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Plasma and urine proteomics and gut microbiota
analysis reveal potential factors affecting
COVID-19 vaccination response

Changjiang Hu,1,2,3,4,5,7 Weichao Hu,1,2,3,4,5,7 Bo Tang,1,7 Qiyu Bao,1,7 Xingyu Jiang,6,7 Li Tang,1 He Wang,2,3,4,5

Lijiao He,1 Moyang Lv,1 Yufeng Xiao,1 Cheng Liu,1 Xinzhe Li,1 Yunyi Liu,1 Jie Li,1 Guiping Huang,1

Zhen Dong,2,3,4,5,* Zhongjun Li,6,* Tiannan Guo,2,3,4,5,* and Shiming Yang1,8,*
SUMMARY

The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary
among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing
antibody response by combining plasma and urine proteomics and gut microbiota analysis. We
found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-
RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response
signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. More-
over, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the
vaccination response. Based on the above data, we built a predictive model for vaccination response
(AUC= 0.85). Our study provides insights into characteristic plasma and urine proteins and gutmicrobiota
associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host
response to COVID-19 vaccination.

INTRODUCTION

The coronavirus disease 19 (COVID-19) pandemic has caused unprecedented morbidity and mortality globally,1–3 underscoring the urgent

need for effective vaccines.4,5 To date, hundreds of COVID-19 vaccine candidates have been developed, and over 100 have progressed to

clinical trials.6,7 These vaccines, including mRNA vaccines, viral vector vaccines, protein subunit vaccines, and inactivated viral vaccines, have

demonstrated potent antibody responses in humans and have undergone extensive clinical evaluation.8 Nevertheless, the immune response

to vaccination varies greatly among individuals, highlighting the need to identifymolecular predictors based on individual baseline conditions

and to elucidate their biological basis.

CoronaVac immunization leads to activation of humoral and complement responses.9 Additionally, this vaccine has been found to modu-

late the TCA cycle and amino acid metabolism.9 Notably, neutralizing antibodies are detected earlier in female individuals compared to

males, and the peak neutralizing antibody titers are inversely correlated with age and BMI.9 The cytokine/chemokine signatures IL-15,

IFN-g, and IP-10/CXCL10 have been associated with effective immune responses to SARS-CoV-2 in BNT162B2 mRNA vaccine recipients.

Nevertheless, further systematic investigations are required to fully understand the immune response to COVID-19 vaccination.

Previous studies have suggested that baseline immune status prior to vaccination may predict the outcomes of other vaccines, such as

those against influenza virus, yellow fever virus, hepatitis B virus, and malaria.10 For instance, peripheral blood mononuclear cell (PBMC) sub-

population frequencies predicted the immune response to influenza vaccination independently of age and preexisting antibody titers,11 while

inflammatory response transcripts and proinflammatory innate immune cells were associated with the response to HBV vaccination.12 White

blood cell (WBC) count was also found to be a predictive biomarker for the response to malaria vaccination.13 Additionally, several proteins

expressed in plasma and urine have been linked to the severity of COVID-19.14–16

Given this evidence, we propose a possible correlation between plasma and urine proteomics and the efficacy of COVID-19 vaccination.

To identify biomarkers associated with COVID-19 vaccination, we studied the proteomic profiles of plasma and urine collected at baseline
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Figure 1. Healthy subjects received inactivated vaccines against COVID-19

(A) Workflow for the enrollment of healthy subjects and sample collection.

(B) The ACE2-RBD-inhibiting antibody changes of the 60 participants after the two doses of vaccination at D0, D14 andD42. According to themedian neutralizing

antibody levels at Day 42 (6.6 AU/mL), they were equally split into two groups, top 50 percent as higher titers and bottom 50 percent as low responders.

(C) Pearson correlation coefficients between the change in clinical laboratory indicators and ACE2-RBD-inhibiting antibody levels during Day 0 and Day 42 were

calculated. The amber represents a positive correlation, while the turquoise represents a negative correlation (n = 60).

(D) The peptide yield from 4 mL plasma and 500 mL urine at D0, D14, and D42.

(E) The protein number of plasma and urine and the protein with <90% missing values.

(F) The molecular weight (MW) and sequence coverage distributions of quantified protein in plasma, urine, and the entire human proteome.

(G) The median CV of the plasma and urine proteomics data.

ll
OPEN ACCESS

iScience
Article
(D0), 14 days after the first dose (D14), and another 14 days after the second dose (D42) from three independent cohorts. Our aim is to reveal

the association between ACE2-RBD inhibiting antibody development and baseline plasma and urine proteomics, as well as clinical

characteristics.
RESULTS

Clinical features of the healthy BBIBP-CorV vaccine recipients correlated with ACE2-RBD-inhibiting antibody production

We enrolled a total of 60 healthy individuals who received two doses of the BBIBP-CorV vaccine, and no apparent adverse events were

observed. To investigate the relationship between clinical features and the development of ACE2-RBD-inhibiting antibodies, we collected

longitudinal plasma and urine samples at three time points (D0, D14, and D42) for laboratory tests and proteomic analysis (Figure 1A). Prior
2 iScience 27, 108851, February 16, 2024
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to vaccination, all individuals tested negative for ACE2-RBD-inhibiting antibodies, and 93%of the vaccine recipients seroconverted at 42 days.

As shown in Figure 1B, the antibody concentration markedly increased on Day 14 and Day 42. Most laboratory tests showed no significant

changes at Day 42, including C-reactive protein (CRP), WBC count, ratio of neutrophil, ratio of lymphocyte, ratio of monocyte, ratio of eosin-

ophils, ratio of basophil, hemoglobin (HGB), PLT count, ratio of helper T, ratio of cytotoxic T cell, lymphocyte count, total T cell count, helper

T cell count, cytotoxic T cell count, and TNF-a. However, IL-6, an important proinflammatory cytokine produced by antigen-presenting cells,

significantly increased after vaccination (Table S1). It has been reported that IL-6 plays a crucial role in the acquired immune response by stim-

ulating antibody production and effector T cell development. Moreover, Pearson correlation coefficients between the change in clinical lab-

oratory indicators and ACE2-RBD-inhibiting antibody levels during Day 0 and Day 42 were calculated. We found the ratio of eosinophil and

IL-6 levels were significantly positively correlated with the vaccination response with correlation coefficients of 0.24 and 0.21, while IL-8 was

negatively correlated with the vaccination response with correlation coefficient of �0.37 (Figure 1C). In order to compare the high and low

responders, we artificially defined neutralizing antibodies level above 50th percentile of the cohort as high titers (higher than themedian level

6.6 AU/mL, n = 30), while those below 50th percentile as low titers (lower than 6.6 AU/mL, n = 30). We analyzed the difference of clinical lab-

oratory indicators between these two groups by using the Wilcoxon’s rank-sum test (two-sided). At Day 0, age and count of helper T cells of

high-degree response group were significantly lower than low-degree response group (Table S2). At Day 42, count of lymphocytes, total

T cells, and helper T cells were significantly higher than low-degree response group (Table S3).

Dynamics of proteomics profiling of plasma and urine after vaccination

We used a tandemmass tag (TMT)-based proteomics approach to analyze the 180 plasma and 180 urine samples collected on Day 0, Day 14,

andDay 42 from the 60 healthy volunteers. PCA showed no significant batch effect betweendifferent batches of the plasma and urine proteins

(Figures S1A and S1B). The peptide yields from plasma and urine showed no significant differences among the three different time points,

indicating the stability of the sample preparation (Figure 1D). Altogether, 1113 and 4097 proteins were identified andquantified in plasma and

urine, respectively. After filtering out proteins with over 90% missingness, we focused on 805 blood proteins and 3241 urine proteins (Fig-

ure 1E). Themolecular weight (MW) distributions of plasma and urine were comparable to those in the human proteome, consistent with pre-

vious reports.17,18 The urine proteome containedmore proteins with relatively low sequence coverage (Figure 1F). In the quality control anal-

ysis, themedian coefficients of the variation values for the plasma and urine were 22.23% and 14.46%, respectively (Figure 1G). These analyses

suggest that the thus acquired proteome data are of high technical quality.

The subcellular localization of proteins was subsequently analyzed. Figure S2A shows that secreted proteins constituted 40% of the plasma

proteins, followed by cytoplasmic and membrane proteins, while the cytoplasmic proteins (24%) and secreted proteins (20%) were the most

abundant in urine. In the overlap of the two groups, the secreted proteins constituted 45%. GO analysis showed that immune response, com-

plement activation, and coagulation were enriched in the secreted proteins of both plasma and urine (Figure S2B). In addition, most enriched

pathways, such as actin filament organization and actin filament polymerization, were quite similar in the cytoplasmic proteins derived from

plasma and urine (Figure S2C).

The plasma and urine protein changes after vaccination were then analyzed. REAC and KEGG analysis showed that the DEPs in plasma

after vaccination were related to Glycolysis, Cellular response to chemical stress, TCA cycle, Detoxification of reactive oxygen species (Fig-

ure 2A). Figure 2B revealed that DEPs in plasma annotated by Uniprot database were associated with glycolysis, immunocyte migration, and

immunoregulation. Interestingly, the mannose receptor, C type 1 (MRC1), an endocytic receptor expressed by populations of dendritic cells

and macrophages, was significantly increased after vaccination (Figure 2C). MRC1 functions include a role in antigen cross-presentation,

clearance of endogenous proteins, pathogen detection.19 Furthermore, pro-platelet basic protein (PPBP), a potent chemoattractant and acti-

vator of neutrophils, was also increased at D42. Neutrophils are traditionally recruited to sites of inflammation in response to infectious and

inflammatory stimuli. A recent study revealed that they could indirectly influence antigen presentation by interacting with DCs or directly ex-

pressing major histocompatibility complex (MHC).20

REAC and KEGG analysis revealed the DEPs in urine were related to hemidesmosome assembly and apoptotic cleavage of cellular pro-

teins (Figure 2D). Urine DEPs annotated by Uniprot were associated with immunocyte chemotaxis, glycolysis, and immunoregulation (Fig-

ure 2E). Notably, Arginase 1 (ARG1) plays a vital role in L-arginine homeostasis, which is a critical regulator of innate and adaptive immune

responses, resulting in suppressed T cell and natural killer (NK) cell proliferation and cytokine secretion. In addition, Figure 2F illustrates that

ARG1 was significantly elevated after two vaccination doses. The dynamic changes in the proteomics profiles of plasma and urine following

vaccination suggest an altered acquired immune response to COVID-19 vaccination.

The differences in plasma proteomics profiles between high and low responders

To further characterize the underlying molecular mechanisms responsible for different immune responses to the BBIBP-CorV vaccine, we

compared the plasma and urine proteomics profiles between high and low responders. There were 67, 52, and 55 dysregulated proteins

in plasma at D0, D14, and D42, respectively (Table S4). At D0, the differentially expressed proteins were associated with complement and

coagulation cascades and platelet degranulation (Figure 3A), which is consistent with the immune response induced by COVID-19 infection.15

Additionally, IPA analysis showed that the pathways at different time points were enriched in coronavirus disease, glucocorticoid receptor

signaling, liver X receptor (LXR)/retinoid X receptor (RXR), and farnesoid X receptor (FXR) (Figure 3B). Notably, kininogen-1 (KNG1) was found

to be decreased in the high respond group at D0. KNG1 is the precursor protein of the kallikrein-kinin system (KKS), which includes high mo-

lecular weight (HMW) and low molecular weight (LMW) KNGs. HMW KNG interacts with plasma kallikrein to produce bradykinin (BK), a
iScience 27, 108851, February 16, 2024 3
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Figure 2. Dynamics of proteomics profiling of plasma and urine after vaccination

(A) REAC and KEGG pathway enrichment analysis of the differentially expressed proteins (DEPs) in plasma after vaccination visualized by ClueGO plugin of

Cytoscape. The DEPs between D0 and D42 (n = 60) were analyzed by Wilcoxon test (p < 0.05).

(B) Heatmap of plasma DEPs involved in immune response at D0, D14 and D42 (n = 60).

(C) MRC1 and PPBP expression in plasma at D0 and D42, p value was calculated by Wilcoxon test (p < 0.05).

(D) REAC and KEGG analysis of the DEPs in urine after vaccination visualized by ClueGO plugin of Cytoscape. The DEPs between D0 and D42 (n = 60) were

analyzed by Wilcoxon test (p < 0.05).

(E) Heatmap of urine DEPs involved in immune response at D0, D14 and D42 (n = 60).

(F) ARG1 expression in plasma at D0 and D42, p value was calculated by Wilcoxon test (p < 0.05).
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substance that has been shown to suppress MHC Class I upregulation and proinflammatory cytokine production, and to inhibit the IFN-

induced phosphorylation of STAT2 molecules and subsequent induction of IFN-responsive genes.21 Apolipoprotein L1 (APOL1) and Com-

plementC3 (C3) proteins, both of which are involved in the LXR/FXRpathway, increased in the high response group (Figure 3C). LXR activation

depletes Myeloid-derived suppressor cells (MDSCs) and elicits T cell activation.22 Moreover, LXR agonists have been shown to augment anti-

tumor responses when combined with checkpoint inhibitors or adoptive T cell therapies.22 Our group has previously reported that LXR/RXR
4 iScience 27, 108851, February 16, 2024
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Figure 3. Differences of plasma proteomics profiles between high and low responders

(A) REAC and KEGG analyses of plasma DEPs enriched pathways between high (n = 30) and low responders (n = 30) at D0 visualized by ClueGO plugin of

Cytoscape. The R package limma was used to analyze DEPs (BH adjusted p < 0.05).

(B) IPA analysis of the plasma DEPs enriched pathways between high (n = 30) and low responders (n = 30) at D0, D14 and D42.

(C) Heatmap of the IPA enrichment analysis of plasma DEPs at the indicated time points (Wilcoxon test, p＜0.05).

(D) Mfuzz analysis of dynamic changes of plasma proteins in the high-response group (Cluster 4, n = 118).

(E) GO gene enrichment of the plasma DEPs from Cluster 4.

ll
OPEN ACCESS

iScience
Article
inhibition contributed to prolonged RNA shedding in COVID-19, indicating that the LXR/RXR pathway is not only correlated with the RNA

shedding period but also associated with the vaccination response to COVID-19.23 The bile acid sensor FXR, expressed in cells related to

innate immunity, including macrophages, liver resident macrophages, the Kupffer cells, natural killer cells, and dendritic cells, was required

for immune-regulatory activities.24 FXR agonism attenuates inflammation-driven immune dysfunction, making the immunomodulatory effects

of FXR clinically relevant.24 Finally, we divided the dysregulated plasma proteins in both high and low responders into eight groups based on

their dynamics usingMfuzz (Figures S3A and S3B). The cluster 4 of the high response group showed a similar increasing trendwith the neutral-

izing antibody (Figure 3D), while both LXR and FXR activation were significantly enriched in this cluster (Figure 3E). Collectively, these findings

suggest a more substantial adaptive immune process in the high-respond group with activation of LXR/FXR.
Regulated urinary proteins between high and low responders

We conducted a comparison of urine proteomic profiles between high and low responders and found 97, 184, and 157 dysregulated proteins

at D0, D14, and D42, respectively (Table S5). Prior to vaccination, the differentially expressed proteins were linked to detoxification of reactive

oxygen species and interleukin-10 signaling (Figure 4A). Additionally, IPA analysis revealed that Th1 and Th2 activationweremost significantly

enriched at Day 0, while phagosome maturation was enriched at Day 14, and granulocyte adhesion and diapedesis were enriched at Day 42

(Figure 4B). Interestingly, the protein expression pattern demonstrated that themajority of proteins involved in the aforementioned pathways

were expressed at higher levels during the entire vaccination period in the high response group (Figure 4C). Furthermore, we clustered the

dysregulated urine proteins in both high and low responders into eight groups using Mfuzz (222C and S3D). Cluster 6 of the high response

group displayed a consistent ascending pattern similar to that of Neutralizing antibody (NAB) production (Figure 4D). For this cluster, the

complement system, acute phase response signaling, LXR/RXR, FXR/RXR, and STAT3 pathways were enriched, which were quite similar to

those identified in plasma (Figure 4E). Previous studies have demonstrated that aberrant regulation of physiological processes,

including the complement system, macrophage functions, and platelet degranulation, was observed in the plasma of severe cases of
iScience 27, 108851, February 16, 2024 5
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Figure 4. Difference of urine proteomics profiling between high and low responders

(A) REAC and KEGG analyses of urine DEPs enriched pathways between high (n = 30) and low responders (n = 30) at D0 visualized by ClueGO plugin of

Cytoscape. The R package limma was used to analyze DEPs (BH adjusted p < 0.05).

(B) IPA analysis of the urine DEPs enriched pathways between high (n = 30) and low responders (n = 30) at D0, D14 and D42.

(C) Heatmap of the IPA enrichment analysis of urine DEPs at the indicated time points.

(D) Mfuzz analysis of dynamic changes of urine proteins in the high-response group (Cluster 6, n = 275).

(E) GO gene enrichment of the urine DEPs from Cluster 6.

(F) Heatmap of the urine proteins involved in the vaccination production process. The DEPs between high and low responders were compared at different time

points, and p values (D0, D14 and D42) were calculated by the Wilcoxon test (p < 0.05).
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COVID-19.15,25 Immune-related pathways, including coagulation system, acute phase response signaling, and LXR/RXR activation, were up-

regulated in both plasma and urine of COVID-19 patients, and the STAT3 pathway was enriched in the plasma proteins from COVID-19 pa-

tients.14 Coagulation dysfunction was a potential risk factor for adverse outcomes in COVID-19.26 STAT-3 can also participate in the induction

of inflammatory responses during coronavirus infections and thus contribute to the pathogenesis of COVID-19.27 Moreover, most of the pro-

teins involved in the vaccination response process, including the activation of T and B cells, proliferation, and differentiation of T cells, were

expressed at higher levels during the entire vaccination period in the high response group (Figure 4F). These findings suggest that immune

responses from urine proteome may correlate with the postvaccination titers of neutralizing antibodies.

Differential expression of cytokines and their receptors between high and low responders

Uncontrolled inflammation is amajor contributor to the highmortality rate observed in COVID-19 patients.28 In our study, we investigated the

expression of cytokines and their receptors in plasma and urine samples collected from high and low responders. We identified a total of 59

cytokines and their receptors in plasma and 218 in urine, which were classified into six types, namely interleukins, interferon, the transforming

growth factor-b (TGF-b) family, tumor necrosis factor (TNF) family, chemokines and other cytokines (Figure S4A). We further analyzed the

expression of these cytokines in relation to different immune cells, and identified seven cytokines and receptors that were significantly dys-

regulated in different time points between high and low response groups in the plasma, and thirty-nine in the urine (Figure 5A; Table S6).

Among them, Alpha-defensin 1 (DEFA1) was significantly increased in the plasma of the high response group before vaccination (Figure 5A).
6 iScience 27, 108851, February 16, 2024
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Figure 5. Differences of cytokines and their receptors between high and low responders

(A) Differentially expressed plasma and urine cytokines and their receptors between high and low responders at D0, D14 and D42. They were grouped into six

groups, interleukins, transforming growth factor-b (TGF-b) family, tumor necrosis factor (TNF) family, interferon, chemokines, and other cytokines. p values were

calculated by Wilcoxon test (p < 0.05). Twenty of them matched the different immune cells.

(B) GO enrichment of the above dysregulated cytokines and receptors between high and low responders visualized by ClueGO plugin of Cytoscape.
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DEFA1 is an anti-microbial peptide of the innate immune system that is involved in phagocyte-mediated host defense, and its serum levels

have been associated with disease severity in COVID-19 patients.29,30 Figure 5A also shows that C-C Motif Chemokine Ligand 15 (CCL15) is

dramatically decreased in the plasma of high response group. CCL15 could recruit suppressive monocytes to facilitate immune escape and

disease progression in hepatocellular carcinoma.31 In urine samples, most of the differentially expressed cytokines, including PLAUR, SDC4,

PDGFRA, PDGFRB, SEMA4B, CRIM1, FAM3D, IL10RB, IL1R1, ACVR1B, and TGFBR1, were increased in the high response group. These

modulated cytokines and receptors obtained from plasma and urine were enriched for lymphocyte chemotaxis and positive regulation of
iScience 27, 108851, February 16, 2024 7
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cytokine production involved in immune response (Figure 5B). Moreover, fifty-four cytokines existing in both plasma and urine are shown at

indicated time points (Figures S4B and S4C). Most of the cytokines shows different expression pattern in plasma and urine, whichmay be due

to the different glomerular filtration and tubule reabsorption as reported previously.14 Cytokines can activate innate immunity and then deter-

mine the responses of cells to adaptive immunity.32 Cytokines can alsomodulate adaptive immunity. Various cytokines are elevated in COVID-

19 patients, whichmay result in a cytokine storm in severe cases.33 Our data suggest that the cytokines may be correlated with the production

of the ACE2-RBD-inhibiting antibody.

A protein-based predictive model for vaccination responses

To predict the production of ACE2-RBD-inhibiting antibodies to SARS-CoV-2 before vaccination, a protein-based machine-learning model

was developed by integrating clinical features and proteomic data collected on Day 0 (see the STAR Methods section). The study utilized a

discovery cohort of 60 participants with both plasma and urine proteomic data, and two additional cohorts: a training cohort of 71 participants

and a test cohort of 71 participants. Antibody titers above the 50th percentile of each cohort were considered high, while those below the 50th

percentile were considered low. There was no significant difference in ACE2-RBD-inhibiting antibody titers among the discovery cohort (6.601

(4.126, 11.405)), training cohort (6.427 (4.636, 12.889)) and test cohort (6.427 (5.159, 13.290)). The clinical features of the above three cohorts at

D0 were listed in Table S7. To further screen the features of plasma and urine protein forMRManalysis, the differentially expressed proteins of

plasma and urine at D0, D14, and D42 were obtained (Figure 6A). After analyzing transitions of unique peptides of the DEPs generated by

Skyline, 43 plasma and 62 urine proteins were selected as the input of the trainingmodel (listed in Table S8). Based on their expression robust-

ness and the importance prioritized by random forest analysis, ten plasma proteins, including SERPINA1, KRT1, F10, KRT9, KLKB1, FGB,

SERPINC1, LYVE1, AGT, and ICAM1, were selected to construct a 10-molecule model. The area under curve (AUC) value for the test cohort

was 0.74 (Figure 6B). Similarly, ten urine proteins, including IGHG4, AGT, GP6, ALPL, F10, C7, CTSG, CD81, AQP1, and GLO1, were selected

for the construction of another 10-molecule model. The AUC value is 0.67 (Figure 6C). The selected transition groups for the quantification of

each peptide of the above proteins were listed in Figure S5. Moreover, eight clinical features, such as ratio of help T cell, lymphocyte count,

IL-8, T cell count, TNF-a, age, ratio of monocyte, and IL-6, were selected to build an 8-featuremodel, and the AUC value was 0.68 (Figure 6D).

Moreover, the AUC increased to 0.84 or 0.77 when the plasma or urine proteomics data were integratedwith the clinical features, respectively

(Figures 6E and 6F). Notably, after combining the above three indices, the above ten plasma proteins, ten urine proteins, and eight clinical

features were used to build a 28-feature model with an AUC value of 0.85 (Figure 6G). To further validate our random forest model, we con-

ducted 5-fold cross validation on our MRM datasets, the AUC values of the plasma, urine and clinical features were 0.74, 0.69, and 0.72,

respectively (Figures S6A–S6C). The AUC increased to 0.77 or 0.75 when the plasma or urine proteomics data were integrated with the clinical

features (Figures S6D and S6E). Moreover, after combining the above three indices, the AUC value reached 0.80 (Figure S6F). Overall, this

study provides a protein-based machine-learning model that can predict the production of ACE2-RBD-inhibiting antibodies to SARS-

CoV-2 before vaccination, which may be useful for identifying individuals who may not respond well to vaccination. The model incorporates

clinical features and proteomic data, and the integration of these factors results in improved predictive performance.

The gut microbiome correlates with the ACE2-RBD inhibiting antibody

The gutmicrobiome is a key factor influencing the immune response to vaccination, and profiling the gut microbiota can provide insights into

factors that impact robust and long-lasting immunity.34,35 We profiled the characteristics of gut microbiota in the high response and low

response group by metagenomic sequencing. For beta diversity, we used principal coordinate analysis (PCoA) based on the Bray–Curtis dis-

tance and observed significant clustering of gut microbiota between these two groups (ANOSIM, p = 0.025, Figure S7A). The Bray–Curtis

distance rank between the high and low titer group was significantly different (ANOSIM, p = 0.025, Figure S7B). The high response group

were primarily characterized by a predominance of Enterococcus faecium, Prevotella bivia, Actinomyces massiliensis, Veillonella dispar, Veil-

lonella_sp_T11011_6, Eubacterium_sp_CAG_38, Ruminococcus torques, Actinomyces odontolyticus, while Alistipes putredinis, Allisonella

histaminiformans, Bacteroides clarus,Clostridium lavalense,Clostridium asparagiforme, Bacteroides eggerthii,Coprobacter fastidiosus, Sut-

terella parvirubra, and Blautia coccoides are more abundant in the low response group (Figure S7C). The composition of microbial pathways

further revealeddifferentMetaCyc pathway between the above two groups. Compared to the low responsegroup, petroselinate biosynthesis

pathway was enriched in the high response group (Figure S7D). We next analyzed the correlation between the differential species at D0 and

ACE2-RBD-inhibiting antibodies titers at D42. Figures 7A and S7E revealed that V. dispar, A. histaminiformans, B. coccoides, A. putredinis,

andC. lavalensewere correlated with the vaccination response (Spearman correlation, p < 0.05, **p < 0.01). Furthermore, we further explored

the correlation between the above five bacterial species and the plasma and urine protein at D0, respectively. The plasma proteins correlated

with the bacterial abundance were listed in Figure 7B. KEGG and REAC revealed that the proteins correlated with A. putredinis abundance

mainly involved in Glycolysis, JAK-STAT signaling and Interleukin-12 family signaling (Figure 7C). The urine proteins correlated with the five

bacterial abundance were plotted in Figure 7D. KEGG and REAC revealed that the proteins correlated with B. coccoides abundance were

involved in Coronavirus disease and selective autophagy (Figure 7E).

Our data provides insights into the molecular changes affecting the production of ACE2-RBD-inhibiting antibodies after COVID-19 vacci-

nation, indicating potential plasma and urinemarkers for the improvement of vaccine response (summarized in Figure S8). Specifically, our anal-

ysis indicates that thedifferentially expressedproteins associatedwith theACE2-RBD-inhibiting STARantibody productionwere involved in the

antigen recognition and presentation by APC cells, as well as the proliferation and differentiation of B cells (Figure S8A). We also identified

potential relationships and crosstalk between the differentially expressed proteins in plasma and urine, respectively (Figures S8B and S8C).
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Figure 6. Predictive model for vaccination responses using the integration of proteomic data before vaccination

(A)Workflow for the construction of the predictionmodel. 60 participants with both plasma and urine proteomic data were considered as the discovery cohort. An

additional 71 independent participants were recruited as a training cohort, and another 71 participants were recruited as a test cohort.

(B) Ten plasma proteins were selected to build a 10-molecule model, and the area under curve (AUC) value was calculated.

(C) Ten urine proteins were selected to construct a 10-molecule model, and the AUC value was calculated.

(D) Eight clinical features were selected for constructing an 8-molecule model, and the AUC value was calculated.

(E) Combination of plasma and clinical features for the construction of the prediction model.

(F) Combination of urine and clinical features for the construction of the prediction model.

(G) Combination of the plasma, urine, and clinical features for constructing the prediction model.
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DISCUSSION

In this study, we investigated the dynamics of plasma and urine proteome after vaccination to understand the different vaccination responses

to COVID-19. Our results showed that dysregulated proteins in the plasma after vaccination were involved in various biological processes

such as detoxification of reactive oxygen species, and immunocyte chemotaxis (Figures 2A–2C). On the other hand, dysregulated urine pro-

teins were related to immunocyte chemotaxis (Figures 2D and 2E).
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Figure 7. Correlation between the enriched bacteria and plasma and urine proteins

(A) Correlation heatmap of differentially enriched bacteria at D0 with the ACE2-RBD-inhibiting antibody titers (n = 60, Spearman correlation, *p < 0.05,

**p < 0.01).

(B) Correlation between the enriched bacteria and plasma proteins. p values were calculated by Pearson correlation analysis (*p < 0.05, **p < 0.01, ***p < 0.001).

(C) KEGG and REAC analysis of the proteins correlated with Alistipes putredinis abundance in plasma.

(D) Correlation between the enriched bacteria and urine proteins. p values were calculated by Pearson correlation analysis (*p < 0.05, **p < 0.01, ***p < 0.001).

(E) KEGG and REAC analysis of the proteins correlated with Blautia coccoides abundance in urine.
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ROS typically influences DC function in manifold aspects by regulating cytokine production, maturation, migration and antigen presen-

tation.36 In the process of DCs during cross-presentation to cytotoxic CD8+ T cells, NADPH oxidases 2 (NOX2) is recruited into phagosome

resulting in an alkalization of its content through the production of low level ROS leading to structural preservation of the internalized an-

tigens, and allows its successful presentation via the MHC I complex.36 ROS is a requisite secondary signaling factor in T cell immunity. TCR

stimulation induces the generation of an enormous amount of ROS, thus resulting in the activation of nuclear factor of activated T cells

(NFAT) and NF-kB, leading to activating of T cells.37 For the immunocyte chemotaxis, chemokine and receptor expression coordinates

the migration of antigen-loaded DCs from tissues into lymphoid tissue to activate T and B cells to initiate the adaptive immune

response.38–40 The CC (a-chemokines) and the CXC (b-chemokines) families of chemokines play a crucial role in host immunity to viral in-

fections and serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine

efficacy.41

Moreover, the plasma proteomics revealed that the LXR/RXR activation was associated with the production of ACE2-RBD-inhibiting an-

tibodies. LXR/RXR heterodimer enhanced the expression of antiapoptotic regulators and inhibiting the expression of proapoptotic regu-

lator.42 Furthermore, LXR agonist-programmed DCs increased the myeloid DC differentiation and shows a stronger capacity for stimulate

T cell proliferation.43 Moreover, activation of LXRs can improve the efficacy of cytotoxic T lymphocyte.44

The urine proteomics showed that complement system, acute phase response signaling, LXR/RXR, FXR/RXR, and STAT3 pathways

were correlated with the NAB production. The complement system is composed of more than 30 serum proteins and cell surface re-

ceptors facilitating pathogen elimination by opsonizing pathogens, promoting chemotaxis of immune cells or directly damaging path-

ogen surfaces.45 C3a and C5a are able to bind to their respective receptors on the T cell membrane, thereby stimulating effector func-

tion and maintaining T cell viability.46 CR3 and CR2 capture antigens forming CR3-CR2-iC3b-antigen complexes and present to antigen

specific B cell receptors modulating B cell signaling.47 Acute Phase Response (APR) functions facilitated by IL-6 include the maturation

of B and T cells and hematopoiesis.48 FXR is a bile acid activated nuclear receptor (BAR). The secondary bile acid 3b-hydroxydeoxy-

cholic acid (isoDCA) increased immunosuppressive CD4+ regulatory T (Treg) cells by diminishing immunostimulatory activity of den-

dritic cells (DCs), which depended on inhibition of FXR signaling in DCs.49 STAT3 present in the cytoplasm in an inactive form and

can be stimulated by a vast range of cytokines, chemokines and growth factors. Numerous reports indicate STAT3 affects DC matura-

tion and activation. Flt3L-Flt3-STAT3 pathway promotes pDC generation from CDPs via direct induction of Tcf4.50 Repression of DC

maturation/function can be achieved via IL-6-STAT3 or IL-10-STAT3-mediated signaling directly, or indirectly through inhibitory mole-

cules that induce IL-6. Overall, the above signaling pathway profoundly affect host immunity, thereby affecting the production of

neutralizing antibodies.

To achieve data integration, three matrices containing differential plasma proteins, urine proteins and clinical features were merged as a

whole matrix, which was utilized for feature selection and model construction. In detail, Random Forest was used to construct the predictive

models based on the whole matrix after the selection of the features according to their Gini importance. By integrating dysregulated proteins

in plasma and urine, as well as clinical features collected before vaccination, we developed a model for predicting vaccination responses with

an AUC value of 0.85, as summarized in the Graphic Abstract. The development of models for predicting vaccination response helps us un-

derstand the immunological processes and contributes to improving therapeutics. The baseline immune profiles have been demonstrated to

predict different vaccine responses.10–12 Further studies showed that CD20+CD38++B cell signature could predict immune responsiveness in

independent influenza datasets.51 This signature was associated with typeIIFN responses and activation of dendritic cells. Signaling pathways

such as JAK-STAT and interleukin signaling, Toll-like receptor cascades, interferon signaling, and Th17 cell differentiation were important

HBV pre-vaccination modulators.52 Interestingly, the peripheral blood monocyte-to-lymphocyte ratios at baseline were a predictive param-

eter to assess the response to malaria vaccination.53 All the above studies indicate the possibility to improve the vaccination outcome by

modulating the immune baseline. Differential antibody responses to inactivated and mRNA vaccines against SARS-Cov-2 have been

observed.54,55 However, the mechanisms that determine the quality and quantity of these responses are largely unknown.54,55 The immune

responses following vaccination with the BNT162b2 mRNA vaccine showed lower interferon-g and interleukin-2 production in older partic-

ipants.56 Lower lymphocyte count and higher serum SAA level have been reported to be correlated with lower seroconversion rate to inacti-

vated COVID-19 vaccines.55 In this study, we integrated plasma, urine proteomic data, and clinical features before vaccination, which could

provide a novel strategy for improving COVID-19 vaccine efficacy.

Several studies of COVID-19 plasma samples have identified multiple dysregulated proteins and metabolites in severe cases compared

with non-severe cases.57 However, few studies have been reported to investigate the correlation between plasma proteomics and antibody

response. The innate immune response is enhanced in severe patients, involving the activation of acute phase proteins and the comple-

ment system. Our study showed that the high-response group’s complement system was also dysregulated (Figures 3 and 4). Our results

show that the LXR/RXR activation was associated with the production of ACE2-RBD-inhibiting antibodies (Figures 3 and 4). It has been

reported that LXR agonists induced the expression of antiapoptotic regulators, and inhibited proapoptotic regulators and effectors, lead-

ing to inhibition of macrophage apoptosis.58 LXR agonists promoted DC maturation and IL-12, TNF-a, IL-6, and IL-8 production and

enhanced the capacity of DCs to induce CD4+ T cell proliferation.42 LXR agonists may serve as new potential targets for enhancing the

COVID-19 vaccine response.

Overall, this study presents a comprehensive proteomic analysis of plasma and urine samples from participants receiving BBIBP-CorV vac-

cine. We have developed a model for predicting the neutralizing antibody response based on the baseline proteins and clinical character-

istics. Modulating immune status at the baseline may provide a novel strategy for enhancing COVID-19 vaccine efficacy.
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Limitations of the study

There are several limitations in this study. First, this single-center study with a relatively small size of participants lacks external validation. Sec-

ond, we observed the correlations between vaccine response and plasma and urine proteomics change at D0, D14, and D42. A longer follow-

up of observation could be carried out to support our conclusion. Moreover, a molecular mechanism study should be carried out to clarify the

cause-and-effect relationship between vaccine response and changes in plasma and urine proteomics. Overall, this study indicates that

modulating immune status at the baseline may provide a novel strategy for enhancing COVID-19 efficacy.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Plasma samples Xinqiao Hospital This paper (Tables S1, S2, and S3)

Urine samples Xinqiao Hospital This paper (Tables S1, S2, and S3)

Stool samples Xinqiao Hospital This paper (Tables S1, S2, and S3)

Chemicals, peptides, and recombinant proteins

Acetone Sigma-aldrich 80000367

Sodium hydroxide Sigma-aldrich 221465-500g

Triethylammonium bicarbonate buffer (TEAB) Sigma-aldrich T7408-500ML

Urea Sigma-aldrich U1250-1KG

Tris Solarbio T8060

Tris (2-carboxyethyl) phosphine (TCEP) AdamasReagentd 61820E

Iodoacetamide (IAA) Sigma-aldrich I6125-25G

Trypsin Hualishi Scientific HLS TRY001C-100mg

Trifluoroacetic acid (TFA) Thermo Fisher Scientific T/3258/PB05CN

Methanol Thermo Fisher Scientific A452-4

Acetonitrile (ACN) Thermo Fisher Scientific A955-4

Formic acid (FA) Thermo Fisher Scientific A955-4

TMTPRO 16-PLEX Thermo Fisher Scientific A44520

50% Hydroxylamine Thermo Fisher Scientific 90115

Ammonium hydroxide solution Sigma-aldrich 221228-2.5L-A

MS grade water Thermo Fisher Scientific W6-4

NaOH Sigma-aldrich 221465-500g

3 KDa, 0.5 mL ultrafilter Merck Millipore UFC500396

SOLAm Thermo Fisher Scientific 62209-001

Critical commercial assays

TMTpro 16plex reagents Thermo Fisher Scientific A44520

High SelectTM Top-14 Abundant Protein

Depletion Mini Spin Columns

Thermo Fisher Scientific A36370

TIANamp Stool DNA Kit TIANGEN DP328

Deposited data

The raw data of Mass spectrometry https://www.iprox.org IPX0004618000

Raw sequencing data https://ngdc.cncb.ac.cn/gsa/ CRA007947

Data analysis codes zenodo.org https://doi.org/10.5281/zenodo.5642579

Software and algorithms

R software environment (version 4.2.2) R Project https://cran.r-project.org/

Cytoscape (version 3.9.1) Open-source https://cytoscape.org/

HIPLOT Open-source https://hiplot-academic.com/

shinyCircos Open-source https://yimingyu.shinyapps.io/shinycircos/

Xcalibur Thermo Fisher Scientific OPTON-30965

Proteome Discoverer (version 2.4.1.15) Thermo Fisher Scientific N/A

Ingenuine Pathway Analysis QIAGEN Digital Insights N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

IMMPORT Northrop Grumman Information

Technology Health Solutions

https://www.immport.org/

UniProt Open-source https://www.uniprot.org/

STRING Open-source https://www.string-db.org/

GraphPad Prism GraphPad Software Version 9.0

Other

Sep-Pak C18 Vac cartridges (50 mg) Waters WAT054955

XBridge Peptide BEH C18 column

(300 Å, 5 mm, 4.6 mm x 250 mm)

Waters 186003625

Chinese Clinical Trial Registry https://www.chictr.org.cn/

showproj.html?proj=122521

ChiCTR2100044919
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Shiming Yang

(yangshiming@tmmu.edu.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� Raw and processed mass spectrometry proteomic data generated in this study are available at iProx (https://www.iprox.cn/page/

home.html) with the project ID IPX0004618000. Raw sequencing data was deposited at National Genomics Data Center (https://

ngdc.cncb.ac.cn/gsa/) and available via the accession number CRA007947.
� This paper does not report original code. The R code can be downloaded from https://doi.org/10.5281/zenodo.5642579.
� Any additional information required to reanalyze the data reported in this work is available from the lead contact upon reasonable

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experimental design, plasma and urine sample collection from healthy volunteers

In this study, 60 healthy volunteers (Discovery Cohort) were first recruited by the Department of Gastroenterology of Xinqiao Hospital,

Chongqing, and vaccinated with two doses of the BBIBP-CorV vaccine (Beijing Institute of Biological Products Co., Ltd.) between February

1 and July 18, 2021. During the same period, an independent 71 healthy volunteers (training cohort) and another 71 healthy volunteers (test

cohort) were also recruited for vaccination administration. This study was approved by the Ethics Committee of Westlake University and Xin-

qiao Hospital of Third Military Medical University and was registered at the Chinese Clinical Trial Registry (ChiCTR2100044919). The method-

ologies conformed to the standards of theDeclaration of Helsinki. Participantsmet the following inclusion criteria: (1) age between 18-60, with

good physical health based on medical history and physical examination; (2) seronegative for IgM/IgG antibodies against SARS-CoV-2; (3)

completed the whole research procedure and provided the plasma and urine samples at the indicated times. A written informed consent

formwas signed prior to the trial. The exclusion criteria were as follows: (1) allergy to any ingredient of the vaccine; (2) severe allergic reactions

to vaccines in the past (such as acute allergic reactions, angioedema, or dyspnea, etc.); (3) any chronic disease (such as heart disease, cancer,

diabetes, respiratory conditions, arthritis, and kidney disease, etc.); (4) any autoimmune disease (including Guillain-Barré syndrome, autoim-

mune hemolytic anemia, and Graves’ disease, etc.); (5) those who have a fever, or suffer from acute diseases, or acute attacks of chronic dis-

eases and (6) pregnant women. All the participants received two doses of BBIBP-CorV vaccination (Day 0 and Day 28) (Beijing Institute of Bio-

logical Products Co., Ltd.). Plasma and urine were collected from all the participants on Day 0, Day 14, and Day 42 for assays of NAB titers,

routine blood tests, inflammatory cytokines, and proteomics. Stool samples were collected for metagenomic sequencing. The plasma and

urine proteins derived from 60 healthy volunteers (Discovery Cohort) with gender balance were submitted for tandem mass tags (TMT)-

labeled quantitative proteomics, while the plasma and urine proteins derived from 71 healthy volunteers (training cohort) and another 71

healthy volunteers (test cohort) were subjected to multiple reaction monitoring (MRM)-based targeted mass spectrometry.
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METHODS DETAILS

Detection of the ACE2-RBD-inhibiting antibody, blood routine and cytokines

All the plasma samples were inactivated at 56�C for 45 min before testing. The ACE2-RBD inhibiting antibody levels were detected by com-

mercial MCLIA kits (Bioscience, China). Briefly, 20 mL plasma samples were preincubated with 40 mL recombinant RBD of SARS-CoV-2 con-

jugated with alkaline phosphatase. Subsequently, 20 mL of recombinant ACE2-coated magnetic beads were added to the above mixture.

Then, the chemiluminescent substrate was added to the mixture, and the relative light units (RLU) were qualitatively measured by an auto-

mated magnetic chemiluminescence analyzer (Axceed 260, Bioscience, China). The levels of the ACE2-RBD-inhibiting antibody were finally

calculated according to the standard curves. C-reactive protein (CRP) was determined by a quantitative immune analyzer (FIA8600, Getein

Biotech, Nanjing, China). The routine blood test, including hemoglobin (HGB), white blood cell (WBC), platelet (PLT), and the ratios of baso-

phil, eosinophil, monocyte, and neutrophil were measured by Sysmex XN-9000 (Sysmex Co., Kobe, Japan). T cell, helper T cell, cytotoxic

T cell, and their corresponding ratios were measured using lymphocyte detection kits (Agilent, Santa Clara, USA) by NovoCyte D2040R

flow cytometry (ACEA BIO, Hangzhou, China). Cytokines, including IL-6, IL-8, and TNF-a, were measured by the Immulite 1000 (Siemens,

Glyn Rhonwy, United Kingdom).
Peptide preparation for proteomic analysis

The plasma and urine samples were processed as described previously for proteomic analysis.14 Briefly, 4 mL plasma for each sample was

added to High Select Top-14 Abundant Protein Depletion Mini Spin Columns to deplete high-abundance proteins. The eluates were ultra-

filtered to 50 mL using a 3K MWCO filtering unit (Thermo Fisher Scientific, San Jose, CA, USA). The concentrated samples were lysed in 50 mL

buffer (8 M urea in 100 mM triethylammonium bicarbonate, TEAB) and concentrated to 50 mL. Then, the samples were reduced with 10 mM

tris-(2-carboxyethyl)-phosphine (TCEP, Sigma, St Louis,MO, USA) and alkylatedwith 40mM iodoacetamide (IAA, Sigma) in the dark for 30min

at 31.5�C. After the mixture was diluted with 125 mL TEAB, the plasma proteins were digested with 0.5 mg trypsin for 4 h at 32�C, followed by

second digestion with 0.5 mg trypsin at the same temperature for 12 h. To stop digestion, the reaction pH was adjusted to 2�3 by 10% tri-

fluoroacetic acid (TFA, Sigma).

For urine peptides preparation, 500 mL urine supernatant was ultrafiltered to 100 mL using a 3K MWCO filtering unit. The concentrated

sample was added to 100 mL PBS and precipitated with cold acetone to a final concentration of 80% (v/v) at -20�C overnight. The formed pre-

cipitates were harvested by centrifugation and then denatured with 25 mL 8M urea in 100 mMTEAB. The protein solutions were reduced with

10 mM TCEP for 30 min and alkylated with 30 mM IAA for 45 min at 32�C in the dark. The mixture was then diluted with 132 mL TEAB and

digested with 1 mg trypsin for 4 h at 32�C. After dilution with 30 mL TEAB, another digestion with 1 mg trypsin was performed for 12 h. The

mixture was acidified with 10% TFA to stop digestion.

After desalting with SOLAm (Thermo Fisher Scientific, San Jose, CA, USA), the plasma and urine peptides were labeled by TMTpro 16 plex

reagents. The TMT peptides were eluted and separated into thirty fractions using a stepwise gradient of increasing acetonitrile at pH 10 on a

DIONEXUltiMate 3000 UHPLC System (Thermo Fisher Scientific, San Jose, CA, USA) with an XBridge Peptide BEHC18 column (300 Å, 5 mm3

4.6 mm3 250 mm) (Waters, Milford, MA, USA). The thirty fractions were combined into fifteen fractions, dried in a vacuum concentrator, and

then analyzed by a Q Exactive HF Hybrid Quadrupole-Orbitrap (Thermo Fisher Scientific, San Jose, CA, USA) in data-dependent acquisition

(DDA) mode with the same LC-MS/MS settings as described previously.15 For each acquisition, peptides were injected into a precolumn

(3 mm, 100 Å, 20 mm375 mm i.d.) at a flow rate of 6 mL/min for 4 min and then analyzed using a 60 min linear LC gradient from 5% to 28%

buffer B (buffer A: 2% ACN, 0.1% formic acid; buffer B: 98% ACN, 0.1% formic acid) at a flow rate of 0.3 mL/min (analytical column, 1.9 mm,

120 Å, 150mm375 mm i.d.). For MS acquisition, them/z range ofMS1 was 350 to 1800 with a resolution of 60,000 (at 200 m/z). The AGC target

was set at 3e6, and themaximum ion injection time (max IT) was 50 ms. The top 20 precursors were selected for theMS/MS experiment, with a

resolution at 60,000 (at 200m/z), an AGC target of 2e5, and amax IT of 100ms. The isolation window of the selected precursor was 0.7m/z. MS

data were further analyzed by the Proteome Discoverer (version 2.4.1.15, Thermo Fisher Scientific) search engine against the human protein

database downloaded from SwissProt.
MRM analysis in the training and test cohorts

The differentially expressed proteins of plasma and urine at D0, D14, and D42 were selected and used for a targetedMRM study. The Skyline

(version 21.2) was used to generate the list of transitions for unique peptides of these selected proteins. For the experiment, a Thermo Sci-

entific� TSQ Altis Mass Spectrometer was operated in MS/MS mode. The digested peptides were separated at a flow rate of 300 nL/min

using an analytical column (75 mm 3 150 mm, 1.9 mm 120 Å C18 particles) for a total time of 45 min. Comprising 2% ACN in 0.1% formic

acid as the mobile phase A and 98% ACN in 0.1% formic acid as the mobile phase B were used for the binary buffer system. All transition

peaks for each target peptide were analyzed using Skyline, and all chromatograms were manually inspected to ensure the quality and accu-

rate peak picking.
Quality control

The plasma and urine samples of the three time points in the training cohort (n= 60) were randomly distributed in 16 different batches. The

pooled sample, a mixture of all peptides, was used as a control sample in each batch and labeled with TMT pro-126 to calibrate the quan-

titative accuracy between different batches. To ensure the quality of the proteomic data, the coefficients of the variation (CV) values of protein
iScience 27, 108851, February 16, 2024 17
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abundance of the plasma and urine were first analyzed. The distribution of the urine and plasma samples in different batches was checked

using PCA analysis.
Mufzz and pathway analysis

For the subcellular localization of each protein, the online UniProt database (https://www.uniprot.org/) was applied. ANOVA was applied to

the proteomic data of plasma and urine collected at different time points (P value<0.05). These differentially expressed proteins were

analyzed using the R package Mfuzz (version 2.48.0) and classified into eight groups. Three databases were applied for the pathway enrich-

ment analysis, including GO biological process, KEGG pathway, and ingenuity pathway analysis (IPA).59
Cytokine analysis

For cytokine analysis, the IMMPORT database (Updated: July 2020) (ImmPort, 2020) was used for cytokine classification of plasma and urine

protein, and 223 cytokines were classified into six types. The t-test analysis was used to determine whether the cytokines showed statistically

significant differences between the high and low antibody titer groups. According to the online database immuneXpressomatching results.60

20 of these cytokines were associatedwith the functions of multiple immune cells. Finally, these proteomic data were visualized by shinyCircos

(version 4.1.2).61
Random forest analysis

To further screen the features of plasma and urine protein for MRM analysis, the differentially expressed proteins in different time points of

plasma and urine were obtained. The mass spectrometry data of these proteins were further analyzed. The spectral similarity between tran-

sition peak areas and library spectra was calculated by Skyline. Then, 43 plasma and 62 urine proteins with high-quality transition peaks were

selected for MRM analysis. We subsequently built a random forest (RF) model on the training cohort using the R package Random Forest

(4.6.14) as described previously and calculated the Gini index importance for each protein.23 After optimizing the key random forest param-

eters, including the cutoff values for decreased mean accuracy and the number of trees, RF models were reconstructed with the selected

features for plasma and urine alone, as well as the integration of the above index. Finally, all the RF models were evaluated on the test cohort

to predict the ACE2-RBD-inhibiting antibody response. Antibody titers above the 50th percentile of the cohort were defined as high titers,

while those below the 50th percentile were defined as low titers.
Fecal genomic DNA extraction and metagenomic sequencing and data analysis

TIANamp Stool DNA Kit (TIANGEN, Beijing, China) was used for fecal genomic DNA extraction. NanoDrop 2000C spectrophotometer

(Thermo Fisher Scientific, Waltham, USA) was used for the measurement of the concentration and purity of the extracted DNA. Then the li-

braries were sequenced using the Illumina NovaSeq 6000 platform by Novogene (Tianjin, China). The raw data was cleaned by KneadData.

Taxonomic counts were obtained by Metaphlan. The HMP Unified Metabolic Analysis Network 3.0 was applied for functional annotations.

HUMAnN 3 uses MetaCyc for the pathway definitions. Maaslin 2 was applied for the analysis of differences in bacterial abundance and

theMetacyc pathway. The ANOSIM test was used to calculate the significance of dissimilarity using the RCommunity Ecology Package vegan.
Database search

The TMT-labeled mass spectrometric data of plasma and urine were identified using Proteome Discoverer (Version 2.4.0.305, Thermo Fisher

Scientific) against a manually annotated and reviewed Homo sapiens protein FASTA database (SwissProt, 27 April 2020). The enzyme was set

to full-specificity trypsin with two missed cleavages. Static modifications were set to carbamidomethylation of cysteine and TMTpro of lysine

residues and the N-termini of peptides. Variable modifications were set to oxidation of methionine and acetylation of the N-termini of pep-

tides. The precursor ionmass tolerance was set to 10 ppm, and the production was set to 0.02 Da. The peptide-spectrum-match allowed a 1%

target false discovery rate (FDR). The R package limma was used to analyze DEPs with a threshold of P value less than 0.05 and BH adjusted P

value less than 0.05. The subcellular localization of each protein was matched on the UniProt database (https://www.uniprot.org/).
QUANTIFICATION AND STATISTICAL ANALYSIS

Normality and lognormality test (Shapiro-Wilk test) was used to test normality. If data passed the normality test, comparisons between two

groups were performed using an unpaired two-tailed Student’s t test. Otherwise, comparisons between two groups were performed using an

unpaired two-tailedMann-Whitney test. Pearson or Spearman correlation coefficient and two-tailed probability P value were calculated in the

correlation studies.
ADDITIONAL RESOURCES

This research was registered in the Chinese Clinical Trial Registry with an lD of ChiCTR2100044919 (https://www.chictr.org.cn/showproj.html?

proj=122521).
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