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Background: Breast cancer is one of the most common malignant tumor and the prognosis remains 
unsatisfying. Various studies demonstrate that m6A modulators are new predictors of prognosis in immune 
microenvironment. We aimed to identify several m6A regulator-related immunogenes and explore the 
relationship between m6A regulator-related immunogenes and breast cancer prognosis as well as the tumor 
immune microenvironment (TIME).
Methods: RNA sequencing data and clinical information on 21 m6A regulators in 1,047 breast cancer 
samples were downloaded from The Cancer Genome Atlas (TCGA), and immune gene data were 
downloaded from InnateDB. Kaplan-Meier survival analysis was conducted with log-rank test using the 
survival package. An m6A-related immunogene-prognostic signature was then constructed, followed by 
immune infiltration and checkpoint analyses.
Results: A risk prognostic signature of m6A regulator-related immunogenes, including TOX, PSME2, 
MCTS1, NFKBIE, SH3BP4, RSPH1, JAK1, MLLT4, and PTGES3, was constructed. Furthermore, univariate 
and multivariate Cox regression analyses suggested that the tumor stage and risk score could be independent 
prognostic factors for patients with breast cancer. Immune infiltration analysis showed that the infiltration 
levels of T cells, memory B cells, activated NK cells, and macrophages between the high- and low-risk 
groups were significantly different. In addition, checkpoint analyses demonstrated that the levels of immune 
checkpoint genes, such as those of LAG3, PDCD1, CTLA4, and HAVCR2, were downregulated in the high-
risk group compared to those in the low-risk group.
Conclusions: Our findings suggest that the m6A regulator-related risk prognostic signature can predict 
the prognosis of breast cancer and that it is related to the immune microenvironment.
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Introduction

Breast cancer, one of the most common malignant tumors in 
women, accounts for 25% of female cancer cases worldwide 
(1,2). Breast cancer is a very high incidence heterogeneous 
disease and one of the leading causes of cancer-related 
diseases (3). Furthermore, recurrence and metastasis are 
regarded as leading causes of increased tumor-specific  
death (4). Currently, surgery, radiotherapy, and chemotherapy 
are conventionally established clinical treatments for breast 
cancer (5). Moreover, the combination of targeted therapy 
and immunotherapy has improved therapeutic modalities 
for breast cancer (6). However, the prognosis of patients 
with breast cancer remains unsatisfactory (7). Hence, it is 
important to investigate therapeutic targets and prognostic 
markers for patients with breast cancer.

The tumor immune microenvironment (TIME) consists 
of protumor and antitumor immune cells, which can 
be reprogrammed by tumor-derived factors involved in 
immune escape and tumor progression (8,9). Accumulating 
evidence has shown that the TIME plays a critical role in 
the development of tumors and affects the clinical results of 
immune checkpoint blockade (ICB) therapies, e.g., those for 
blocking PD-1/L1 or CTLA-4 (10-14). In recent years, some 
studies have found a special relationship between the TIME 
infiltration of immune cells and N6-methyladenosine (m6A) 
modification (15,16). m6A is the most common type of RNA 
modification, accounting for approximately 50% of the total 
methylated nucleotides and occurring in approximately 
0.1% and 0.4% of all RNA sequences (17). The dynamic 
modification of m6A is regulated by three categories of 
genes: writers, readers, and erasers. Since its discovery in 
1974, it has been reported that m6A RNA methylation plays 
a critical regulatory role in tumor RNA modifications (18). 
An increasing number of studies have suggested that m6A 
modulators act as oncogenic promoters or inhibitors in the 
development of tumors (19-22), and can be used as new 
predictors of prognosis in different types of malignancies. 
More importantly, a study mentioned that m6A modification 
is involved in anticancer immune regulation (23). Hence, the 
modification of m6A has been a potential immunotherapeutic 
target and a predictor of ICB responses.

In this study, an m6A-related prognostic signature was 
constructed for breast cancer and the clinically applicable 
value of this risk signature was estimated (Figure S1). 
Furthermore, the relationship between the m6A-related 
prognostic signature and TIME as well as that with immune 
checkpoints was explored. The findings of this study provide 

new insights into the treatment and prognosis of breast 
cancer. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-1335/rc).

Methods

Data source

RNA sequencing data and clinical data (phenotype) were 
downloaded from The Genomic Data Commons (GDC) data 
portal of the Cancer Genome Atlas (TCGA) Database (24).  
A total of 1,047 tumor samples were included in the follow-up 
analysis after excluding samples from patients with a survival 
of less than 1 month. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 

Identification of m6A regulator-related immunogens

A total of 21 m6A regulators, including eight writers 
(METTL3, METTL14, METTL15, WTAP, RBM15, 
RBM15B, KIAA1429, and ZC3H13), two erasers (FTO 
and ALKBH5), and eleven readers (RBMX, YTHDC1, 
YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, 
YTHDF2, YTHDF3, HNRNPA2B1, and HNRNPC) 
were analyzed. Furthermore, the immune genes (n=3,537) 
included in the Immunology Database and Analysis Portal 
(ImmPort) were downloaded from InnateDB (25). The 
expression levels of the 21 m6A regulators and 3,879 
immune genes were then obtained from TCGA database. 
The Pearson correlation coefficient of expression levels 
between m6A regulators and obtained immune genes was 
calculated using the cor function of R package, with a 
threshold of correlation coefficient greater than 0.3 and P 
value less than 0.05.

Construction of an m6A-related immunogene-prognostic 
signature

According to the median expression of m6A-related 
immunogenes, the samples were divided into high- and 
low-expression groups. A survival analysis using Kaplan-
Meier (KM) was conducted with log-rank test using the 
survival package (Version 3.2-7, http://bioconductor.org/
packages/survival/). P<0.05 was selected as the threshold of 
statistical significance to screen for genes in the high- and 
low-expression level groups that might lead to significant 
survival differences. Subsequently, the samples were 

https://cdn.amegroups.cn/static/public/TCR-22-1335-supplementary.pdf
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1335/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1335/rc
http://bioconductor.org/packages/survival/
http://bioconductor.org/packages/survival/
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randomly divided into a training dataset (523 cases) and 
a validation dataset (524 cases). In the training dataset, 
immune genes related to prognosis were screened using 
univariate and multivariate Cox regression analyses, based 
on a threshold of P<0.05. Finally, a prognostic risk model 
was constructed using the obtained prognostic genes, and 
the calculation formula was defined as follows: 

Risk score = Coef  immuno gene Exp immuno gene×∑  [1]

where Coef is the prognostic coefficient of the multivariate 
Cox regression analysis of immune genes, and Exp is the 
immune gene expression from TCGA dataset.

Validation of the m6A-related prognostic signature

To further verify the prognostic risk model, we explored 
whether there was a significant difference in the prognosis 
of patients in the high- and low-risk groups in the 
validation and entire datasets (including both the training 
and validation datasets). Furthermore, association analysis 
between the risk score and clinical features (including 
TNM stage, tumor stage, age, and sex) was conducted using 
ggstatsplot (version 0.5.) followed by a chi-squared test.

Univariate and multivariate Cox analyses were performed 
successively to identify whether the m6A-related prognostic 
signature could be an independent prognostic factor in 
patients with breast cancer. Meanwhile, nomogram plots 
of independent prognostic factors were drawn, and the 
C-index was calculated to evaluate the predictive power of 
the nomogram.

Immune infiltration and checkpoints analyses

To determine the effect of the m6A-related prognostic signature 
on TIME, immune infiltration analyses were performed on 22 
immune cells using the CIBERSORT algorithm (26).

Additionally, the expression of immune checkpoint 
genes, such as PD1 (PDCD1), PD-L1 (CD274), CTLA-4 
(CTLA4), TIM3 (HAVCR2), LAG3, and B7-H4 (VTCN1), 
in the high- and low-risk groups was analyzed, followed by 
a Student’s t-test.

Functional annotation of the m6A-related prognostic 
signature

The GSVA R package (27) (version 1.36.2) for enrichment 

analysis was utilized. The scores of each KEGG pathway 
in each sample were calculated using the c2.cp.kegg.
v7.2.symbols.gmt gene set. The differential analysis of 
KEGG pathways between the high- and low-risk groups 
was conducted using limma of R package, with a threshold 
of P<0.05 and |logFC| >0.263.

Statistical analysis

All the data analyses and plotting were conducted in R 4.2.1 
software. The log-rank test was used to assess statistical 
significance of KM analysis. The hazard ratio (HR) was 
calculated by univariate and multivariate cox regression 
analysis. For comparisons, Pearson correlation analysis, 
Log-rank test, chi-squared test, and Student’s t-test were 
performed as indicated. A P value of <0.05 was considered 
statistically significant. All P values are not corrected for 
multiple comparisons. 

Results

m6A regulator-related immunogens

After analyzing the correlation between the expression 
of 3,879 immune and 21 m6A-related genes, 6,649 co-
expression pairs, including 1,841 immune and 21 differential 
m6A genes, were screened. A heatmap of the correlation 
between the expression levels of these key immune genes in 
the prognostic signature and m6A-related genes is shown in 
Figure 1.

Prognostic risk model

To develop a prognostic risk model for breast cancer, KM 
survival analysis was conducted on the key 1,841 immune 
gene, and 163 genes were found to be significantly associated 
with survival (log-rank P<0.05). Next, from these 163 genes, 
we identified 47 immune genes significantly related to 
prognosis by performing a univariate Cox regression analysis 
with the training set. In addition, according to a multivariate 
Cox regression analysis, 9 immune genes (P<0.05) were 
independent prognostic factors for patients with breast 
cancer (Table 1). Finally, based on these 9 immune genes, the 
m6A-related prognostic risk signature was constructed using 
the risk score formula [1]:

Risk score = −0.536 × TOX − 0.239 × PSME2 + 0.853 
× MCTS1 − 0.152 × NFKBIE + 0.366 × SH3BP4 − 0.381 
× RSPH1 - 0.484 × JAK1 + 0.313 × MLLT4 + 0.231 × 
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Figure 1 Heatmap showing the correlation between the expression levels of key immune genes in prognostic signature and m6A-related 
genes. *, P<0.05; **, P<0.01.
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Table 1 Multivariate analyses of the immune genes of the training 
cohort used for predicting prognosis of breast cancer

Gene HR (95% CI for HR) P value 

RSPH1 0.469 (0.32–0.687) 0.000101

JAK1 0.349 (0.177–0.689) 0.0024

PTGES3 3.57 (1.46–8.75) 0.00537

TOX 0.282 (0.104–0.765) 0.0129

NFKBIE 0.385 (0.175–0.845) 0.0174

MCTS1 2.55 (1.07–6.08) 0.0354

MLLT4 1.61 (1.02–2.53) 0.0387

PSME2 0.508 (0.262–0.983) 0.0444

SH3BP4 1.46 (1.01–2.11) 0.0453

HR, hazard ratio. 

PTGES3 (Figure 2A).
Furthermore, the risk model was constructed for the 

training, validation, and entire datasets. The samples 
were divided into high- and low-risk groups based on the 
median risk scores. KM analysis showed that the high-risk 
group had a worse prognosis than the low-risk group in all 
datasets (all P<0.05; Figure 2B). Moreover, the prognostic 
characteristics of immune genes in the risk model were 
investigated using KM curves. As shown in Figure 2C, the 
patients who had highly expressed genes with a HR <1 
(PSME2, NFKBIE, RSPH1, JAK1, and TOX) had better 
outcomes than those with low expression levels. Conversely, 
patients with high expression levels of genes and a HR >1 
(PTGES3, MLLT4, SH3BP4, and MCTS1) had a worse 
prognosis than those with low expression levels.
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Figure 2 Construction of the breast cancer prognostic risk signature. (A) Independent prognostic immune genes included in the risk model.  
*, P<0.05; **, P<0.01; (B) Kaplan-Meier analyses of patients in the high- and low-risk groups in the training (left), validation (center), and entire 
(right) datasets. (C) Kaplan-Meier analyses of the prognostic immune genes included in the risk model. AIC, Akaike information criterion.
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Figure 3 Identification of independent prognostic clinical factors in high- and low-risk groups. (A) Proportional distribution of clinical 
factors of patients with breast cancer. (B) Nomograms for survival prediction of patients with breast cancer based on independent prognostic 
clinical factors. BF, bayes factor; OS, overall survival.

Associations between risk score and clinical characteristics

To investigate the clinical value of the risk score in breast 
cancer, the correlation between the risk score and clinical 
characteristics of patients with breast cancer was analyzed. 
The results revealed observable differences in age, sex, 
and stage between the high- and low-risk groups (chi-
square test, P<0.05; Figure 3A). Additionally, univariate 
and multivariate Cox regression analyses suggested 
that tumor stage and risk score could be independent 
prognostic factors in patients with breast cancer (Table 2). 
The nomogram plot for independent prognostic factors is 
shown in Figure 3B.

Immune infiltration and checkpoints analyses of the risk 
signature

Differences in immune abundance between the high- and 
low-risk groups were determined. As illustrated in Figure 4,  
the infiltration expression of memory B cells, T cells, 
activated NK cells, and macrophages between the two 
groups was significantly different. In addition, checkpoint 
analysis demonstrated that, compared with that in the low-
risk group, the expression of immune checkpoint genes, 
including LAG3, PDCD1, HAVCR2, and CTLA4, was 
downregulated in the high-risk group (Figure 5, Student’s 
t-test).
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Table 2 Univariate and multivariate Cox regression analyses of the clinical characteristics of patients with breast cancer

Clinical characteristics
Univariate Cox regression Multivariate Cox regression

HR (95% CI for HR) P value HR (95% CI for HR) P value

Tumor stage 1.84 (1.24–2.72) 0.00238 2.03 (1.52–2.72) 1.53E-06

Sex 1.69 (1.18–2.43) 0.00452 0.484 (0.0669–3.51) 0.473

T stage 0.79 (0.653–0.957) 0.0159 0.914 (0.686–1.22) 0.542

Risk group 0.719 (0.53–0.975) 0.0339 0.393 (0.275–0.561) 3.02E-07

N stage 0.759 (0.5–1.15) 0.194 – –

M stage 1.22 (0.852–1.75) 0.279 – –

Age 1.17 (0.77–1.77) 0.467 – –

T, tumor; N, node; M, metastasis; HR, hazard ratio; CI, confidence interval. 
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Figure 4 Immune cell infiltration into the TIME according to the risk signature. The infiltration levels of memory B cells, T cells, activated 
NK cells, and macrophages between the high- and low-risk groups were significantly different. Blue fractions, low-risk group cell infiltration 
levels; Golden fractions, high-risk group cell infiltration levels. NK, natural killer; TIME, tumor immune microenvironment.

KEGG pathway analysis

A total of 13 differentially enriched KEGG pathways 
between the high- and low-risk groups were identified using 
GSVA (Figure 6). These pathways involved response-related 
functions and some immune-related diseases and were 
downregulated in the high-risk groups. 

Discussion

The treatment of breast cancer has been a substantial 
clinical challenge owing to poor overall survival (OS) and 
the heterogeneous clinical characteristics of this type of 
cancer. Currently, relevant immunotherapies have shown 
sustained antineoplastic activity and controlled adverse 
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Figure 5 Checkpoint analyses of the breast cancer risk signature. The expression of immune checkpoint genes in the high-risk group were 
downregulated in comparison to that of the corresponding genes in the low-risk group. **, P<0.01; ****, P<0.0001.
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reactions, indicating that the TIME in breast cancer 
requires further exploration (28). m6A methylation, the 
most common form of mRNA modification, has been 
shown to contribute to malignant progression and influence 
clinical prognosis in many tumors (29-32), including 
breast cancer. Nevertheless, the role of m6A regulator-
related immunogenes in breast cancer has not been fully 
elucidated. Hence, in this study, we explored the function 
of m6A regulator-related immune genes in the malignant 
progression, prognosis, and immune microenvironment of 
breast cancer.

The risk signature of breast cancer m6A regulator-
related immunogenes, including TOX, PSME2, MCTS1, 
NFKBIE, SH3BP4, RSPH1, JAK1, MLLT4, and PTGES3, 
was constructed. TOX is a transcription factor involved in 
the regulation of T cell failure in chronic infections and 
cancers (33). Moreover, TOX is negatively correlated with 
the infiltration of several immune cell types in TIME (34). 
Higher levels of proteasome activator subunit 2 (PSME2) 
have been observed in breast carcinomas than in metastatic 
sites (35). In addition, multiple copies in T-cell lymphoma-1 
(MCTS1) is an oncogene that is highly expressed in several 
cancer tissues; MCTS1 promotes cell proliferation and 
migration and inhibits apoptosis of lung cancer cells by 
regulating the E2F1 and c-Myc signaling pathway (36). NF-
κB inhibitor epsilon (NFKBIE) abnormality is a common 
genetic event in B-cell malignancies, and NFKBIE deletion 
may be a new adverse prognostic marker in primary 
mediastinal B-cell lymphoma (37). Moreover, the tumor 
suppressive effects of SH3BP4 have been revealed; that 
is, SH3BP4 can act as a negative feedback regulator of 
Wnt signaling by regulating the subcellular localization 
of β-catenin (38). In the breast, the level of Janus kinase 1 
(JAK1) mRNA is correlated with breast cancer prognosis 
and the level of immune infiltration, suggesting that JAK1 
can be used as a prognostic biomarker (39). Moreover, 
in our model, patients with high expression of the genes 
encoding PSME2, NFKBIE, RSPH1, JAK1, and TOX 
had better outcomes than those with low expression. 
Conversely, patients with high PTGES3, MLLT4, SH3BP4, 
and MCTS1 expression had worse prognoses than those 
with low expression. All these findings suggest that the risk 
signature is not only an important supplement for breast 
cancer analysis but also a novel approach for the prognostic 
analysis of breast cancer.

Accumulating evidence has focused on TIME and the 
fact that breast cancer is a highly immunogenic tumor (40). 
In the present study, the m6A-related immunogene risk 

signature not only contributed to prognosis prediction, 
but also indicated how the TIME of breast cancer is 
affected. Briefly, the infiltration levels of memory B cells, 
T cells, activated NK cells, and macrophages between the 
high- and low-risk groups were different. In the immune 
landscape analysis of inflammatory breast cancer, memory 
B cells and T cells showed significant enrichments (41). 
M1 and M2 macrophages derive from monocytes and have 
opposite immune functions. M1 macrophages can promote 
inflammatory responses and inhibit tumor growth, whereas 
M2 macrophages play immune-inhibitory and tumor-
promoting roles (42,43). Taken together, the present study 
provides a comprehensive evaluation of the m6A-related 
immunogene risk signature, which will help understand 
the characteristics of TIME cell infiltration and promote 
personalized new therapies by determining responses to 
immunotherapy.

Immunotherapy, represented by ICB, has shown 
impressive clinical efficacy in a small subset of patients 
with long-lasting responses; however, the clinical benefits 
for most patients remain unsatisfactory (14). Hence, the 
prediction of ICB responses according to the immune 
properties of the TIME is key to increasing the success 
of existing ICBs and developing new immunotherapeutic 
strategies (44). In this study, the immune checkpoint genes 
LAG3, PDCD1, HAVCR2, and CTLA4 were downregulated 
in the high-risk group compared to those in the low-risk 
group. The data indicate that the m6A-related immunogene 
risk signature is observably associated with the tumor 
immune response, and the established m6A-related 
immunogene risk signature will help predict the response to 
immunotherapy in breast cancer.

In addition, the m6A-related immunogene risk signature 
pathways were significantly different between the high- 
and low-risk groups. These different pathways were 
mainly associated with immune responses such as the 
intestinal immune network for IgA production and primary 
immunodeficiency as well as with some immune-related 
diseases such as autoimmune thyroid disease. These results 
also demonstrate the important predictive role of m6A-related 
immunogenes in the risk signature identified in this study. 

The present study shows that the m6A regulator-related 
risk prognostic signature could predict the prognosis of 
breast cancer and offer hints on the TIME. However, 
some limitations still exist. Although the signature and key 
genes identified in this study were validated in the datasets, 
experimental validation is still needed for further clinical 
applications. 
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Conclusions

This study comprehensively identified and systematically 
profiled m6A-related immunogenes in breast cancer. 
Moreover, an m6A-related immunogene prognostic model, 
including TOX, PSME2, MCTS1, NFKBIE, SH3BP4, 
RSPH1, JAK1, MLLT4 and PTGES3, was constructed. 
Taken together, this study not only provides clinical 
information for prognostic analyses of breast cancer but also 
provides novel insights into immunotherapeutic strategies.
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