies [19, 22]. Also, the fold changes for the down-regulated
microRNAs were slightly higher than for up-regulated microRNAs,
which was particularly valid for miR-514 and miR-141.
Interestingly, Gottardo et al. [17] analysed miR-profiles of 20 renal
carcinomas and 3 non-matching normal renal tissues using an
array platform that represented 245 microRNAs and found only 

Fig. 3 Multiples of microRNA expres-
sion ratios in clear cell renal cell carci-
noma tissue samples compared with
matched non-malignant samples meas-
ured in two sample sets. The gene
expressions were normalized to RNU6B
expression. Data are given as means �
S.E.M. The left blank columns represent
the multiples of microRNA expressions
in RCC samples of set 1 and the right-
filled columns represent the multiples of
microRNA expressions in RCC samples
of set 2. No significant differences were
observed between all microRNAs of set 1
and set 2 (P � 0.230–0.977;
Mann–Whitney test), but all microRNAs
were significantly different between
malignant and non-malignant samples
(P 	 0.0001; Wilcoxon test).
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4 microRNAs significantly up-regulated in RCC (miR-28, miR-185,
miR-7–2 and let-7f-2) with rather low mean fold changes
(1.21–1.42), but no down-regulation of microRNAs. Also, there
was no overlap with our data, which might be attributed to the dif-
ferent array platforms. A significantly better concordance was
seen in comparison with the data of Nakada et al. [22], who used
the same array and RT-PCR platforms as in our study. Here, 5 out
of 15 down-regulated microRNAs were also among our list of
down-regulated microRNAs. An even higher overlap was seen in
the list of up-regulated microRNAs (five out of six). Also, no cor-
relation was seen of microRNA expression with nuclear tumour
grade, which we can confirm with our larger series of cases.

We can also confirm the strong down-regulation of miR-141,
which belongs to the miR-200 family. With the exception of miR-
200a, all of these are down-regulated in ccRCC and correlated to
each other, which hints at a co-regulation. Using the target predic-
tion softwares TargetScan, miRanda and PicTar and considering

the very stringent strategy of only common targets for the three
algorithms, the genes chromodomain helicase DNA-binding pro-
tein 9 (CHD9), embryonic lethal, abnormal vision Drosophila-like
2 (ELAVL2), oligodendrocyte transcription factor 3 (OLIG3) and
protocadherin-8 (PCDH8) were identified as putative targets of the
miR-141 and miR-200c (Supplemental Table S3). The relationship
between oncogenesis and ELAVL2 and PCDH2 was already proven
in other tumours but not in ccRCC [33, 34]. So far, CHD9 and
OLIG3 have not been related to tumourigenesis. Very recently,
Gregory et al. [32] linked down-regulation of the miR-200 family
together with miR-205 functionally with epithelial mesenchymal
transition (EMT). In cell models, down-regulation of miR-200a,
miR-200b and miR-205 led to a loss of the epithelial appearance
in favour of a mesenchymal phenotype, which could be reversed
by forced expression of miR-200a, miR-200b or miR-205 pre-
microRNAs. The strong down-regulation of these microRNAs in
ccRCC might be indicative of a raised propensity of tumour cells
to undergo EMT. This is not surprising because renal cell cancer
is a highly malignant neoplasm that often shows de-differentiated
areas with sarcomatoid features during tumour progression,
which defines EMT. Because markers of EMT have generally been
linked to more aggressive disease, they represent important can-
didates as novel prognostic markers.

Comparing our microRNA-profile of ccRCC with other solid
tumours, we found an unexpected overlap with hepatocellular car-
cinoma: miR-18 and miR-224 are up-regulated in both tumour
entities, whereas miR-200a is down-regulated. A mismatch is rep-
resented by miR-122, which is highly up-regulated in ccRCC but
reported lost in hepatocellular cancer [8, 35].

Among the list of differentially expressed microRNAs in ccRCC
we also identified miR-21, a microRNA that has been implicated in
blocking apoptosis in glioblastoma cells [36]. MiR-21 is also over-
expressed in breast cancer and promotes cell proliferation [37].
Inhibition of apoptosis is a hallmark of cancer [38], and likewise
up-regulation of miR-21 appears to be a microRNA-hallmark of
cancer because it has been found in breast, colon, endocrine neo-
plasms of the pancreas, lung, prostate and gastric cancer [5, 39].

Another microRNA from our profile commonly found up-regu-
lated in human tumours is miR-155. Coded by the gene BIC, which
cooperates with c-myc to induce lymphomagenesis in a chicken
model of lymphoma, miR-155 was the first microRNA that was
ascribed oncogenic properties [40]. Recent studies found miR-
155 highly up-regulated in lymphomas [41, 42] and various solid
tumours [4, 7, 43, 44]. A prognostic value of miR-155 has been
reported for non-small cell lung cancer [4]. However, having pro-
filed the six most differentially expressed microRNAs in a cohort
of 84 clinically well-characterized RCC cases without demonstrat-
ing any prognostic value of any microRNAs attenuates our opti-
mism to find novel prognostic markers using microRNAs.

The microRNA we found strongest up-regulated in ccRCC by
RT-PCR is miR-210. This finding is not completely unexpected
because the expression of miR-210 is strongly responsive to the
hypoxia-inducible factor-1alpha (HIF-1alpha) [45]. Moreover, a
majority of hereditary and sporadic clear cell carcinoma of the kid-
ney is caused by an inactivation of the Von Hippel-Lindau (VHL)

Table 3 Performance of microRNAs to discriminate between malig-
nant and non-malignant tissue samples from renal cell carcinoma

MicroRNA AUC†
Percentage of 

samples correctly
classified‡

Single

hsa-miR-200c 0.97 � 0.014 94

hsa-miR-141 0.97 � 0.015 93

hsa-miR-155 0.94 � 0.020 85

hsa-miR-210 0.94 � 0.019 85

hsa-miR-429 0.93 � 0.038 85

hsa-miR-224 0.92 � 0.025 86

hsa-miR-363 0.92 � 0.043 83

hsa-miR-514 0.90 � 0.025 84

hsa-miR-200b 0.90 � 0.047 75

hsa-miR-452* 0.83 � 0.059 77

hsa-miR-16 0.83 � 0.028 73

Combination§

hsa-miR-141 
 hsa-miR-155 0.98 � 0.012 97

Abbreviations: AUC, area under the receiver operation curve; hsa-miR,
Homo sapiens microRNA.
†AUCs were used as summary measures to characterize the differential
potential of microRNAs.
‡The overall correct classification was calculated by the binary logistic
regression analysis of the corresponding microRNAs or the marker
combination, respectively.
§Binary logistic regression analysis including all microRNAs and using
the backward elimination approach was applied to achieve the best
marker combination.
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tumour suppressor gene [46] that leads to an accumulation of
HIF-1alpha with subsequent activation of HIF target genes, includ-
ing miR-210 [45]. The VHL dependency of miR-210 induction has
been confirmed in cell line models of ccRCC [47]. Functionally,
miR-210 over-expression inhibits apoptosis in cancer cell lines
[45]. Recently, Ephrin-A3 has been shown a direct target of miR-
210 affecting the migration, survival, apoptosis of cells and possi-
bly modulating the angiogenic response to hypoxia [48]. Because
we have no data concerning the VHL mutation status of our
tumour cohort, we can only assume that the strong miR-210 up-
regulation we observed is caused by VHL inactivation that is
nearly endogenous to ccRCC. However, we could not show a prog-
nostic value of miR-210 as demonstrated for breast cancer [47].

We also identified specific microRNAs with a highly repro-
ducible dysregulation in ccRCC that have not been described
before and which could prove useful to differentiate solid tumours
and their metastases.

The prediction of the putative targets of the differentially
expressed microRNAs exemplified by the approach with the
strongest up- and down-regulated microRNAs (Supplemental
Table S3) showed that a single microRNA can affect hundreds of
genes. Thus, it is obvious that our profiling study as a first sys-
tematic investigation on microRNAs in ccRCC can only be consid-
ered as a basic, but essential step towards identifying the putative
functional role of microRNAs in this tumour entity. The newly
introduced method of microRNA induction or knockdown on a
proteome-wide scale could essentially support this aim [49].

Some limitations of this study should be mentioned and dis-
cussed. First, one critical point in each study is the number of
samples. A sound survival analysis to assess the prognostic value
of a marker generally requires a sample size and power calculated
tumour cohort. The number of samples examined in this study
based on a corresponding calculation (Supplemental Text S1)
were appropriate to identify prognostic risk factors in RCC patients
as shown by the survival data depending on the typical tumour
characteristics like tumour stage and grade. Thus, the critical point
of a limited number of samples is rather unwarranted. In addition,
the similar expression results obtained in the stepwise validation
procedure let us assume that the risk of type II error does not exist
in this study. Moreover, the probability of a type I error could be
excluded as far as possible because of the high significance level
of differential expressions of microRNAs between malignant and
non-malignant tissue samples (Fig. 3; P 	 0.0001). Second, the
current study is limited by the strictly conservative data-reduction
approach that used only microRNAs differentially expressed for at
least two-fold using the microarray analysis and three-fold using
the PCR data of the pooled samples from set 1. This approach was
deliberately pursued in order to discover very distinctly expressed
microRNAs in ccRCC. Third, this study was limited to the ccRCC
sub-type; the other histological sub-types should be profiled as
well in further studies. Fourth, the issue of appropriate reference
genes for the relative quantification of microRNA quantitative RT-
PCR data is up to now an open question [50]. To normalize the

microRNA RT-PCR data, we initially analysed the candidate house-
keeping genes RNU6B, RNU19, Z30 and miR-16 that were also
used by others [32, 50–53]. Only RNU6B was stably expressed in
both normal and tumour compartments. RNU6B is a small nuclear
RNA with 106 nucleotides in contrast to the microRNAs with about
22 nucleotides. However, it is obvious that its similar expression
in both sample groups ensures a more accurate normalization
than microRNAs like miR-16.

In conclusion, this comprehensive study of microRNA profiles
in human ccRCC provides plenty of new and valuable data and
information concerning the differential expression of microRNAs.
The microRNAs identified in this study might open up new thera-
peutic options for ccRCC, which poorly responds to conventional
chemotherapy. Targeting microRNAs directly with antisense
nucleotides, for example, by using so-called antagomirs that rep-
resent chemically engineered anti-sense nucleotides, can silence
endogenous microRNA expression [54]. This novel approach
appears promising and clearly warrants intense study.
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