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Abstract

During the outbreak of the COVID-19 pandemic, Non-Pharmaceutical and Pharmaceutical

treatments were alternative strategies for governments to intervene. Though many of these

intervention methods proved to be effective to stop the spread of COVID-19, i.e., lockdown

and curfew, they also posed risk to the economy; in such a scenario, an analysis on how to

strike a balance becomes urgent. Our research leverages the mobility big data from the Uni-

versity of Maryland COVID-19 Impact Analysis Platform and employs the Generalized Addi-

tive Model (GAM), to understand how the social demographic variables, NPTs (Non-

Pharmaceutical Treatments) and PTs (Pharmaceutical Treatments) affect the New Death

Rate (NDR) at county-level. We also portray the mutual and interactive effects of NPTs and

PTs on NDR. Our results show that there exists a specific usage rate of PTs where its mar-

ginal effect starts to suppress the NDR growth, and this specific rate can be reduced through

implementing the NPTs.

1. Introduction

COVID-19 has brought unprecedented global problems. As of June 10, 2020, the rapidly

spreading COVID-19 virus has infected 7,492,360 people and claimed 422,150 lives across the

world. The first case of COVID-19 in the US was confirmed in Washington State on January

21, 2020. On March 13, 2020, only two days after the World Health Organization (WHO)

announced the COVID-19 as a world-wide pandemic, the U.S. government proclaimed a

national state of emergency concerning the COVID-19 outbreak [1]. By mid-April 2020, stay-

at-home orders were issued across all but 8 states in mid-west region of the US. This indicates

that at least 316 million people were being urged to stay home, reduce unnecessary contact,

and keep social distance [2]. However, the restrictions did not last long. On April 16, 2020, the
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guidelines of reopening the nation were released by the White House. In consonance with

that, most of the lockdown states began to reopen in some manner. As of May 1, 2020, 18 states

had lifted their stay-at-home orders or partially selected some regions or businesses to reopen

[3]. Within only 3 months and 6 days, the number of confirmed cases exceeded 1 million on

April 27, 2020 [4].

Until the wide availability of a vaccine, traditional interventions such as social distancing,

hand sanitizing, wearing masks and utilizing ventilators remain the primary mechanisms to

slow the spread of COVID-19. The governments of different countries have promulgated vari-

ous countermeasures which can be roughly classified into Non-Pharmaceutical Treatments

(NPTs) and Pharmaceutical Treatments (PTs). NPTs are actions, apart from getting vaccinated

and taking medicine, that people and communities can take to help slow the spread of illnesses

like pandemic influenza [5]. NPTs have been proven to be considerable in delaying and con-

taining the spread of the virus [6–12]. Many state governments issued stay-at-home orders,

shut down businesses, and limited gatherings to restrict human mobilities. Several research

reveal a positive relationship between human mobility and COVID-19 infections [13, 14].

Also, some researchers mentioned that if people actively cooperate and comply with adapta-

tions such as hand washing, masking, and social distancing, the infectivity and impact of the

virus can be alleviated [7, 15]. However, moderate interventions such as school closures, self-

isolation of symptomatic individuals, or shielding of older people would probably not be suffi-

cient to control the epidemic and to avoid far exceeding available ICU capacity, even using

these measures in combination [16]. Travel restriction policy is particularly useful in the early

stage of an outbreak when it is confined to a certain area acting as a major source, but it may

be less effective once the outbreak is more widespread at a later stage [17]. Geographic Infor-

mation Systems (GIS) and big data technologies have played an important role in many aspects

to fight against the virus, e.g., spatial tracking, prediction of regional transmission, spatial seg-

mentation of the epidemic risk and prevention level and so on [18]. Mobility patterns are

found to be strongly correlated with decreased COVID-19 case growth rates for the most

affected counties in the USA [19].

From the perspective of PTs, recommendations on managing the Intensive Care Unit

(ICU) as well as the infrastructure, supplies, and staff have been proposed to help ICU practi-

tioners, hospital administrators, governments, and policy makers prepare for the upcoming

challenge [20]. The World Health Organization (WHO) developed a suite of complementary

surge calculators to help governments, partners, and other stakeholders to estimate potential

requirements for essential supplies to respond to the current COVID-19 pandemic [21].

Due to the limited time of the pandemic and the availability of data resources and analytical

algorithms, several major knowledge gaps exist and are worthy of attention. First, during a sec-

ond spike in outbreaks without wide availability of vaccines, governments and people become

more concerned with finding the balance point for the economy against the pandemic. How-

ever, the vast majority of related research only focuses on non-pharmaceutical intervention

methods and ignores the pharmaceutical methods, and there is an even greater lack of discus-

sions on how to make a trade-off on both methods. Second, many previous research oversim-

plified their models; some critical covariates such as socio-demographics, points of interests,

and so on are largely ignored [22].

The main contributions of this research can be summarized as follows. First, this research

leverages the aggregated data from large amounts of location-based service data which is more

informative and accurate than assumptions on disease transmission rate or reproduction rate

[23]. Second, most of the previous researchers solely focused on NPTs or PTs, and no one has

studied the substitution effect of NPT and PT. This research is also among the first to quantify

the relationship between NPTs and PTs, and to visualize their substitutional impact. This is
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innovative and timely research that will provide practical information to the medical system. It

also provides a good prediction on New Death Rate, New Case Rate, and New Mild Case Rate.

Third, this study contributes to broader general interests. Utilizing the daily updated web por-

tal [24] on the pre-trained models mentioned above, we can deliver days- or weeks-ahead pre-

dictions to the public.

2. Data source

The data source of our study is a comprehensive national human mobility dataset from the

University of Maryland COVID-19 Impact Analysis Platform [24, 25]. This platform incorpo-

rated over 150 million anonymous individuals monthly active mobile devices to develop the

dataset of person movements for the U.S. These data are collected from individual devices

including iOS and Android OS. The risk of re-identification is reduced by applying privacy-

preserving techniques, such as aggregating to census block group level or county level. More

technical details can be found in this paper [13] and the project report [26]. We utilize the data

from February 22, 2020 to May 27, 2020 and conduct all the regressions at county level. The

NPT and PT metrics are shown in Table 1. We also employ social demographic metrics as

covariates in our models to rule out some static impacts. In addition, we also consider the fac-

tors referring to time-varying, weekend dummy, governors’ approval rates among states, ran-

dom effects of different states and federal emergency status in our model.

3. Variable explanation

The explanations and abbreviations of all variables are listed in Table 1.

4. Models

4.1. GAM and data preprocessing

This section provides a detailed description of the GAM (Generalized Additive Model) we

employed to examine the NPTs v.s. PTs on controlling New Death Rate, New Case Rate and

New Mild Case Rate. GAM was originally developed by Hastie & Tibshirani [27] to blend

properties of generalized linear models with additive models. Its linear response variables

blend in unknown smooth functions of additional independent variables. The inference of

these non-linear smooth functions is the highlight of the GAM methods and often draws more

research interests. GAM is more flexible on the assumptions for each independent variable.

The functions of independent variables can be either a specified parametric form (such as a

polynomial), a non-parametric form, or a semi-parametric form, simply as smooth functions.

As previously mentioned, the data starts from Feb. 22, 2020 when there were no cases in

most counties. We could simply “one-size-fits-all” the data at a specific date for all counties;

however, due to the variation of the first confirmed case among all counties, doing so may

exclude significant information from several counties. In order to preserve as much and as pre-

cise information as possible and to differentiate the periods before and after the pandemic, we

choose the first case occurrence time point of each county as the cutting point and set to zero

all independent variables previous to the first case in the panel data.

Typical linear models fail to capture non-linear effects. To address this model limitation,

GAM is adopted to incorporate highly complex non-linear relationships with its flexibility on

smooth function forms. Moreover, linear predictors can be mixed in with non-linear predic-

tors to enhance the interpretability of the model. In terms of the GAM structure involved in
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this discussion, the functional form is written as below:

gðYtiÞ ¼ b0 þ
XM

m¼1

bmXtim þ
XN

n¼1

fnðXtinÞ þ
XP

q6¼p

XP

p

fpqðXtip;XtiqÞ þ �ti

In order to smooth out the in-week pattern and some short-term fluctuations, dependent vari-

ables and some predictors are calculated by a 7-day moving average. Yti represents New Death

Table 1. Explanation of dependent and independent variables.

Abbreviation Explanation Type Source

Dependent Variables
New Death

Rate

7-day moving average of Daily New Covid-19 death number per 1

million people of each state.

- From JHU repository (https://github.com/

CSSEGISandData/COVID-19/tree/master/csse_

covid_19_data).

New Case Rate 7-day moving average of Daily New Covid-19 confirmed case number

per 1 thousand people of each state.

- Calculated by MTI based on JHU repository.

New Mild Case

Rate

7-day moving average of Daily New Covid-19 mild case number per 1

thousand people of each state. Calculated by (new confirmed case

number–new death number of 7 days later)/population�1000

- -

Independent Variables
Weekday 1 for Monday, 7 for Sunday and 2 to 6 are in between. - -

TI Time Index. Days offset from 01/01/2020 as day 0. - -

age60 60 years old population percentage Sociodemographic Census Bureau

Inc Median income Sociodemographic Census Bureau

Afr African Americans population percentage Sociodemographic Census Bureau

Hisp Hispanic Americans population percentage Sociodemographic Census Bureau

Male Male percentage Sociodemographic Census Bureau

PD People per square mile (Population Density) Sociodemographic Census Bureau

Hot Number of points of interests for crowd gathering per 1000 people Sociodemographic Calculated by MTI

HB Number of staffed hospital beds per 1000 people Sociodemographic ESRI: US Hospital Beds Dashboard

FE Federal emergency tag for each day. 0 for not declaring, 1 for

declaring.

- -

Appr Gubernatorial approval ratings - https://ballotpedia.org/Gubernatorial_approval_

ratings

DTest24 Number of COVID-19 daily tests per 1000 people. The data is lagged

for 24 days and applied to a 7-day moving average.

Pharmaceutical

Treatment

https://covidtracking.com/data/api

Ctrip24 Number of trips per 100 people that cross county borders with origin

and destination in the same state. The data is lagged for 24 days and

applied to a 7-day moving average.

Non-Pharmaceutical

Treatment

Calculated by MTI

Strip24 Number of trips that cross state borders per 100 people. The data is

lagged for 24 days and applied to a 7-day moving average.

Non-Pharmaceutical

Treatment

Calculated by MTI

ICU24 Percentage of ICU units occupied with COVID-19 patients. The data is

lagged for 24 days and applied to a 7-day moving average.

Pharmaceutical

Treatment

ESRI: US Hospital Beds Dashboard

DTest11 Number of COVID-19 daily tests per 1000 people. The data is lagged

for 11 days and applied to a 7-day moving average.

Pharmaceutical

Treatment

https://covidtracking.com/data/api

Ctrip11 Number of trips per 100 people that cross county borders with origin

and destination in the same state. The data is lagged for 11 days and

applied to a 7-day moving average.

Non-Pharmaceutical

Treatment

Calculated by MTI

Strip11 Number of trips that cross state borders per 100 people. The data is

lagged for 11 days and applied to a 7-day moving average.

Non-Pharmaceutical

Treatment

Calculated by MTI

ICU11 Percentage of ICU units occupied with COVID-19 patients. The data is

lagged for 11 days and applied to a 7-day moving average.

Pharmaceutical

Treatment

ESRI: US Hospital Beds Dashboard

https://doi.org/10.1371/journal.pone.0258379.t001
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Rate, New Case Rate, and New Mild Case Rate on day t of county i. g(.) represents the link func-

tion between independent variables and the dependent variable; Several research assumed that

the virus reproduction numbers are gamma distributed in transmission modeling [28–30], here

we also assume the dependent variable following a Gamma distribution applying the log link

function on the left-hand side of the formula. Xtim is the mth fixed effect linear covariate on day t
of county i with a coefficient βm in a set of covariates with total number M. Xtin is the nth non-lin-

ear covariate on day t of county i in a set of covariates with total number N. fn represents a smooth

function for Xtin. fpq(Xtip, Xtiq) denotes the smooth interaction of Xtip and Xtiq with a function

form fpq. The models use a thin plate regression spline basis for each smooth function [31]. P
denotes the set of variables on which we want to observe the effects of interaction.

We utilize variance inflation factor (VIF) to check the multicollinearity for the linear parts

of the model. A threshold of 10.0 for each variable is introduced to filter out the highly multi-

collinear ones.

4.2 Summary of variables

A summary of all variables involved in the models is shown in Table 2. Each variable has

301536 observations.

4.3. Model selection

Our aim is to fit a statistical model for each county and the whole nation to understand how

the social demographic variables, NPTs, and PTs affect the New Death Rate. Using this model,

Table 2. Summary of variables.

Variable Mean SD Median Min Max

Dependent Variables
New Death Rate 1.25 5.41 0.00 0.00 290.92

New Case Rate 0.03 0.13 0.00 0.00 16.86

New Mild Case Rate 0.03 0.14 0.00 -0.13 16.88

Independent Variables
TI 99.5 27.7 99.5 52.0 147.0

age60 14.9 12.8 20.0 0.0 65.0

Inc 31690.4 28024.2 40355.0 0.0 136268.0

Afr 6.0 12.6 0.6 0.0 87.4

Hisp 5.6 11.3 1.8 0.0 99.1

Male 50.1 2.4 49.6 41.4 79.0

PD 152.6 982.5 16.0 0.0 48341.0

Hot 77.6 69.6 99.0 0.0 699.0

HB 1.9 1.6 2.5 0.0 4.7

FE 0.6 0.5 1.0 0.0 1.0

Appr 30.5 25.4 43.0 0.0 73.0

DTest24 0.2 0.3 0.0 0.0 2.6

Ctrip24 90.2 38.9 90.1 0.0 335.7

Strip24 18.9 25.7 8.2 0.0 377.0

ICU24 4.2 12.0 0.0 0.0 119.5

DTest11 0.3 0.4 0.2 0.0 2.8

Ctrip11 89.9 38.7 89.7 0.0 335.7

Strip11 18.9 25.7 8.2 0.0 377.0

ICU11 5.9 13.1 0.9 0.0 119.5

https://doi.org/10.1371/journal.pone.0258379.t002
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we predict the future trend of New Death Rate and inspect the relationships between NPTs

and PTs. The panel data we leverage is from all counties in the US from Feb. 22, 2020 to May

27, 2020. For a robustness check, another two models fitting New Case Rate and New Mild

Case Rate are used. Unequal lag periods are applied to the three models due to different lag

time from symptom onset to case confirmation and death. Referring to the previous research

[19], an optimal lag of days of 11 is calculated by optimizing the correlation between the pre-

defined “mobility ratio” and “COVID-19 growth rate ratio”, therefore we chose 11 days for the

New Case Rate and New Mild Case Rate models. Referring to the previous research [32], the

median time delay is 13 days from illness onset to death. The number “13 days” can also be

supported by another previous research [20] which said, “the median time from symptom

onset to severe hypoxaemia and ICU admission is approximately 7–12 days”. Therefore, we

used 11+13 = 24 days as the lag number for the New Death Rate model. The results of the

three GAMs are shown in Table 3. The table is divided into two parts: upper half for coeffi-

cients corresponding to the linear fixed effects, and the lower half for non-linear smooth terms

and interaction terms.

In the lower half, the smooth terms with parameter “bs = ‘re’” are set to produce a random

coefficient for each level of the factor. The abbreviation “e.d.f” is short for “effective degrees of

freedom”, which reflects the non-linearity of each smooth term. A larger “e.d.f” represents

more wiggliness of the smooth term. The adjusted R-sq. is calculated by the formula as follows:

Adjusted R2 ¼ 1 �

P
iðyi � fiÞ

2
=ðn � kÞ

P
iðyi � �yÞ2=ðn � 1Þ

The percentage of deviance explained [27] in this paper is calculated as below:

% Deviance Explained ¼
DevianceNull � DevianceResidual

DevianceNull
� 100%

Where deviance is defined as:

Dðy; m̂Þ ¼ 2ðlogðpðyjŷsÞÞ � logðpðyjŷ0ÞÞÞ

• Null deviance: θ0 refers to the null model (i.e., intercept-only model).

• Residual deviance: θ0 refers to the trained model.

• y represents the outcome.

• m̂ represents the estimate of the model.

• ŷs and ŷ0 are the parameters of the fitted saturated and proposed models, respectively. A sat-

urated model has as many parameters as it has training points, that is, p = n.

• p(y|θ) is the likelihood of data given the model.

We’ve also applied the concurvity function in the “mgcv” package [33] on the three models

to measure the concurvity among all the smooth terms in the three models. Generally, a value

over 1.0 indicates a term may be a smooth curve of another. In the three GAMs, the concurvity

of each combination of two variables among the non-linear parts are less than 1.0, indicating

that the concurvity of the formulation is at the acceptable level.
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5. Results

5.1. Inferential analysis

The “R-sq.” and “deviance explained” of the New Death Rate model are higher than the New

Case Rate and New Mild Case Rate models, reflecting a better explanation of variances and a

better improvement from null model to the fitted model for New Death Rate than for New

Case Rate from the predictors. Intuitively, the type I and II statistical error of New Case Rate is

harder to be reduced than New Death Rate due to the possibility of misdiagnoses, which may

result in bias and pollute the data. As for linear effects in the three models, independent vari-

ables such as “Population Density” and “Hospital Bed” show the same positive direction of

Table 3. GAM model estimation results (assuming gamma distribution).

Dependent Variable New Death Rate New Case Rate New Mild Case Rate

Parametric coefficients:

Linear Part Estimate P-value Sig. level Estimate P-value Sig. level Estimate P-value Sig. level

(Intercept) 0.0933 0.3000 -0.2120 0.0000 ��� -0.2133 0.0000 ���

age60 0.0042 0.0000 ��� -0.0001 0.3499 -0.0001 0.0789 .

Inc 0.0000 0.0000 ��� 0.0000 0.0000 ��� 0.0000 0.0000 ���

Afr 0.0207 0.0000 ��� 0.0012 0.0000 ��� 0.0011 0.0000 ���

Hisp 0.0054 0.0000 ��� 0.0013 0.0000 ��� 0.0013 0.0000 ���

Male -0.0082 0.0000 ��� 0.0028 0.0000 ��� 0.0028 0.0000 ���

PD 0.0000 0.0000 ��� 0.0000 0.0000 ��� 0.0000 0.0000 ���

Hot -0.0007 0.0000 ��� -0.0001 0.0000 ��� -0.0001 0.0000 ���

HB 0.0520 0.0000 ��� 0.0143 0.0000 ��� 0.0144 0.0000 ���

DTest24 -0.0572 0.0067 �� / / / / / /

Ctrip24 -0.0009 0.0000 ��� / / / / / /

Strip24 0.0192 0.0000 ��� / / / / / /

ICU24 0.0110 0.0000 ��� / / / / / /

DTest11 / / / 0.0158 0.0000 ��� 0.0143 0.0000 ���

Ctrip11 / / / 0.0000 0.0001 ��� 0.0000 0.0201 �

Strip11 / / / 0.0021 0.0000 ��� 0.0020 0.0000 ���

ICU11 / / / 0.0012 0.0000 ��� 0.0012 0.0000 ���

Approximate significance of smooth terms:

Non-linear Part e.d.f P-value Sig. level e.d.f P-value Sig. level e.d.f P-value Sig. level

s(FE, bs = "re") 0.9843 0.0000 ��� 0.9884 0.0000 ��� 0.9889 0.0000 ���

s(Appr) 7.8948 0.0000 ��� 8.5707 0.0000 ��� 7.8599 0.0000 ���

S(Weekday) 0.1749 0.7330 0.0121 1.0000 0.0671 0.9950

s(STNAME, bs = "re") 48.4306 0.0000 ��� 47.6030 0.0000 ��� 47.5256 0.0000 ���

s(TI) 7.8119 0.0000 ��� 7.8680 0.0000 ��� 7.8693 0.0000 ���

s(Strip24, ICU24) 26.1415 0.0000 ��� / / / / / /

s(Strip11, ICU11) / / / 26.2568 0.0000 ��� 26.1633 0.0000 ���

Model fit:

R-sq.(adj) 0.163 0.12 0.108

Deviance explained 47.0% 24.40% 23.0%

Significance codes: 0

‘���’ 0.001

‘��’ 0.01

‘�’ 0.05 ‘.’ 0.1 ‘ ‘.

https://doi.org/10.1371/journal.pone.0258379.t003
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effects on dependent variables in all three models at a significant level. This indicates a higher

risk for people in an area of higher population density and more points of interest. The race

factors (“African percentage” and “Hispanic percentage”) are fitted as positive impacts on New

Death Rate at a significant level. The age factor (“age60”) shows significantly positive impacts

in the New Death Rate model and insignificant in New Case Rate and New Mild Case Rate

model. This indicates that older people are more vulnerable than younger people. With regard

to the NPTs (“Cross County trip” and “Cross State trip”), “Cross State trip” significantly influ-

ences the dependent variables positively in the three models. However, “Cross County trip”

shows relatively weaker linear impacts compared with “Cross State trip” in all three models. As

the virus spreads quickly and widely, we continue to observe a positive correlation between

PTs (“ICU utilization” and “Daily Test”) and dependent variables. This indicates that the pan-

demic continues to exert great pressure on our medical system throughout the time interval

among all counties in our research.

With respect to the non-linear effects in these three models, the estimated degrees of freedom

of the significant smooth terms are largely greater than 1.0, indicating a strong non-linearity for

the relationship between the smooth terms and dependent variables. The “Weekday” smooth term

is insignificant in all three models, indicating there are no weekly patterns of the dependent vari-

ables. The P-values of the smooth terms are smaller than 0.001 indicating their statistical signifi-

cance. Fig 1A–1C show the interactive effect of NPT and PT on the dependent variable in both

3-D and contour plotting. Of particular note is that the New Death Rate decreases when the “Cross

State trip” drops. Additionally, where the “Cross State trip” equals 0, the value of effect peaks when

“ICU utilization” is approximately 30 and then decreases along the axis. In other words, the mar-

ginal effect of “ICU utilization” on “New Death Rate” sharply drops at value 30 where “Cross State

trip” equals 0. At the value of “Cross State trip” under 150, the effect remains steady at a lower

value. However, as the value of “Cross State trip” becomes larger, a higher utilization rate of ICU is

needed to flatten the growth curve of the effect on New Death Rate. For instance, with the value of

“Cross State trip” exceeding 150, we may observe a drastic rising effect on “New Death Rate”.

What stands out in Fig 1A is that the derivative of the effect on New Death Rate reaches 0 at a

lower value along the “ICU utilization” axis given a lower “Cross State trip” (the cross-section

curve becomes flat) comparing with that given a higher “Cross State trip” value. Given a specific

“Cross State trip” value, the point at where the effect of “ICU utilization” reaching its peak and

then reducing can be regarded as a “status shift point” of our medical system. This peak point

gradually disappears along with the increasing of “Cross State trip” value. Therefore, the observa-

tion above supports that the “status shift point” is expected to be at an earlier stage along the “ICU

utilization” axis when the value of “Cross State trip” decreases. This supports with intuitive think-

ing that when more people travel in a pandemic, the greater pressure will be imposed on our medi-

cal system, and hence make it more challenging for our medical system to subdue the virus. The

curved surfaces in Fig 1A–1C indicate quantifiably substitutional impacts of NPT to PT. For exam-

ple, suppose the “ICU utilization” equals 120. Then, as long as the “Cross State trip” reduces from

225 to 100, the effect on Ln(New Death Rate+1) after 24 days decreases approximately from 2.75 to

1.0 (decrease from 14.64 to 1.72 by converting the effect on Ln(New Death Rate+1) to New Death

Rate). Similar findings also appear in the New Case Rate model and the New Mild Case Rate

model in Fig 1B and 1C. Same as the New Death Rate model, the more people travel, the “status

shift point” is expected to be at a later stage or even disappear on “ICU utilization” axis.

5.2 Robustness check

To do further robustness checks, we fit 3 new models as comparison by applying an identity

link function on dependent variables and assuming them to have a Gaussian distribution. The
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fitting results are listed in Table 4. The findings in the new fitted models are similar to those

reported in section 5.1. It shows the robustness on all explanatory variables. Table 5 makes a

brief comparison for all 6 models. The adjusted R-sq., deviance explained, AIC and BIC of

Gamma models are better than the Gaussian models, showing that the Gamma models fit bet-

ter than Gaussian models. It indicates that the assumption of Gamma distribution is closer to

reality than Gaussian distribution. Comparing the goodness-of-fit among different dependent

variables in Gamma models, we observe a better fit for the New Death Rate model than for the

New (Mild) Case Rate model. One convincing explanation is that the daily published death

number is more reliable than the case number, as case numbers are more likely to be impacted

by diverse diagnostic modes, misdiagnosis, restricted test capacity or even political reasons. In

contrast, when people die from illness, the related identification documents registered in gov-

ernment agencies have to be modified, which makes the death number more convincing and

more difficult to manipulate.

In order to check the robustness of the predictive ability, we also applied the 6 different

models to make predictions starting from May 28 to June 10. The training and prediction pro-

cess is looped weekly. The models are trained by all daily data before a specific day to predict

the dependent variable on the next week. The results are shown in Fig 2. The black curves rep-

resent the New Death Rate, New Case Rate, and New Mild Case Rate in the subplots, respec-

tively. The green curves stand for models with Gamma distribution assumption. The red

curves represent models with Gaussian distribution assumption. The “ICU utilization” is plot-

ted in blue histogram in the background. “Cross State trip” is barplotted in orange as back-

ground as well. It is observed that all models show good fittings and predictions.

6. Conclusion and discussion

The federal and state governments have enacted various complex combinations of responses

to COVID-19. The policies affect various people’s activities and result in different patterns of

movement and behavioral change. Many state governments have issued mandatory orders

impacting economic behaviors, and they have also increased their production and supplies of

masks, sanitizers, ventilators and other medical materials. This landscape makes balancing the

effect of NPTs and PTs a non-trivial task. This research is based on location-based service

data; we captured people’s real-time behavior instead of making assumptions of the efficacy of

NPT. This means our mobility metrics were driven by the actual number of people who

moved across state-bounds or county-bounds.

This research builds models for the whole nation from a macro point of view, treating vari-

ous states as random effects instead of building a unique model for each state or county. Our

results show a strong and statistically significant correlation between New Death Rate, New

Case Rate, New Mild Case Rate, and the treatments. We portrayed the variation and captured

the “status shift point” of PT at various levels of NPT. Crucially, the quantified interactive and

substitutional impact among NPT and PT should serve to support more accurate policy mak-

ing for state governments to find a better trade-off at an early stage in a pandemic. If cross-

state trips are reduced, this would potentially lessen not only new deaths and cases but also

new deaths and cases per ICU unit; far less efforts of PTs would be needed to stop the spread

of virus; the medical system would operate more smoothly hence the unit efficiency of the

medical system would increase.

Fig 1. (a) Interaction smooth terms of New Death Rate model (Gamma). (b) Interaction smooth terms of New Case Rate model

(Gamma). (c) Interaction smooth terms of New Mild Case Rate model (Gamma).

https://doi.org/10.1371/journal.pone.0258379.g001
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Table 4. GAM model estimation results (assuming Gaussian distribution).

Dependent Variable New Death Rate New Case Rate New Mild Case Rate

Parametric coefficients:

Linear Part Estimate P-value Sig. level Estimate P-value Sig. level Estimate P-value Sig. level

(Intercept) -1.8270 0.0000 ��� -0.2457 0.0000 ��� -0.2457 0.0000 ���

age60 0.0595 0.0000 ��� 0.0002 0.0293 � 0.0001 0.2549

Inc 0.0000 0.0000 ��� 0.0000 0.0000 ��� 0.0000 0.0000 ���

Afr 0.0936 0.0000 ��� 0.0012 0.0000 ��� 0.0011 0.0000 ���

Hisp 0.0313 0.0000 ��� 0.0014 0.0000 ��� 0.0014 0.0000 ���

Male -0.0328 0.0000 ��� 0.0031 0.0000 ��� 0.0032 0.0000 ���

PD 0.0004 0.0000 ��� 0.0000 0.0000 ��� 0.0000 0.0000 ���

Hot -0.0041 0.0000 v -0.0001 0.0000 ��� -0.0001 0.0000 ���

HB 0.3718 0.0000 ��� 0.0162 0.0000 ��� 0.0161 0.0000 ���

DTest24 0.5455 0.0000 ��� / / / / / /

Ctrip24 -0.0034 0.0000 ��� / / / / / /

Strip24 0.0738 0.0000 ��� / / / / / /

ICU24 0.0413 0.0000 ��� / / / / / /

DTest11 / / / 0.0176 0.0000 ��� 0.0160 0.0000 ���

Ctrip11 / / / 0.0000 0.0000 ��� 0.0000 0.0031 ��

Strip11 / / / 0.0025 0.0000 ��� 0.0024 0.0000 ���

ICU11 / / / 0.0013 0.0000 ��� 0.0012 0.0000 ���

Approximate significance of smooth terms:

Non-linear Part e.d.f P-value Sig. level e.d.f P-value Sig. level e.d.f P-value Sig. level

s(FE, bs = "re") 0.9830 0.0000 ��� 0.9938 0.0000 ��� 0.9933 0.0000 ���

s(Appr) 7.8657 0.0000 ��� 8.4416 0.0000 ��� 7.8780 0.0000 ���

S(Weekday) 0.3003 0.5560 0.0487 1.0000 0.0050 1.0000

s(STNAME, bs = "re") 48.7287 0.0000 ��� 47.5349 0.0000 ��� 47.4435 0.0000 ���

s(TI) 7.8136 0.0000 ��� 7.8654 0.0000 ��� 7.8638 0.0000 ���

s(Strip24, ICU24) 26.5259 0.0000 ��� / / / / / /

s(Strip11, ICU11) / / / 26.2871 0.0000 ��� 26.1883 0.0000 ���

Model fit:

R-sq.(adj) 0.16 0.116 0.104

Deviance explained 16.1% 11.60% 10.4%

Significance codes: 0

‘���’ 0.001

‘��’ 0.01

‘�’ 0.05 ‘.’ 0.1 ‘ ‘ 1.

https://doi.org/10.1371/journal.pone.0258379.t004

Table 5. Model comparison.

Dependent Variable Assumed Distribution R-squared Deviance explained AIC BIC

New Death Rate Gamma 0.163 47.00% 1154560 1155686

New Death Rate Gaussian 0.16 16.10% 1821156 1822292

New Case Rate Gamma 0.12 24.40% -620096 -618970.5

New Case Rate Gaussian 0.116 11.60% -395662 -394533.8

New Mild Case Rate Gamma 0.108 23.00% -608683.1 -607568.2

New Mild Case Rate Gaussian 0.104 10.40% -380003.7 -378888.3

https://doi.org/10.1371/journal.pone.0258379.t005
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The limitations of this research are summarized below. Though factors regarding spatial

density (“PD”: Population density, “Hot”: Point of Interest) are captured as significant factors,

they are both static variables. A combination with travel behaviors and spatial encounters

should be involved in a next-step study which reflects dynamic effects for factors referring to

spatial density. For further studies aiming at microscopic analysis, it might be possible to uti-

lize zip-code level data or more fine-grained trajectory data to analyze individual encounters

and incorporate additional details. Despite this research is mainly focusing on finding the sub-

stitution effect, one next step on making better predictions is also significant. Several previous

research suggest methods to overcome the model uncertainty and make better predictions.

For instance, we might explore applying different types of models and aggregate them by

Bayesian Model Averaging methodology [34, 35].

This research mainly discussed a one-way relationship between human mobility and the

spread of the COVID-19 virus. However, the opposite direction or the bi-directional relation-

ship also exist between the two variables. Previous research explored the opposite direction on

these two variables [11]. For the next step, the authors also plan to apply SEM (Structural

Equation Modeling) methodology [36, 37] to explore further on the bi-directional relationship.

In addition, people’s risk perception over time might significantly affect their behaviors and

affect the spread of the virus. In this case, we plan to utilize social media data such as Facebook,

Fig 2. Fit and prediction of all six models.

https://doi.org/10.1371/journal.pone.0258379.g002
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Twitter, Instagram and so on as input to our model to capture people’s changing in the risk

perception. Several studies have utilized social media data to extract people’s perception on

COVID-19 related incidents like travelling [38], lockdown [39] and risk mitigation strategies

[40].

As local governments will have to lift part of the mandatory orders as the time goes by,

more refined analysis on balancing the NPTs and PTs are urgently needed. Our findings high-

light a difficult point of decision-making in a pandemic, and also provide a macro view model

to support decision making. We hope our study may motivate both individuals and governors

to make more optimized decisions to help slow down the spread of pandemic.
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