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Abstract
Background  The deposition of β-amyloid (Aβ) in the brain is a biomarker of Alzheimer’s disease (AD). Highly sensitive 
Aβ positron emission tomography (PET) imaging plays an essential role in diagnosing and evaluating the therapeutic effects 
of AD.
Aim  To synthesize a new Aβ tracer [18F]DRKXH1 (5-(4-(6-(2-[18]fluoroethoxy)ethoxy)imidazo[1,2-alpha]pyridin-2-yl)
phenyl) and evaluate the tracer performance by biodistribution analysis, in vivo small-animal PET-CT dynamic scan, ex vivo 
and in vitro autoradiography, and PET in human subjects.
Methods  [18F]DRKXH1 was synthesized automatically by the GE FN module. Log D (pH 7.4) and biodistribution of [18F]
DRKXH1 were investigated. Small-animal-PET was used for [18F]DRKXH1 and [18F]AV45 imaging study in AD transgenic 
mice (APPswe/PSEN1dE9) and age-matched normal mice. The distribution volume ratios (DVR) and standardized uptake 
value ratios (SUVRs) were calculated with the cerebellum as the reference region. The deposition of Aβ plaques in the brain 
of AD transgenic mice was determined by ex vivo autoradiography and immunohistochemistry. In vitro autoradiography 
was performed in the postmortem brain sections of AD patients and healthy controls. Two healthy control subjects and one 
AD patient was subjected to in vivo PET study using [18F]DRKXH1.
Results  The yield of [18F]DRKXH1 was 40%, and the specific activity was 156.64 ± 11.55 GBq/μmol. [18F]DRKXH1 was 
mainly excreted through the liver and kidney. The small-animal PET study showed high initial brain uptake and rapid washout 
of [18F]DRKXH1. The concentration of [18F]DRKXH1 was detected in the cortex and hippocampus of AD transgenic mice 
brain. The cortex DVR of AD transgenic mice was higher than that of WT mice (P < 0.0001). Moreover, the SUVRs of AD 
transgenic mice were higher than those of WT mice based on the 0–60-min dynamic scanning. In vitro autoradiography 
showed a significant concentration of tracer in the Aβ plaque-rich areas in the brain of AD transgenic mice. The DVR value 
of [18F]-DRKXH1 is higher than that of [18F]-AV45 (1.29 ± 0.05 vs. 1.05 ± 0.08; t = 5.33, P = 0.0003). Autoradiography of 
postmortem human brain sections showed [18F]DRKXH1-labeled Aβ plaques in the AD brain. The AD patients had high 
retention in cortical regions, while healthy control subjects had uniformly low radioactivity uptake.
Conclusions  [18F]DRKXH1 is an Aβ tracer with high sensitivity in preclinical study and has the potential for in vivo detec-
tion of the human brain.

Keywords  Alzheimer’s disease (AD) · β-Amyloid · Amyloid imaging · Positron emission tomography (PET) · [18F]
DRKXH1

Introduction

Alzheimer’s disease (AD) is the leading cause of demen-
tia in elderly people worldwide, which emerges as one of 
the significant challenges to the health care system in the 
twenty-first century [1].

The typical pathophysiological changes of AD are the 
deposition of extracellular neuroinflammatory plaques 
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and nerve fiber tangles in neurons. The deposition of 
β-amyloid (Aβ) plaques and phosphorylated tau protein 
results in neuronal damage and brain function damage. 
Nevertheless, the only gold standard for the diagnosis of 
AD is a detailed brain autopsy on the patient’s brain [2]. 
Nowadays, the main clinical diagnostic methods of AD 
include cognition and behavioral evaluation. When clinical 
symptoms, such as cognitive decline, occur, neurons are 
damaged irreversibly, and the potential repair opportunity 
is missed [3]. Therefore, sensitive and non-invasive detec-
tion of pathophysiological biomarkers is needed to facili-
tate early diagnosis, which is essential for the intervention 
treatments and delaying the development of AD. Aβ accu-
mulation is an early event of AD and is widely considered 
the initial trigger for a cascade of other pathophysiological 
events [4]. Significantly advancing the diagnosis time of 
AD, in vivo imaging of Aβ plaques in the brain based on 
positron emission tomography (PET) plays an essential 
role in the pathophysiological mechanisms underlying AD 
development and the efficacy evaluation of the Aβ drug 
therapy [5].

In the past 20 years, a series of Aβ radioactive tracers, 
such as benzothiazole derivatives [11C]PIB (2-[4-(methyl-
[11C]-amino) phenyl]-6-hydroxybenzothiazole) [6, 7], [11C]
AZD2184(2-[6-(methylamino) pyridin-3-yl]-1,3-benzothia-
zol-6-ol), have been developed to visualize the deposition of 
Aβ plaques in the brain [8]. Although [11C]PIB is the most 
intensively studied tracer, its short half-life limits the clinical 
application. 18F-fluorination tracer has a suitable half-life, 
which enables the applicability of PET in a wide patient 
population. [18F]Flutemetamol(2-(3-[18F]4-(methylamino)
phenyl)-1,3-benzothiazole-6-ol) [9] and [18F]AV45 ((E)-4-
(2-(6-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)pyridine-
3-yl)vinyl)-N-methyl benzenamine) [10] have been approved 
for clinical use. Nevertheless, these agents can detect Aβ 
plaques in AD patients’ brains; however, the relatively high 
retention of white matter decreases the signal-background 
ratio [8]. Moreover, these tracers cannot detect toxic amyloid 
oligomers, which contain neurotoxic substances and appear 
earlier than Aβ plaques.

Therefore, it is crucial to develop a new type of Aβ radi-
oactive tracer to resolve these issues. [125I]DRK092 is an 
imidazopyridine single photoemission computed tomog-
raphy (SPECT) probe with a high affinity to Aβ. Chen 
et  al. reported that the binding power of [125I]DRK092 
to Aβ was significantly higher than that of [125I]IMPY 
(2-(49-dimethylaminophenyl)-6-iodoimidazo[1,2-a]pyri-
dine) [11, 12], with a high brain uptake rate and low non-
specific binding. Positron emission tomography-computed 
tomography (PET-CT) is advantageous in diagnosing nerv-
ous system diseases because it has a higher resolution than 
SPECT. However, this restricts the application of [125I]
DRK092 in PET-CT [13].

Thus, we modified the structure of DRK092 to improve 
its pharmacokinetics and facilitate [18F] labeling. In this 
study, we synthesized the new compound [18F]DRKXH1 
and investigated a fully automated synthesis method of [18F]
DRKXH1, which would be beneficial for future application. 
Herein, we evaluated the tracer performance by biodistribu-
tion analysis, in vivo small-animal PET-CT dynamic scan, 
ex vivo and in vitro autoradiography, and PET in human 
subjects.

Materials and methods

Animals

C57BL/6 mice were purchased from Shanghai SLAC Lab-
oratory Animal Co., Ltd. AD transgenic mice (Genotype: 
APPswe/PSEN1dE9) were used in this study. The present 
study was approved by the Laboratory Animal Ethics and 
Welfare Committee Xinhua Hospital Affiliated to Shang-
hai Jiao Tong University School of Medicine (approval no. 
XHEC-F-2019–062). The Experimental Committee on Ani-
mal Ethics of Xinhua Hospital guidelines were followed for 
the care and use of animals. All animal experiments fol-
lowed the animal welfare committee recommendations.

Radiosynthesis of [18F]DRKXH1

The precursors and standard materials were purchased from 
WuXi AppTec Co. Ltd (Qidong, China). The reagents used 
in this study were commercial products and did not need 
further purification. The [18F]-fluoride produced by the 
accelerator was transferred to the module, dehydrated, and 
placed in the reaction tube, as described previously [14]. 
The precursor (3 mg) was dissolved in the dimethylforma-
mide solution and heated at 120 °C for 20 min. Then, 2 mL 
saline was added to the reaction tube and subjected to high-
performance liquid chromatography. The distillate was col-
lected after 13 min and evaporated using a rotary evapora-
tor for 10 min at 180 °C. Next, 5 mL saline was injected 
into the evaporator. The evaporator’s solution was filtered 
through a 0.22 μm sterile membrane (Millex-GV, Millipore). 
HPLC separation conditions: HPLC Column, XBridge C18, 
10 × 250 mm, 10 μm (Waters, Milford, MA); mobile phase: 
0.1% TFA + MeCN; flow rate 6 ml/min; conditions: 0–3 min 
5%; 3–10 min 5–25%; 10–25 min 25–40%; 25–35 min 40%; 
35–40 min 40–90%; 40–45 min 90%. The purified solution 
was identified by analytical HPLC. HPLC condition: Col-
umn, XBridge C18, 4.6 × 250 mm, 10 μm (Waters, Milford, 
MA), mobile phase: 45%: 55% acetonitrile: water, flow rate: 
1 ml/min, UV: 350 nm. The purified solution was mixed 
with [19F]DRKXH1 standard and injected into HPLC sys-
tem to identify whether the product in the solution was [18F]
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DRKXH1. [18F]-AV45 was radiolabeled according to a pre-
viously reported procedure [15].

Lipophilicity measurement

According to the liquid–liquid partition method (shaking 
flask method), Log D7.4 of [18F]DRKXH1 was measured by 
partition between n-octanol and sodium phosphate buffer 
(pH 7.4) at room temperature [16].

Biodistribution

A total of 30 wild-type (WT) mice (8 weeks old, female, 
21–23 g) were used for the biodistribution study. [18F]
DRKXH1 was injected into the tail vein. Then, the mice 
were euthanized by inhaling 100% carbon dioxide at the 
indicated time points of 1, 5, 15, 30, 45, and 60 min, and the 
group of each time point consisted of 5 mice. Subsequently, 
the mice were dissected, and the blood, whole brain, heart, 
liver, small intestine, spleen, lung, kidney, rectus femoris 
muscle, and femur were excised for weighed radioactivity 
count by a gamma counter (SN-695, Solar Ring Photoelec-
tric Instrument, Shanghai, China). The enumeration data 
were converted into the percentage of the injected dose per 
gram of wet issue (% ID/g).

In vivo small‑animal‑PETCT dynamic scan and MRI

In this PET-CT study, 22-month-old AD transgenic mice 
(female, n = 6) and age-matched WT mice (female, n = 5) 
were enrolled. The PET imaging used small-animal PET-
CT (Siemens Medical Solutions, Knoxville, TN, USA). The 
scanning was started immediately after injection of [18F]
DRKXH1 (17.46 ± 0.76 MBq) or [18F]-AV45 (17.53 ± 0.64) 
into mice with a tail vein indwelling needle. The dynamic 
scanning lasted for 60 min, and the acquisition was divided 
into 29 frames (12 × 10 s, 6 × 30 s, and 11 × 300 s). The PET 
scan data were modeled according to the protocols reported 
previously [17].

Mice were put in a radiofrequency coil and placed in 
an 11.7 T Bruker BioSpec high-field MRI system (Bruker 
BioSpin MRI GmbH, Ettlingen, Germany). Based on the 
MRI template images, we outlined cortex, cerebellum, 
whole brain, hippocampus, and petrous bone as the regions 
of interest (ROIs) to generate time-activity curves (TACs). 
The cerebellum was selected as the reference region, and 
the cortex was selected as the Aβ-rich region for analysis. 
A simplified reference Logan model was used instead of the 
plasma input function to calculate the distribution volume 
ratios (DVR) based on the 0–60-min dynamic PET scan 
[18]. On the other hand, standardized uptake value ratios 
(SUVRs) were calculated relative to the cerebellum for the 
entire dynamic PET scan.

The 22-month-old AD transgenic mice (female, n = 3) 
were assessed by dynamic PET scan for displacement stud-
ies. For this, [19F]DRKXH1 (10 mg/kg) was injected 40 min 
after [18F]DRKXH1 (18.15 ± 1.33 MBq) injection [19], and 
the whole brain was drawn as ROI to obtain the TAC during 
the 0–60 min dynamic.

Ex vivo autoradiography

The 22-month-old AD transgenic mice (female, n = 6) 
and age-matched WT mice (female, n = 6) were injected 
with [18F]DRKXH1 (18.94 ± 0.88  MBq) into the tail 
vein. The animals were euthanized at 30, 40, and 60 min; 
then, the brain was removed immediately and sliced into 
100-μm-thick sections. These sections were placed on an 
imaging plate (BAS-MS 2025, FUJIFILM, Japan) and 
exposed for 4 h, followed by scanning with Amersham™ 
Typhoon™ Biomolecular Imager (GE Healthcare) and the 
autoradiograms were analyzed by using ImageQuant TL 8.1 
software (GE Healthcare). The cortex and cerebellum were 
drawn as ROIs.

In vitro autoradiography

The paraffin brain Sects. (30 μm) of AD patients, healthy 
control subjects, and 22-month-old AD transgenic mice 
were incubated with [18F]DRKXH1 (0.3 nM) in 50 mM 
Tris–HCl buffer containing 40% ethanol for 1 h at room 
temperature [10]. [19F]DRKXH1 (10 μm) was incubated 
with [18F]DRKXH1 for the inhibition experiments [20]. 
Then, the sections were washed with saturated Li2CO3 in 
40% ethanol, dipped into 40% ethanol for 2 min, and rinsed 
under flowing water for 30 s[10]. After drying, the brain 
sections were placed on an imaging plate (BAS-MS 2025, 
FUJIFILM, Japan) and exposed for 4 h, followed by scan-
ning with Amersham™ Typhoon™ Biomolecular Imager 
(GE Healthcare).

Immunohistochemical staining

The immunostaining was performed using Aβ1-42 (1:250 
dilution) antibody (the detailed protocols are provided in the 
supplementary information). The human brain sections were 
stained for thioflavin-S, according to the methods described 
previously [21].

PET study in human subjects

Based on the preclinical findings, we enrolled AD patients 
and healthy control subjects in performing a PET study after 
the injection of [18F]DRKXH1. The present study aimed to 
evaluate the effectiveness of [18F]DRKXH1 in distinguishing 
AD patients from healthy individuals. This study complied 
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with the Declaration of Helsinki and was approved by the 
Ethics Committee Xinhua Hospital Affiliated to Shanghai 
Jiao Tong University School of Medicine (approval no. 
XHEC-F-2019–120). All subjects signed informed consent 
before participation in the study.

The AD patients were recruited, examined, and diagnosed 
by qualified attending neurologists. All physicians abided by 
the uniform diagnostic criteria, including detailed medical 
history and mini-mental state examination (MMSE).

All subjects underwent a PET assessment at 45 min after 
intravenous bolus injection of [18F]DRKXH1(370 MBq). 
Siemens Biograph 64PET/CT (Erlangen, Germany) was 
used for three-dimensional (3D) scanning. Before PET 
scanning, a low dose CT transmission scan was performed, 
and attenuation correction was performed. The image recon-
struction was carried out by ordered subset expectation max-
imization 3D (OSEM 3D) method.

Statistical analyses

All statistical analyses were performed using an IBM Statis-
tical Package for Social Sciences. (SPSS) 22.0. All quantita-
tive data were presented as mean ± standard deviation (SD) 
and compared using a two-sample Student’s t test. Statistical 
significance was set at P < 0.05.

Results

Radiosynthesis of [18F]DRKXH1

The multifunctional module automated synthesis of [18F]
DRKXH1 required approximately 60 min, with a yield 
after decay correction of 40% and specific activity of 
156.64 ± 11.55 GBq/μmol. The reaction equation is shown 
in Fig. 1. [18F]AV45 automated synthesis required approxi-
mately 50 min, with a yield after decay correction of 43% 
and specific activity of 176.43 ± 6.75 GBq/μmol.

Lipophilicity measurement

The lipid-water distribution coefficient evaluated the lipo-
philicity of the probe and predicted the ability of the tracer to 
pass through the blood–brain barrier. Typically, the optimum 
log D (pH 7.4) range of Aβ tracer is about 1.5–3.5 [12]. 
and that of [18F]DRKXH1 measured by the liquid–liquid 

partition method (shaking flask method) was 2.78 ± 0.09 
(n = 5).

Biodistribution

The biodistribution results revealed that the liver, kidney, 
and lung had a high uptake of [18F]DRKXH1 in the initial 
stage. The radioactivity in the lung, heart, and blood was 
rapidly cleared, while that in the liver and kidney was clari-
fied slowly. The radioactivity in the small intestine increased 
gradually, which was similar to the previously reported dis-
tribution of Aβ imaging agents [22]. After injecting [18F]
DRKXH1, the radioactivity of the femur was initially low, 
increased slightly at 5 min, and then remained stable (Fig. 2).

In vivo small‑animal‑PETCT dynamic scan and MRI

In this study, the bodyweight of AD transgenic mice was 
significantly higher than that of WT mice (46.63 ± 1.71 g 
vs. 23.04 ± 1.13 g, t = 25.606, P < 0.001). In the imaging 
of 5–60-min frame fusion, we noticed a distinct radioac-
tivity concentration in the cortex and other brain regions 
of AD transgenic mice. However, no specific radioactivity 
concentration was observed in the whole brain region of 
WT mice (Fig. 3A and B). The TACs of 0–60 min showed 
that the radioactivity uptake in the brain of AD transgenic 
and WT mice reached a peak at 2 min after injection of 
[18F]DRKXH1 and eluted rapidly (Fig. 3C). However, the 
tracer in the brain of AD transgenic mice was eluted more 
slowly than that of WT mice (Fig. 3C-E). Then, we fused the 
PET images with MR images and found that the radioactive 
concentration foci in the brain of AD transgenic mice were 
located in the cortex and hippocampus (Fig. 3A and B).

Next, we drew the cortex, hippocampus, and the cerebel-
lum of AD transgenic mice as ROIs. Considering the cer-
ebellum as the reference area, we obtained the SUVR of the 
cortex to the cerebellum and hippocampus to the cerebel-
lum (Fig. 3F). The DVR value of AD transgenic mice was 
significantly higher than that of WT mice (1.29 ± 0.05 vs. 
0.95 ± 0.04; t = 10.35, P < 0.0001) (Fig. 3G).

To further evaluate the ability of [18F] DRKXH1 to detect 
Aβ plaques in the brain of AD transgenic mice, we directly 
compared the dynamic PETCT imaging results of [18F] 
DRKXH1 and [18F] AV45 in AD transgenic mice (Fig. 4A). 
The retention of [18F] DRKXH1 in the cerebellum is less 
than that of [18F]AV45 (Supplements Fig. 1). The clearance 
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Fig. 1   Radiosynthesis of [18F]DRKXH1
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rates of the two tracers in the brain of AD transgenic mice 
were similar (Supplements Fig. 1). The DVR value of [18F] 
DRKXH1 was higher than that of [18F]-AV45 (1.29 ± 0.05 
vs. 1.05 ± 0.08; t = 5.33, P = 0.0003) (Fig. 4B).

In the 60-min dynamic scan, the TAC of petrous bone 
showed that radioactivity increased at the initial stage 
(0–5 min) but remained stable subsequently (Fig. 3H).

Next, we conducted displacement experiments to evalu-
ate the specificity of [18F]DRKXH1 binding to Aβ plaques 
in the brain of AD transgenic mice. Imaging results showed 
that at 40–60 min, the TAC curves of mouse whole brains 
were decreased but not significantly (Fig. 3I, J).

Ex vivo autoradiography

We used ex  vivo autoradiography to verify that [18F]
DRKXH1 binds to Aβ plaques in the brain of AD transgenic 
mice. After 30 and 40 min of the imaging agent injection, 
significant radioactivity concentration was detected in the 
cortex of AD transgenic mice, but no specific radioactivity 
concentration was observed in the whole brain region of WT 
mice (Fig. 5A and B). Radioligand binding was quantified 
as ratios of radioactivity intensity of cortex to cerebellum 
(Fig. 5C).

In vitro autoradiography

The brain sections of AD transgenic mice showed dense 
labeling of the plaques in the cortex and hippocampus 
regions (Fig. 5C). The autoradiography showed distinct 
deposition of [18F]DRKXH1 in the human cortex which 
enriched Aβ plaques, and there was no specific concentra-
tion in a healthy human brain (Fig. 6B). After co-incubation 

with [19F] DRKXH1, the radioactivity of the brain sections 
of mice and human showed a dramatic decrease (Fig. 5E and 
Fig. 6C).

IHC and thiosemicarbazone S staining

The positive result of diaminobenzidine staining was brown 
granules. Aβ1-42 IHC showed that the AD transgenic mice 
cortex and hippocampus had abundant Aβ plaques, while no 
plaque deposition was observed in the cerebellum (Fig. 5D). 
Thiosemicarbazone S staining results showed Aβ deposition 
in human brain (supplement).

PET study in human subjects

In this study, we enrolled 1 AD patient (male, 82 years, 
MMSE: 17) and 2 healthy control subjects (male, 42 and 
50 years old, respectively). In AD patients, we observed 
significant [18F]DRKXH1 retention in recognized amy-
loid deposit areas, such as the parietal and frontal cortex. 
However, this phenomenon was not observed in healthy 
control subjects. In both groups, we observed low reten-
tion of subcortical white matter and high uptake in the 
cerebellar cortex, pons, and thalamus (Fig. 7 and Sup-
plement Table 1).

Discussion

The radiochemical labeling of [18F]DRKXH1 adopts a 
nucleophilic [18F] substitution reaction, which is synthesized 
by a one-step method. The labeling process is simple, the 
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Fig. 3   In vivo 0–60  min PET imaging with [18F]DRKXH1. A 
22-month-old AD transgenic mice; B 22-month-old WT mice. C 
Whole brain 0–60 min time-activity curves (TACs) of the 22-month-
old AD transgenic mice (n = 6) and age-matched WT mice (n = 5). 
The AD transgenic mice was outlined by the blue and WT mice was 
red line in the figure. D Cortex (blue), hippocampus (red), and cer-
ebellum (green) time-activity curves (TACs) of the 22-month-old 
AD transgenic mice (n = 6) and E age-matched WT mice (n = 5). 
G [18F]DRKXH1 DVR (cortex/cerebellum) group comparisons 

for 22-month-old AD transgenic mice (n = 6) and age-matched WT 
mice (n = 5). ****P < 0.0001 (2-sample t test) (P < 0.0001, t = 10.35, 
mean: 1.29 vs 0.95); F [18F]DRKXH1 cortex-to-cerebellum SUVRs 
of 22-month-old AD transgenic mice and age-matched WT mice 
in 0–60  min dynamic scan. H Petrous bone 0–60  min time-activity 
curves (TACs) of the 22-month-old AD transgenic mice (n = 6). I, J 
Displacement study of [18F]DRKXH1 in AD transgenic mice. 0–60-
min time-activity curves of whole brain, cortex, hippocampus, and 
cerebellum. Injected [19F]DRKXH1 at the 40th minute

657European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:652–663

00123456789)1 3



automatic synthesis procedure is mature, and the specific 
activity of [18F]DRKXH1 is high, which meets the criteria 
of neuroimaging agents for clinical applications.

In PET imaging study, [18F]DRKXH1 is a small mol-
ecule and moderate lipophilic tracer. [18F]DRKXH1 shows 
potential for ideal Aβ PET tracer, indicating that it can 
penetrate the complete blood–brain barrier and has high 
initial uptake in the frontal brain of mice[12]. In AD 
transgenic mice, the brain uptake peaked at 6%ID/g. We 
observed that the initial brain uptake in AD transgenic 
mice was higher than that in WT mice. In addition, the 
bodyweight of AD transgenic mice was significantly higher 
than that of WT mice (46.63 ± 1.71 g vs. 23.04 ± 1.13 g, 
t = 25.606, P < 0.001), which is consistent with previous 
reports, wherein high initial brain uptake was detected 
in high-weight mice [23]. Studies have showed that AD 
is related to BBB damage, which may lead to increased 
permeability [24–26]. Therefore, we speculate that this 
phenomenon may be explained by BBB damage. Moreo-
ver, the presence of Aβ in AD transgenic mice, serving 

as the target site on [18F]DRKXH1, may also cause the 
higher initial brain uptake in AD transgenic mice. Also, 
after the injection of [18F]DRKXH1, AD transgenic mice 
had significantly higher DVR values than WT mice, indi-
cating that [18F]DRKXH1 has a high retention rate in the 
Aβ-rich brain regions and can locate Aβ plaques in the 
brain. The shallow non-specific binding provides high sig-
nal-to-noise images beneficial to the diagnosis of AD and 
efficacy evaluation of therapies targeting Aβ. Intriguingly, 
rodents are susceptible to the defluorination of many [18F] 
labeled radioactive tracers, leading to a gradual increase 
in radioactivity in the skeleton [22, 27]. The radioactive 
spillover from the skull introduced considerable error into 
the brain regions, as quantified by PET scans [28]. Also, 
we observed a mild increase in bone radioactivity 0–5 min 
after injection, which was subsequently stable without 
apparent detachment during 5–60 min (0.97–1.1% ID/g). 
[18F]-AV45 is an Aβ imaging agent approved by the FDA. 
Similar to [18F]-AV45, [18F]-DRKXH1 exhibits uptake that 
closely mirrored Aβ deposition in the brain, with higher 
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DVR values than [18F]-AV45. However, the difference in 
the autoradiography of human brain sections proposed 
that [18F]DRKXH1 can distinguish between AD patients 
and healthy controls. Thus, this study verified the binding 
ability of [18F]DRKXH1 to Aβ, but the experimental veri-
fication of the binding power of toxic amyloid oligomers 

is yet lacking. Next, we plan to perform PET imaging 
on transgenic mice for longitudinal studies using brain 
homogenates from these mice of different ages, Aβ fibers 
in human brain homogenates, and synthetic human Aβ fib-
ers. The binding affinity assay verified the binding ability 
of DRKXH1 to Aβ oligomers. The results of preclinical 
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Fig. 3   (continued)

Fig. 4   A In  vivo 0–60  min PET imaging with [18F]DRKXH1 and 
[18F]AV45 in 22-month-old AD transgenic mice. B DVR (cortex/cer-
ebellum) group comparisons for [18F]DRKXH1 and [18F]AV45 mice 

(n = 5). ***P < 0.0005 (2-sample t test, 1.29 ± 0.05 vs. 1.05 ± 0.08; 
t = 5.33, P = 0.0003)
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Fig. 5   Ex vivo autoradiography. A AD transgenic mice; B WT 
mice; C radioligand binding was quantified as ratios of radioactivity 
intensity of cortex to cerebellum. D In vitro autoradiography of AD 

transgenic mice and immunohistochemical staining of Aβ plaques 
of AD transgenic mice; E in  vitro autoradiography using [18F]
DRKXH1 + 10 μM [19F]DRKXH1of AD transgenic mice
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experiments showed that [18F]DRKXH1 has a high binding 
affinity and excellent imaging potential for Aβ in the brain 
of AD transgenic mice, low non-specific binding, and is 
rapidly eluted from the healthy brain.

The initial clinical study results showed noticeable 
retention of [18F]DRKXH1 in the cortex of AD patients, 
which did not appear in healthy subjects, indicating the 
efficiency of the compound in distinguishing between 

AD patients and healthy individuals. Low subcortical 
white matter retention was observed in both groups of 
individuals; however, no significant boundary existed 
between cortex and white matter in patients with obvi-
ous brain atrophy. Considering the false-positive results 
caused by high non-specific uptake of white matter, low 
uptake of white matter might contribute to the accuracy 
and micro detection capability of Aβ deposition. Con-
versely, the cerebellar cortex, pons, and thalamus also 
showed high non-specific uptake of [18F]DRKXH1 in 

A B C

Fig. 6   In vitro autoradiography of human brain sections labeled with [18F]-DRKXH1. A Healthy control subjects. B AD patient. C In vitro auto-
radiography using [18F]DRKXH1 + 10 μM [19F]DRKXH1 of AD patient

Sagittal Coronal Transverse

Fig. 7   [18F]-DRKXH1 PET images of an AD patient and a healthy control subject
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both groups. The lack of mechanism explanation and non-
specific uptake of the cerebellar cortex might pose chal-
lenges to the quantitative analysis of the imaging results. 
Taken together, the current evaluation results constitute the 
preliminary imaging report of [18F]DRKXH1, necessitat-
ing additional subjects for the kinetic study. The follow-up 
data might contribute to the further characteristic analysis 
of [18F]DRKXH1 and the suitable selection of reference 
region for quantitative analysis.

Collectively, [18F]DRKXH1 is an Aβ tracer with high 
sensitivity in preclinical study, and has the potential for 
in vivo detection of the human brain.

Conclusion

In this study, we synthesized a new Aβ tracer [18F]
DRKXH1. It showed a high binding affinity at in vivo and 
in vitro level in the preclinical study. The PET study in 
human subjects indicated its potential in clinical diagnosis 
but further research is still needed.

Limitations

This study has some limitations. This study did not use the 
classical PET tracer such as [11C]PIB and [18F]florbetapir 
for imaging comparison. We did not use [18F]DRKXH1 to 
longitudinally monitor Aβ plaques deposition in the brain 
of transgenic mice.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00259-​021-​05421-0.
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