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Background and purpose: Radiotherapy with dose painting by numbers (DPBN) needs another approach than
conventional margins to ensure a geometrically robust dose coverage for the tumor. This study presents a
method to optimize DPBN plans that as opposed to achieve a robust dose distribution instead robustly maximize
the tumor control probability (TCP) for patients diagnosed with head and neck cancer.

Material and methods: Volumetric-modulated arc therapy (VMAT) plans were optimized with a robust TCP
maximizing objective for different dose constraints to the primary clinical target volume (CTVT) for a set of 20
patients. These plans were optimized with minimax optimization together with dose-responses driven by stan-
dardized uptake values (SUV) from '®F-fluorodeoxyglucose positron emission tomography (‘*FDG-PET). The
robustness in TCP was evaluated through sampling treatment scenarios with isocenter displacements.

Results: The average increase in TCP with DPBN compared to a homogeneous dose treatment ranged between 3
and 20 percentage points (p.p.) which depended on the different dose constraints for the CTVT. The median
deviation in TCP increase was below 1p.p. for all sampled treatment scenarios versus the nominal plans. The
standard deviation of SUV multiplied by the CTVT volume were found to correlate with the TCP gain with
R*> = 0.9.

Conclusions: Minimax optimization of DPBN plans yield, based on the presented TCP modelling, a robust in-
crease of the TCP compared to homogeneous dose treatments for head and neck cancers. The greatest TCP gains
were found for patients with large and SUV heterogeneous tumors, which may give guidance for patient se-
lection in prospective trials.

1. Introduction

The concept “dose painting” [1] in radiotherapy (RT) embed the
hypothesis that it is beneficial to prescribe a spatially varying dose
distribution based on predicted dose response variations acquired from
functional imaging. For head and neck cancer it has in several studies
been shown that increasing standardized uptake values (SUV) from 18p.
fluorodeoxyglucose positron emission tomography (**FDG-PET) corre-
late with an increased recurrence risk after RT [2-7]. As noted in a
review by Bentzen and Grégoire [8], the simplest image based dose
prescription is an ad hoc linear mapping of image data into doses within
suitable dose ranges, as used in several planning studies [9-19].
However, the same reviewers stated that the dose prescription ideally

should be based upon empirical observations of pre-RT functional
image data with post-RT dose-responses. One example of such an em-
pirical approach have been presented by Vogelius et al. [5]. In their
study they analyzed post-RT recurrence frequencies for different tumor
regions defined by pre-RT '®FDG-PET image data, and derived dose-
response functions for use in a planning study of dose painting by
contours for head and neck cancer. Followed by the approach from
Vogelius et al. [5], we performed a retrospective analysis of the spatial
relation between pre-RT SUV and post-RT recurrences and derived
voxel specific SUV driven “dose painting by numbers (DPBN [20])”
prescriptions for head and neck cancer [4]. These dose prescriptions
were derived with the objective to maximize the tumor control prob-
ability (TCP) with the target volumes average dose constrained to that
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for conventional homogeneous treatments. However, we did not ex-
tensively analyze the deliverability of the resulting “ideal” dose pre-
scriptions (i.e. the dose values were locally assigned by neglecting ra-
diation transport, beam shaping, patient setup limitations, and TCP
function uncertainties).

To investigate the feasibility of DPBN to increase the TCP in a
clinical scenario, the resulting dose prescriptions must be expressed as
clinically deliverable dose plans. Robust procedures are hence needed
to consider the effect of geometrical uncertainties on the prescribed
heterogeneous dose distributions. Sterpin et al. [21] have proposed a
method to construct geometrically robust DPBN plans from a given
ideal dose prescription. In their approach they firstly dilate an ideal
dose prescription, followed by a deconvolution to mitigate effects of
systematic and random geometrical uncertainties, respectively. These
steps yield a dose distribution from which the final dose plan could be
optimized towards. However, the method from Sterpin et al. [21] relies
on the “static dose cloud approximation”, i.e. that temporal changes of
the anatomy has no impact on the spatial distribution of dose in the
machine frame of reference [22,23]. A more general method to ensure
geometrical robustness for treatment planning is minimax optimization.
The minimax concept dates back to the first half of the 20th century
[24] and is commonly used for decision making in e.g. game theory. For
RT, minimax optimization is based upon a set of simulated scenarios of
e.g. geometrical displacements of the isocenter and minimizes the ob-
jective value (that aims to be minimized) for the worst-case scenario
[23,25]. The method is a general approach to achieve robust results for
any reasonable treatment modality and objective function and should
hence also apply for the optimization of dose painting plans.

In this study we have combined minimax optimization with the
dose-response driven dose painting formalism given by Gronlund et al.
[4,26]. We have also taken measures to investigate the influence of
uncertainties for the dose-response functions used for robust DPBN
optimization. The aim was to evaluate the potential and robustness to
increase the TCP with clinically deliverable robustly optimized DPBN
plans as compared to conventional homogeneous dose plans for pa-
tients diagnosed with head and neck squamous cell carcinoma.

2. Materials and methods

A set of DPBN plans was optimized with a planning objective that
maximized the TCP under different mean target dose constraints for
patients with head and neck squamous cell carcinoma. The TCP max-
imizing objective was implemented in a treatment planning system
(TPS) and was based upon the method formulated by Gronlund et al.
[4], where SUV from '®FDG-PET are mapped to voxel specific dose-
response functions. To ensure robustness with respect to isocenter po-
sitioning uncertainties, we utilized robust minimax optimization
[23,25]. To test the robustness of both the dose distributions and the
predicted TCP increases, we simulated a multitude of treatment sce-
narios by computing perturbed dose distributions resulting from
random displacements of the planning isocenter. For a representative
subset of the patients the additional impact of potential uncertainties of
the SUV driven dose-response functions was also investigated.

2.1. Patient data for dose planning

A total of 20 patients treated with RT for head and neck squamous
cell carcinoma were included. All of these had undergone '*FDG-PET/
CT imaging before RT and had target volumes and risk organs seg-
mented according to clinical protocols. The included patients con-
stituted a subset of the 59 patients used as a learning set to derive ideal
dose painting prescriptions in our previous study [4,26] (Uppsala board
ethical approval reference number 2014/287). These ideal dose
painting prescriptions were optimized to maximize the TCP for the
CTVT under the requirement of equal average dose to the CTVT as for
the conventional homogeneous dose treatment of 70.1 Gy given to the
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learning set patients [4]. The ideal dose painting prescriptions did not
consider radiation transport phenomena, dose delivery uncertainties, or
uncertainties of the dose-response functions. The 20 patients were se-
lected out of the 59 learning set patients on the basis to evenly represent
the range of TCP increases compared to a homogeneous dose resulting
from the ideal dose painting prescriptions of the learning set.

2.2. Integration of robust TCP maximization into a TPS

We implemented the SUV based dose-response functions from our
previous work [4,26] into a research version of a TPS (RayStation v.
5.99.50.54, RaySearch Laboratories AB, Stockholm) for use as a dose
painting objective to maximize the TCP for the primary tumor target
volume (CTVT). Under the assumption of voxel independency, the TCP
was calculated as the product of voxel specific TCP values TCP,y for
the voxels belonging to the target volume (i.e. the CTVT). Since
RayStation optimizes the dose by minimizing planning objective sca-
lars, we formulated the SUV based TCP maximizing objective as

I

minimize 1 —
d voxeCTVT

(TCPVDX (DEQngy (d),SUV) )fvox

€y
where TCP,, is the voxel specific dose-response function which is a
function of the voxel’s dose in EQD, (equivalent dose in 2 Gy fractions)
and SUV. The dose in EQD, was determined from the physical dose d
with @/ = 10 Gy. Moreover, f, is the fraction of a voxel that is within
the CTVT. The TCP,x functions had been derived in our earlier study
[4], given as

4750
TCRox(d,SUV) = [1 + [M]
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where
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with D, = 70.1 Gy EQD,, (representing the mean dose given to the
patients of the learning set [4]), a = 1.083-1072 (the slope of the local
control ratio [4,26]), b = 2.900-10~3 (the normalizing exponent denoted
as ‘k’in [4,26]), and finally %, = 1.659. The values of a, b and ¥, include
corrections for a normalization error of the SUV data in [4] as described
in [26]. Furthermore, for robust minimax optimization we included the
planning objective given in Eq. (1) into the optimization problem that
the TPS strives to fulfill
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where w; is the importance weight for the planning objective f;, n is the
number of objectives used with minimax optimization, m is the number
of objectives used without minimax optimization, Q is the number of
constraints c, used with minimax optimization, and J is the number of
constraints ¢; used without minimax optimization. The minimax part of
the optimization selects, for each iteration, the maximum value out of K
dose error scenarios di, i.e. the worst-case scenario is the one mini-
mized. See Table 1 for specification of the used objectives and con-
straints.

2.3. Set up of treatment plans

For each patient we optimized four volumetric-modulated arc
therapy (VMAT) plans with: the intention of delivery for 35 fractions
without any adaptive modifications between the fractions; 2 arcs
completing a full rotation; 6 MV photons from a Versa HD™ linear ac-
celerator; and the dose calculated on a grid with 3.0 x 3.0 x 2.5 mm?
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Table 1

The objectives and constraints used for optimizing the three sets of DPBN plans
with a mean dose constraint to the CTVT of either 70 Gy, 75 Gy or not applied
(N/A). The weighting factor for the dose painting objective “maximize TCP” is
set to unity, the other weighting factors are given relative to this objective.

Optimization objectives and constraints

Structures Objective Weighting Robustness
factor distance
CTVT maximize TCP 1 0.5 cm
Dogo, = 60 Gy Constraint 0.5 cm
Dy < 84 Gy Constraint 0.5 cm
Diean = 70 Gy or Constraint 0.5 cm
75 Gy or N/A
Therapeutic nodes;  Dggoy, = 66.5 Gy 350 N/A
PTVN-T
Doy, < 73.5 Gy 150 N/A
Prophylactic nodes;  Dogo, = 47.5 Gy 350 N/A
PTVN-P
Dy, < 52.5 Gy 150 N/A
Spinal cord Dy, < 46 Gy Constraint 0.5 cm
Mandible Dy, < 72 Gy 5 N/A
Dipean < 65 Gy 5 N/A
Parotid Diean < 26 Gy 5 N/A
Esophagus Diean < 34 Gy 5 N/A
Larynx Diean < 44 Gy 5 N/A
External Dose falloff: 70-14 Gy 20 N/A
for 1.5 cm

voxels. Of these four plans, one reference plan was optimized with a
homogeneous dose of 70 Gy to the PTVT (i.e. the CTVT expanded with
the clinically used PTV margin of 0.5 cm), while the other three plans
were optimized as TCP maximized DPBN plans under various constraint
settings. Two constraints were used for all three DPBN plans: a hot spot
limitation constraint of D, .3 < 84 Gy physical dose for the CTVT
(based on the study from Olteanu et al. [27]); and a minimum allowed
dose to the CTVT of Dggy > 60 Gy to allow for a dose reduction to re-
gions with low SUV. Furthermore, for two DPBN plans we constrained
the mean dose for the CTVT to either 70 Gy (based on the conventional
homogeneous treatment dose for these patients), or 75 Gy as a dose
escalation test. For the third DPBN plan we used the maximum dose
constraint of D, .3 < 84 Gy only. The minimax optimization was used
with an isocenter position uncertainty of 0.5 cm (denoted as robustness
distance in Table 1) and was based on the clinically used CTVT-to-PTVT
margin of 0.5 cm. For this robustness distance, the minimax optimiza-
tion utilized 7 error scenarios of the isocenter positioning in the car-
dinal directions (i.e. 7 error positions by including the nominal iso-
center position). Furthermore, the intended dose to the lymph node
target volumes were not optimized with DPBN but set to 70 Gy for the
therapeutic lymph nodes (PTVN-T) and 50 Gy for the prophylactic
lymph nodes (PTVN-P). To avoid conflicting objectives, all overlap
between the lymph node volumes and the CTVTs was removed with a
margin of 0.5 cm (i.e. the lymph node volumes were reduced but the
CTVTs were preserved in their original state). See Table 1 for further
details of the used objectives for dose optimization.

2.4. Evaluation of robustness of TCP and dose criteria

We evaluated the robustness in TCP predictions and fulfilled dose
criteria for all DPBN plans and for all 20 patients through simulating
treatment scenarios with displacements of the isocenter. For this pro-
cess we sampled a systematic displacement xy for all 35 fractions, and
for each fraction a random additional displacement x, that yielded the
total displacement per fraction of xg,. = Xy + X,. The total treatment
dose (i.e. the dose for a treatment scenario) was hence calculated as the
sum of the sampled fraction doses. The values of xy and x, were sam-
pled from isotropic 3D-Gaussian distributions with zero mean and
standard deviations of 0.19 cm for xy and 0.13 cm for x,. These values
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were calculated (according to van Herk et al. [28]) by using data of the
pre-CBCT setup positioning and the post-CBCT setup correction ac-
quired for several fractions (in average for 10 fractions) for 58 head and
neck cases treated at Uppsala University hospital. A total of 25 treat-
ment scenarios were sampled, requiring in total 25 X 35 = 875 frac-
tion specific dose calculations per plan.

2.5. Evaluation of the impact on the TCP by dose-response uncertainties

The impact on the potential to increase the TCP with DPBN due to
inherent uncertainties in the voxel specific TCP,,, function given in
Egs. (2-3) was analyzed. For this analysis we derived a set of perturbed
TCP,ox functions under the assumption that the recurrence frequency of
the learning set data either was increased or decreased by one standard
deviation from the observed recurrence frequency for the original
learning set (given in [4]). We used these perturbed TCP;,, functions in
Eq. (1) and optimized a new set of DPBN plans for a subset of the pa-
tients (6 patients).

3. Results

Based on the optimized DPBN plans we found that the TCP in
comparison to the TCP for the homogeneous dose plans increased with
the average of 3 percentage points (p.p.) (range 0-9p.p.), 12p.p. (range
2-27p.p.), and 20p.p. (range 4-45p.p.), for the optimizations with the
mean dose constrained to 70 Gy, 75 Gy and not constrained, respec-
tively (see Fig. 1). The TCP increases were found to correlate with the
standard deviation of SUV multiplied by the volume of the CTVT, i.e.
larger and more heterogeneous tumors had a greater potential for TCP
increases (linear fits with the corresponding R? values are included in
Fig. 1). It was also clear that the patients with the poorest prognosis for
a homogeneous dose received the greatest TCP increases (see Fig. 1).
Furthermore, regarding the impact of utilizing perturbed dose-response
functions during the TCP maximization, it was found that it affected the
TCP predictions (see Fig. 1) but had a very low impact on the resulting
optimized dose distributions.

The robustly optimized DPBN plans were found to have consistently
robust TCP values with a median deviation below 1p.p. for all 25
sampled treatment scenarios per plan and patient. The maximum ob-
served deviation in TCP increase for a single scenario was 3.5p.p.,
found for a patient’s plan optimized without a mean dose constraint
where the nominal plan had a TCP increase of 18.6p.p. Moreover, Fig. 2
show dose-volume coverage maps (DVCM) for the spinal cord and the
parotid belonging to all 20 patients, where the constraint of
Dy, < 46 Gy was consistently fulfilled for the spinal cord of each pa-
tient. However, the objective for the parotid of Dyean = 26 Gy was not
always fulfilled.

For one of the included patients are the resulting VMAT planned
voxel doses versus SUV shown (Fig. 3). For comparison are also the
ideal voxel doses shown (i.e. voxel doses optimized to maximize the
TCP for the CTVT for the same planning constraints but without con-
sidering radiation transport phenomena or geometric uncertainties). As
expected, the TCP for the ideal voxel doses was slightly larger than for
the robustly optimized DPBN plans.

4. Discussion

Several aspects of dose painting need profound consideration before
clinical implementation. Besides evidence from clinical trials that de-
monstrate a favorable improvement of the TCP and the normal tissue
complication probability (NTCP), the planning and delivery methods
must ensure that the DPBN plans can be reliably delivered for clinical
routine work. In this study we have focused on utilizing minimax op-
timization to achieve robustness for TCP and associated dose volume
parameters for organs at risk. This approach is in contrast to other
studies (such as Witte et al. [14] and Sterpin et al. [21]) that have
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Fig. 1. The left column panels show TCP increases for the DPBN plans relative to the TCP for conventional plans with a homogeneous target dose of 70 Gy. These TCP
increases are plotted versus the standard deviation of SUV multiplied by the CTVT volumes. Also shown are linear fits with the corresponding slope, intercept and R*
values (the rightmost data point was excluded as an outlier for the fittings). The right column panels show the TCP increases for the DPBN plans in comparison to the
TCP for the homogeneous dose plans with 70 Gy target dose. The panel rows differentiate the results for the DPBN plans without a mean dose constraint (uppermost),
mean dose constraint 75 Gy (middle row), and 70 Gy (lowermost). Error bars are included in both columns (for a subset of six patients) where the red bars show
results for a simulated decrease of the TCP for the learning set and vice versa for the blue bars (simulated with a decrease or increase of the learning set’s TCP by one
standard deviation for both cases). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

aimed to acquire robustness for a specific dose distribution. Our ap-
proach does however share some similarities with the study from Witte
et al. [29] that implemented a planning objective that strived to opti-
mize towards a high expectation value of the TCP by including both
systematic and random uncertainties of the CTV positioning. Their
approach did however utilize a Poisson dose-response modelling (based
on Webb and Nahum [30]) and needed an accurate estimation of both
the systematic and random uncertainties of the CTV positioning to
ensure a robust TCP.

By sampling treatment scenarios with random displacements of the
isocenter it was verified that the TCP increases for DPBN in comparison
to the TCP for a homogeneous dose were robust. For the patient shown
in Fig. 3, the predicted TCP decreased at worst by 4p.p. for the robustly
optimized DPBN plans in comparison to the TCP for the ideal voxel dose
prescriptions. Furthermore, it is likely that the intrinsic dose blurring
caused by radiation transport processes is a larger cause for reducing
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the TCP gain with DPBN plan optimization as compared to the use of
robust minimax optimization. We tested this for the patient presented
in Fig. 3 by comparing the TCP for the ideal voxel doses versus the TCP
for non-robustly optimized DPBN plans and found a decrease in TCP of
3p.p. as compared to at worst 4.p.p. for the robust DPBN plans. This
observation may indicate that the minimax optimization does not cause
a major decreasing effect on the achievable TCP gains.

The potential gains in TCP with robust DPBN, as illustrated in Fig. 1,
indicate that larger and more heterogeneous tumors gain the highest
TCP increases with dose painting, as predicted in our earlier article [4].
More speculative planning compromises could be investigated through
explicit modelling and inclusion of normal tissue complication prob-
abilities (NTCP), as suggested by e.g. Vogelius et al. [5]. We have not
taken that step in our study, but instead used the maximum re-
commended target dose from Olteanu et al. [27] together with com-
monly used DVH limitation objectives (Table 1) to simplify
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Fig. 2. The left column panels show dose volume coverage maps (DVCM) for the spinal cord of all 20 patients based on 25 treatment scenarios per plan, each
including 35 fractions. The red arrows show the dose-volume constraint used for the spinal cord (i.e. Dy, < 46 Gy). The right column panels show the corresponding
DVCMs for the parotid volumes with the mean dose objective Dyean < 26 Gray marked as a red bar around 50% volume. The panel rows differentiate the results for
the DPBN plans without a mean dose constraint (uppermost), 75 Gy mean dose constraint (middle row), and 70 Gy (lowermost). The unit probability area (reddish-
brown color) marks the dose-volume region that were certain for all patients and all scenarios while zero probability (deep blue) show the dose-volume regions never
actualized. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

comparisons with current clinical practice. As seen in Fig. 2, the spinal
cord constraint Doy, < 46 Gy was consistently fulfilled for all plans and
treatment scenarios. However, for some patients the parotid volumes
were overlapping with the CTVT or lymph nodes, which for these cases
implied conflicting objectives where a dose coverage for the tumor
target was prioritized.

Our study is based on a dose painting formalism where empirical
correlations of pre-treatment image data with post-treatment recur-
rence locations is used for TCP modelling, as described in our earlier
article [4] and corrected for a normalization error of the SUV data in
[26]. One major assumption is that tumor control for a voxel is un-
correlated with all other voxels (as in Ebert and Hoban [31]). Another
assumption is that the dose-response can be characterized with a lo-
gistic dose-response function driven by the parameters D5, and y,
[3229], where Ds, is assigned as a function of SUV from '®FDG-PET (see
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Egs. (2-3)), and y is set constant as in Vogelius et al. [5]. An empirical
SUV-dependent value of y,would have been more appealing but re-
quires observed failure frequencies at different dose levels, which was
not available from our learning set data. Large scale pooling of multi-
institutional data could enable more elaborated dose-response model-
ling but was beyond the scope of this study. However, the impact on the
TCP from potential recurrence uncertainties was evaluated by opti-
mizing plans with a perturbed set of the voxel specific TCPvox func-
tions. The results of optimizing with these perturbed functions are
shown in Fig. 1, which demonstrate that if the TCP prediction for a
homogeneous dose decrease the dose painting allows for almost all
cases a larger TCP increase, and vice versa. These observations are more
noticeable for the patients with a poorer prognosis and by escalating the
allowed dose (see Fig. 1).

There may be uncertainties of using SUV from FDG-PET as a basis to
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optimize dose painting plans. However, in the review from Lodge et al.
[33] they report that SUV is a highly replicable metric to quantify FDG-
uptake. Moreover, Rasmussen et al. [34] analyzed the spatial and
temporal impact on TCP predictions for a dose painting setting in
comparison to the TCP for a conventional homogeneous dose. By using
two different FDG-PET scans acquired with an interval of three days
and using a logistic dose-response model, they found that the TCP
prediction differed with less than 1% for 23 out of 24 patients. Fur-
thermore, the TCP increases with dose painting versus a homogeneous
dose from our earlier work [4] did not change much when the SUV was
corrected for activity decay [26]. This indicates that the major driving
force for TCP benefits with dose painting is the SUV heterogeneity,
rather than the absolute values, also reported in [4] for a test with
relative versus absolute SUV. All together, these findings suggest that,
at least for the startup of a DPBN treatment, uncertainties of the **FDG-
PET image data is not a major issue. However, we have not investigated
whether adaptation of '®FDG-PET driven dose painting optimization
between treatment fractions is beneficial, although shown feasible by
Duprez et al. [13].

Dose painting is still under development and has to our knowledge
not yet been proved by clinical studies as an outcome-improving
treatment technique. For example, Berwouts et al. [35] performed a
long-term analysis of the outcomes for patients with head and neck
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Fig. 3. The left column panels show the robustly
planned VMAT voxel doses vs. SUV within the CTVT
for one of the patients (the CTVT is marked by the
blue contour in the right column). The corre-
sponding ideal dose painting prescriptions are also
shown (i.e. voxel doses vs. SUV optimized under the
same constraints but without considering radiation
transport phenomena or geometrical robustness).
The right column shows the corresponding dose
distribution overlaid on a fused PET/CT image slice
for the same patient. The panel rows differentiate
the results for the DPBN plans without a mean dose
constraint (uppermost), 75 Gy mean dose constraint
(middle row), and 70 Gy (lowermost). The TCP
predictions for both the robust VMAT planned voxel
doses and the ideal voxel doses are also shown. This
patient had a TCP prediction of 61% for a homo-
geneous dose treatment with 70 Gy (not shown).
(For interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

cancer that either had been treated with dose painting or conventional
IMRT. They found that dose painting increased the risks for toxicities
but without significant improvement in outcomes as compared to the
control group. However, their dose painting prescriptions was acquired
from a linear mapping of SUV from '®FDG-PET into voxel doses and did
not explicitly involve optimization of the TCP or include considerations
of the average dose to the target volumes.

Further studies are needed to test whether a direct application of an
empirically driven dose painting formalism can improve the prospects
for patients with head and cancer. It would indeed be compelling to test
the presented dose-response functions on another independent set of
patients with head and neck cancer and study whether the TCP pre-
diction is in line with the observed TCP of such an independent patient
cohort. If such a study would prove to be veracious, a next step would
be to start a clinical trial. As an example, using the metric of
osuv X Veryr > 200 cm? as inclusion criteria for a hypothetical trial,
the estimated average TCP would, based on the presented data, increase
from 63% (for a homogeneous treatment) to 76% (for the dose painting
treatment with a mean dose constraint of 75 Gy). To detect this TCP
difference, it would for 90% power and 5% level of significance require
a study size of at least 215 patients in each arm. If such a trial would be
successful, a final step would be to study whether DPBN is the true
cause of the TCP increase.
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In conclusion, robust minimax optimization of TCP with SUV driven
dose-response functions can yield dose painting plans that demonstrate
a robustly increased TCP versus homogeneous dose treatments for head
and neck cancers. Potential inherent uncertainties of the SUV driven
dose-response functions affect the TCP predictions but does still yield a
TCP increasing potential. The TCP increases correlated with the volume
and SUV heterogeneity of the tumors, which may give guidance for
patient selection in prospective trials.
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