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Meditation has shown to benefit a wide range of conditions and symptoms, but
the neural mechanisms underlying the practice remain unclear. Magnetic resonance
imaging (MRI) studies have investigated the structural brain changes due to the
practice by examining volume, density, or cortical thickness changes. However, these
studies have focused on adults; meditation’s structural effects on the adolescent
brain remain understudied. In this study, we investigated how meditation training
affects the structure of the adolescent brain by scanning a group of 38 adolescents
(16.48 ± 1.29 years) before and after participating in a 12-week meditation training.
Subjects underwent Training for Awareness, Resilience, and Action (TARA), a program
that mainly incorporates elements from mindfulness meditation and yoga-based
practices. A subset of the adolescents also received an additional control scan 12 weeks
before TARA. We conducted voxel-based morphometry (VBM) to assess gray matter
volume changes pre- to post-training and during the control period. Subjects showed
significant gray matter (GM) volume decreases in the left posterior insula and to a lesser
extent in the left thalamus and left putamen after meditation training. There were no
significant changes during the control period. Our results support previous findings that
meditation affects regions associated with physical and emotional awareness. However,
our results are different from previous morphometric studies in which meditation was
associated with structural increases. We posit that this discrepancy may be due to the
differences between the adolescent brain and the adult brain.

Keywords: meditation, adolescent brain, gray matter, voxel-based morphometry, MRI

INTRODUCTION

Meditation is a mind-body practice that has become increasingly popular both recreationally and
clinically (Goyal et al., 2014). It can be defined as a form of mental training that aims to improve
one’s psychological capabilities and it encompasses multiple practices, most notably mindfulness
meditation (Ospina et al., 2008; Tang et al., 2015). Overall, meditation’s extensive health
benefits are well-documented. In addition to reducing stress (Grossman et al., 2004), mindfulness
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meditation has demonstrated efficacy in treating multiple
conditions including substance abuse (Carim-Todd et al., 2013),
pain management (Cherkin et al., 2016; Nascimento et al., 2018),
hypertension (Park et al., 2014), anxiety (Zeidan et al., 2014),
depression (Kasala et al., 2014), and offering preventative effects
in a healthy population (Wolsko et al., 2004; Barnes et al., 2008).
However, the specific neural mechanisms of the practices’ broad
range of benefits remain unknown.

Mindfulness meditation has received major attention in
neuroscience research. It can be described as ‘‘non-judgmental
attention to present-moment experiences’’ (Ospina et al.,
2008). A proposed mechanism for the practice is that it
works through a combination of enhanced self-regulation,
including attention control, emotion regulation, and self-
awareness. In general, there are two distinct regulation strategies
(Chiesa et al., 2013). The first is ‘‘top-down,’’ where active
reinterpretation of stimuli modifies emotional impact (Gross,
1998). The second strategy is ‘‘bottom-up,’’ where emotional
regulation is achieved through direct modulation of brain regions
associated with emotion-generation (Chambers et al., 2009;
Westbrook et al., 2013).

Much of this evidence comes from functional and structural
neuroimaging studies, typically employing magnetic resonance
imaging (MRI). Structural studies often use voxel-based
morphometry (VBM) to investigate changes in gray matter (GM;
Fox et al., 2014). This well-established method entails a whole-
brain structural analysis that examines local changes in gray
matter volume (GMV). For a thorough review of morphometric
studies of meditation, see Fox et al. (2014).

Morphometric studies of meditation have consistently
found GM changes in regions related to the self-regulation
mechanism mentioned above (attention control, emotion
regulation, and self-awareness). These include the insula
(involved in interoception, homeostatic awareness, and
emotional awareness; Lazar et al., 2005; Hölzel et al., 2008;
Luders et al., 2012), somatomotor cortices (tactile processing,
conscious proprioception; Lazar et al., 2005; Grant et al., 2010;
Luders et al., 2012; Kang et al., 2013), amygdala (fear, memory,
decision-making, and detecting salient events; Pickut et al., 2013;
Lu et al., 2014; Gotink et al., 2018), and posterior cingulate cortex
(PCC; emotional salience and memory; Hölzel et al., 2011; Kang
et al., 2013).

There are important questions that remain unanswered.
For example, studies typically recruit experienced/expert adult
meditators (Fox et al., 2014). Few studies are focusing on novice
or meditation-naïve participants, and there are nearly no studies
examining meditation’s morphometric effects in adolescents.
This is an important knowledge gap because the adolescent brain
is quite distinct from the adult brain and meditation effects may
differ significantly (Giedd et al., 2015).

Adolescence is a crucial maturational period that begins at
the onset of puberty (Dahl et al., 2018). In childhood, brain
development is characterized by cortical gray matter growth.
Cortical gray matter volume increases rapidly in the first few
years of life and peaks in early childhood (Giedd et al., 1999; Shaw
et al., 2008). In adolescence, however, this trend reverses. GMV
decreases throughout adolescence towards young adulthood,

with most regions following an inverted U-shaped trajectory
(Shaw et al., 2006, 2008; Giedd et al., 2008). There are regional
differences in the timing of this trend, with different structures
maturing at different times and different rates (Blakemore,
2012; Wierenga et al., 2014; Narvacan et al., 2017). These
unique developmental trajectories suggest that the findings from
adult meditation studies may not translate to the adolescent
population. Currently, only Friedel et al. (2015) have published
structural findings in adolescents related to trait mindfulness.
The authors found that trait mindfulness (measured at 19 years)
was associated with less cortical thinning in the left anterior
insula (AI) between mid- and late adolescence. While furthering
our understanding of trait mindfulness in adolescents, the study
did not employ any form of meditation training.

In the present study, we examined adolescents without
previous meditation experience who underwent Training
for Awareness, Resilience, and Action (TARA), a 12-week
training program that incorporates elements from mindfulness
meditation and yoga-based movements (Henje Blom et al.,
2014, 2017). We compared participants’ gray matter volumes
immediately before and after the training, as well as before and
after a control period without any training.

MATERIALS AND METHODS

Sample and Training
The study was approved by the Institutional Review Board
(IRB) of the University of California, San Francisco, and all
participants in the study provided written informed assent and
their parent(s) or legal guardian(s) provided written informed
consent following the Declaration of Helsinki. A community
sample of 38 adolescent volunteers (16.48 ± 1.29 years, range
13.92–18.99 years, 24F) participated in this longitudinal
neuroimaging study. Adolescent participants were recruited
using IRB-approved flyers posted in the neighborhood.
Exclusion criteria were any mental health conditions preventing
effective group participation, such as active psychosis, severe
anorexia nervosa, acute, and severe posttraumatic stress
disorder, severe self-harm, suicidal ideation, or attempts
in the past 3 months, or severe substance use disorder.
Additionally, individuals with a diagnosis of intellectual
disability or autism spectrum disorder were excluded.
Adolescents undergoing current mindfulness training (e.g.,
mindfulness-based stress reduction, mindfulness-based
cognitive therapy, or dialectical behavioral therapy) and/or
an ongoing meditation and/or yoga practice of >20 min twice
a week or more for the past 2 months were also excluded.
Lastly, individuals with contraindications for MRI scans
such as pregnancy, metallic implants, braces, or cardiac
pacemakers were excluded. Given the relevance of TARA
to conditions such as major depressive disorder (MDD),
anxiety disorder, and attention deficit and hyperactivity
disorder (ADHD; Henje Blom et al., 2014), we did not exclude
participants with these disorders. Instead, we performed analyses
with and without these participants. See Table 1 for specific
demographic details.
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TABLE 1 | Demographic information of the participating sample.

Primary (n = 38) Control (n = 21) Unmedicated (n = 32)

Mean age ± SD (years) 16.48 ± 1.29 16.59 ± 1.04 16.48 ± 1.33
Male;Female (count) 14;24 7;14 10;22
Psychiatric diagnoses 6 ADD/ADHD, 2 MDD, 1 GAD 5 ADD/ADHD 1 ADD, 1 GAD
On psychotropic medication 6 3 0

Subjects were adolescent volunteers drawn from the community. Three VBM analyses were conducted: (1) primary, (2) control composed of subjects with an additional MRI scan
12 weeks before training, and (3) unmedicated subjects pre- and post-training. ADD/ADHD, attention deficit disorder/attention deficit hyperactivity disorder; MDD, major depressive
disorder; GAD, generalized anxiety disorder; VBM, voxel-based morphometry.

As part of the study, all participants underwent the TARA
program (Henje Blom et al., 2014, 2017). TARA is a training
program that incorporates elements from mindfulness
meditation and yoga-based practices, which specifically
promotes both bottom-up and top-down strategies to target
depression and anxiety symptoms (Henje Blom et al., 2017).
Subjects attended 90-min weekly sessions for 12 consecutive
weeks. Two TARA-trained facilitators led the group in exercises
such as guided breathing practices, yoga-based movement
synchronized with breaths, and interoceptive/sensory awareness
meditation practices such as body-scans. Sessions also included
brief psychoeducational presentations and group discussions.
Participants were instructed to continue practicing outside of the
weekly session.

MRI Data Acquisition
All 38 subjects underwent two MRI scans: one immediately
before the TARA training (‘‘pre’’) and one immediately after the
training ended (‘‘post’’). A subset of 21 subjects had received
a third, control MRI scan. This additional scan was acquired
12 weeks before the training commenced. This subset was formed
based on the time of study enrollment concerning the MRI and
TARA schedule and not based on any other systematic difference
between participants.

Each MRI scan was performed using a 3T General Electric
MR750 MRI (Waukesha, WI) scanner. The scan included a
standard T1-weighted (T1w) IR-SPGR sequence, with TR / TI /
TE = 10.2 s / 450 ms / 4.2 s, flip angle = 15◦, and 1 mm isotropic
resolution. The ASSET acceleration factor was set to 2, with a
total scan time of 3 min and 50 s.

VBM Processing, Analysis, and Statistics
The optimized voxel-based morphometry was performed using
FSL v5.0.8 tools (Good et al., 2001; Smith et al., 2004). The
processing and analysis were not conducted blindly to timepoint.
Non-brain tissue was removed from T1w images using bet
(Smith, 2002). Each subject’s image was visually inspected for
quality. Poorly extracted volumes were manually skull-stripped
using a combination of bet and the 3dUnifize and 3dSkullStrip
tools from the Analysis of Functional NeuroImages (AFNI
version 18.1.18) suite (Cox, 1996). Images were segmented into
gray matter, white matter, and cerebrospinal fluid (Zhang et al.,
2001). The GM images were registered to the MNI152 brain at a
resolution of 2 × 2 × 2 mm using affine (Jenkinson and Smith,
2001; Jenkinson et al., 2002) and non-linear (Andersson et al.,
2007a,b) transforms. Thereafter, a study-specific template was
created as part of the optimized VBM protocol implemented in

FSL to which the GM images were non-linearly reregistered. The
registered GM images were modulated by the Jacobian of the
warp field to compensate for contraction/enlargement due to the
non-linear transformation (Good et al., 2001). This obviated the
need to correct for total intracranial volume (Scorzin et al., 2008)
and permitted inference on local GM volume differences. Finally,
smoothing with a Gaussian kernel [σ = 2mm≈ 4.7mm full width
at half maximum (FWHM) was performed].

The resulting data were subjected to voxel-wise permutation-
based nonparametric methods (Nichols and Holmes, 2002)
that corrected for multiple comparisons across space and
incorporated threshold-free cluster enhancement (TFCE; Smith
and Nichols, 2009). The tests used a repeated-measures
paired t-test design that controlled for gender and included
5,000 permutations. This yielded two TFCE statistical maps, one
for each contrast direction (pre > post or pre < post). Each map
was thresholded at p = 0.025 (TFCE-corrected for family-wise
errors) to account for the two contrast directions. The obtained
regions were identified anatomically using the MNI Structural
Atlas (Grabner et al., 2006).

To calculate the effect size, we extracted pre- and post-training 
GMV values for each participant in significant regions. GMV 
values were obtained from individuals’ modulated and smoothed 
GM images with fslmeants, using the significant cluster as 
a binary mask. Cohen’s d was calculated using a pooled 
standard deviation in R (v3.6.2; R Core Team, 2019) using the 
effectsize package.

To assess the potential relationship of age to GMV change,
we conducted a bivariate Pearson correlation analysis between
participants’ ages at the beginning of the training and their GMV
changes across the training, also in R.

Control and Unmedicated Analysis
A second control, VBM analysis was conducted with the
subset of participants who received the control scan (n = 21,
16.70 ± 1.07 years, 14F). This analysis examined structural
changes between the control and pre-training timepoints,
and it provided a comparative window of subjects’ typical
development that incorporated background factors such as
biological development and environmental stressors such
as school.

A third, VBM analysis was conducted to compare medicated
and unmedicated subjects (n = 32, 16.48± 1.33 years, 22F). This
analysis examined unmedicated subjects’ changes between pre-
and post-training. Both the control and unmedicated analyses
used the same processing and statistical tests as the primary
VBM analysis.
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FIGURE 1 | Three-plane view of the region showing significant gray matter (GM) volume decrease after meditation training. The cluster showed the most significant
change at the left posterior insula [PI; p ≤ 0.025, threshold-free cluster enhancement (TFCE)-corrected for family-wise errors]. The cluster also overlapped with the
left thalamus and left putamen. The cluster is overlaid over the MNI 2 mm brain template, and coordinates are in MNI standard space. The right-side color bar
corresponds to the cluster’s significance (1-p).

RESULTS

Data Acquisition
MRI scans were well-tolerated by all participants. Scans were
read by a board-certified neuroradiologist. No one had any
abnormality and was excluded from the analysis.

Primary VBM Results
The primary VBM analysis identified one cluster that showed
significant GMV reduction between pre- and post-training. The
cluster extended medially into the left thalamus and left putamen
with its peak in the left posterior insula (p = 0.019, d = 0.47).
No regions showed significant GMV increase. See Figure 1 and
Table 2 for results.

There was no significant association between participants’ age
and GMV changes during the training, r(36) = 0.0197, p = 0.907.

Control and Medication Effect Analysis
There were no regions of significant GMV increase or decrease
in the control VBM analysis. The VBM analysis comparing
medicated with unmedicated subjects showed a trending
decrease of GMV at the left posterior insula peak from the
primary analysis (p = 0.07). See Table 3 for details.

DISCUSSION

Overview
Our primary VBM analysis identified a left posterior insula
cluster showing significant GMV decrease after meditation
training. Insular changes have been reported in previous
meditation studies and this region is key for physical and
emotional awareness. The cluster also overlapped into the left
thalamus and left putamen. The following sections will discuss
the regions involved and the potential mechanism of change.

Insula
Structural differences in the insula (insular cortex) are one of
the most well-replicated findings amongst morphometric studies
of meditation (Lazar et al., 2005; Hölzel et al., 2008; Luders
et al., 2012; Murakami et al., 2012; Friedel et al., 2015). The
insula is crucial for interoception, that is, one’s sense of one’s
internal physiological state (Craig, 2002). It is thought that the
insula accomplishes this by receiving homeostatic stimuli and
sensations and refining them into higher-level awareness (Craig,
2009). It has three cytoarchitecturally distinct components that
work together to carry out this function: the granula posterior
insula (PI), the dysgranular middle insula (MidI), and the
agranular anterior insula (AI; Gu et al., 2013).

The posterior insula provides the primary interoceptive
representation of one’s physiological condition. Bodily stimuli,
such as temperature, pain, itch, and respiration, are brought
to the posterior insula via lamina I spinothalamic neurons
(Craig, 2002; Brooks, 2006; Craig, 2009; Strigo and Craig, 2016).
These are sent forward to the AI and during this posterior-
to-anterior transition through the MidI, the viscero-somatic
information is refined. Evidence suggests that theMidI integrates
interoceptive stimuli with other neural inputs (Craig, 2011).
This helps create a salient representation of an individual’s
homeostatic features. For example, the MidI was associated
with both taste perception (Dalenberg et al., 2015) and the
coding of a food’s pleasantness (van Rijn et al., 2018). The
AI assigns emotional relevance to the incoming homeostatic
stimuli, thus underlying emotional awareness (Craig, 2009;
Fox et al., 2018). Functionally, the AI is a key node of
the Salience Network (SN), the intrinsic functional network
that identifies biologically and cognitively relevant events to
guide behavior (Seeley et al., 2007; Menon and Uddin, 2010;
Menon, 2011).

Our results were in the posterior insula, which differs
from previous insular findings which are typically located
in the anterior insula (Fox et al., 2014). This distinction is
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TABLE 2 | Primary VBM results of posterior insula gray matter volume decrease pre- to post-training.

Region Side Size (mm3) x y z Sig. (−) Sig. (+)

Posterior Insula L 216 −28 −26 16 0.019 1

Peak significance is reported, at the α = 0.025 level (TFCE-corrected for family-wise errors). The cluster’s peak coordinates are in MNI standard space. L, left; Sig., significance; (−),
decreasing direction, (+), increasing direction.

TABLE 3 | Results of the control and unmedicated VBM analyses.

Analysis n Side x y z Sig. (−) Sig. (+)

Control 21 L −28 −26 16 1 0.168
Unmedicated 32 L −28 −26 16 0.07 1

The VBM analysis was repeated with a control subset (n = 21) and an unmedicated subset (n = 32). In both analyses, no regions showed statistically significant differences in
GMV between timepoints. The L-posterior insula peak coordinates yielded trending decreases in the unmedicated analysis. L, left; Sig., significance; (−), decreasing direction; (+),
increasing direction.

important because the PI and MidI have been associated with
objective ratings of stimuli, whereas the AI has been associated
with their subjective ratings (Craig, 2002, 2011; Singer et al.,
2004). For example, objective changes in temperature stimuli
were associated with the PI, but subjective evaluation of the
same stimuli was associated with the AI (Craig et al., 2000;
Kong et al., 2006; Craig, 2009). The posterior findings may
reflect the TARA training’s emphasis on interoceptive physical
awareness practices, such as breathing exercises and ‘‘body-
scan’’ meditations.

Prior studies with significant insula findings utilized
meditation paradigms which explicitly focused on body
awareness, posture, breathing, and other physical sensations
(Lazar et al., 2005; Hölzel et al., 2008; Kang et al., 2013; Fox et al.,
2014; Tang et al., 2015). Thus, the anterior-posterior position
of insula findings may correspond to the type of meditation
practice applied.

Thalamus
The significant cluster also overlapped with the left thalamus.
This is important because of the thalamus’ function and its
relationship with the insula. The thalamus is a large collection of
nuclei that relays information to the cortex, and it is particularly
crucial for the transfer of sensorimotor information (Vertes
et al., 2015). The GMV changes in our VBM analysis could
reflect this specific function, as participants repeatedly practiced
exercises involving sensory awareness and physical movement.
Additionally, the thalamus projects lamina I spinothalamic
nuclei into the posterior insula (Craig, 2002, 2009). Significant
GM changes in a cluster containing both the thalamus and the
posterior insula further support an awareness-based mechanism
of meditation’s effects.

Previous studies have implicated the thalamus in meditation
practice, but these used other imaging modalities such as single-
photon emission computed tomography (SPECT; Newberg et al.,
2001) and functional MRI (fMRI; Lutz et al., 2008). Luders et al.
were the only group to have found GM changes in the thalamus
associated with meditation. They observed larger right thalamic
GMV in long-term meditators (Luders et al., 2009), in contrast
to our VBM results of GMV decreases. This discrepancy could be
due to differences in the participants’ ages (adults vs. adolescents)
and meditation experience (experienced meditators vs. novices).

Putamen
The left PI cluster also overlapped into the left putamen. The
putamen is a subcortical structure and is part of the dorsal
striatum. It is involved in the refinement and control of motor
movement (Balleine et al., 2007). Additionally, it is associated
with the reinforcement of learning (Viñas-Guasch and Wu,
2017), reward-related behavior (Packard and Knowlton, 2002),
and emotions (Brooks, 2006; Lanciego et al., 2012). Amongst its
many connections, the putamen is part of multiple corticostriatal
loops and has projections into the thalamus.

Our findings in this region can potentially be explained by
the training’s focus on physical movements. In addition to the
awareness practices previously mentioned, all sessions included
yoga-based movement exercises. Here, subjects initially learned
a few movements. These previously-learned movements were
repeated each session while new sequences and poses were added.
One of the key components of themotor circuit is a corticostriatal
projection from the putamen (Lanciego et al., 2012). GMV
decreases in the putamen could be due to repeated engagement
of motor circuitry to learn these coordinated motor movements.

Multiple fMRI studies have reported changes in putamen
with meditation (Baerentsen et al., 2010; Ding et al., 2015;
Kirk and Montague, 2015; Hernández et al., 2018). The only
morphometric structural findings are reported by Pagnoni
and Cekic (2007). They also found GMV changes in the
left putamen, although their finding was that controls, not
practitioners, showed GMV decline. The authors suggest that
meditation provided a neuroprotective effect that halted the
decline in their adult practitioners. As our sample consisted
of adolescents, meditation’s neuroprotective effect could be
manifesting itself in some other manner, such as enhancing the
brain’s development.

Gray Matter Volume Decrease
The most surprising result of our VBM analysis was the direction
of GMV change. Subjects showed significant decreases in GMV
after the meditation training. This contrasts with most structural
MRI studies of meditation, in which GMmeasures increase with
practice (Fox et al., 2014). However, findings of morphometric
decrease (or those in which changes in controls were larger than
in meditators), are not without precedent (Kang et al., 2013;
Gotink et al., 2018).
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Structural MRI studies of meditation have focused on adult
samples. The discrepancy between our results and previous
studies’ results could be partly explained by the younger age
range of our sample (16.48 ± 1.29 years). It is important to
take into consideration the differences between the adolescent
brain and the adult brain. Several studies have shown that
GM morphometric measures (volume, thickness, etc.) follow an
inverted-U shaped trajectory, peaking in early adolescence and
then declining towards young adulthood (Giedd et al., 1999;
Shaw et al., 2006, 2008; Narvacan et al., 2017). Developmental
evidence also indicates that the relationship between GM
structure and functional abilities undergoes significant changes
throughout the lifespan. A study by Schnack et al. (2015)
found that in childhood, thinner cortices were associated with
higher intelligence. However, this relationship reversed in young
adulthood (∼21 years) so strongly that in adulthood (42 years),
thicker cortices were associated with higher intelligence (Schnack
et al., 2015). Thus, the decreased GMV findings in our study
could reflect a regionally-specific increase in maturation during
the 12 weeks of TARA-training. While possibly the observed
GMV decreases were driven solely by maturation, the lack of
GMV decreases during the control period render this unlikely.

In mid- to late adolescence, the brain undergoes global
stabilization and refinement that ultimately enhance functioning
and efficiency (Dahl et al., 2018). One mechanism is through
activity-dependent stabilization and synaptic pruning (Changeux
and Danchin, 1976). Functionally, this process is thought
to improve neuronal stabilization by solidifying experience-
dependent learning, reducing spine density, and improving
connection efficiency (Anderson et al., 1995; Dahl et al., 2018).
This process is a key component of adolescent maturation.
Animal studies have observed higher rates of dendritic spine
formation and elimination within the adolescent brain compared
to adults (Drzewiecki et al., 2016). Additionally, pruning has
been hypothesized to account for the GMV decreases observed
in late adolescence (Sowell et al., 2001; Gogtay et al., 2004;
Blakemore, 2012).

We speculate that our decreased GMV findings could
be explained through this developmental maturation context.
Meditation practices could have bolstered the maturation of
neuronal connections in physical awareness regions (posterior
insula) and regions necessary to carry out and learn such
techniques (thalamus and putamen). This refinement may have
reduced transient spine formation within the regions, ultimately
leading to GMV volume decrease. Though speculative, this
mechanism can explain the differences between our GMV
findings and those from the meditation studies on adults.

Limitations
This study’s findings should be interpreted in light of its
limitations. First, the study was not randomized. However, the
study design included a within-subject control: a subset of
the adolescent subjects received an additional scan before the
pre-training timepoint, allowing us to compare findings to a
period where subjects had no training. VBM analysis yielded
no significant change during the control period, supporting
the conclusion that the primary findings were due to training-

related practices. This controlled within-subject design can
be potentially more powerful than a between-subject design,
as within-subject variability is much smaller than between-
subject variability (Poldrack, 2000). Second, the study sample
was heterogeneous: nine subjects had a psychiatric diagnosis
(six with ADD/ADHD, two with MDD, and one with GAD).
Six subjects were receiving medication and due to this small
number and the different types of medications, we could not
thoroughly examine the effects of medication. We performed
an additional VBM analysis excluding participants taking
medication to compare overall differences and the findings in
the left posterior insula were preserved at a trending level,
supporting the primary findings. Third, TARA training is an
amalgamation of different practices (i.e., meditation, breathing
exercises, and yoga-based practices). Currently, the individual
contribution of each component practice is unknown. Future
studies are needed to disentangle whether and how much each
component contributes to the overall structural effect. Fourth,
VBM is a method based on T1-weighted MR images and as
such, any tissue property that affects T1 relaxation times (e.g.,
cell density, cell size, myelination) could affect a voxel’s intensity
(Zatorre et al., 2012). For example, cerebral blood flow changes
(via caffeine ingestion or sensorimotor task), can cause apparent
tissue changes in VBM analysis (Ge et al., 2017). It is important
to interpret VBM findings with this limitation in mind. Finally,
we did not assess behavioral changes, such as measures of anxiety
and depression psychopathology. Additional research is needed
to study whether these morphometric changes are reflected in
behavioral changes.

CONCLUSION

Overall, we found significant gray matter volume decreases
in adolescents participating in a 12-week training program
involving meditation, breathing exercises, and yoga-based
movements. The GMV changes were centered on the left
posterior insula, a region crucial for interoceptive awareness.
Whereas most structural neuroimaging studies have found
increased GM measures with meditation practice, we found
the reverse: participation in meditation training was associated
with structural decreases. The discrepancy could be explained by
the unique maturational stage of adolescence and its structural
brain changes. These findings help further our understanding of
meditation’s effects in the understudied adolescent brain.
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