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Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT),
have largely enabled a biological dose escalation of the target volume (TV) and reduce the
dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced
injury increases as more radiation dose utilized during radiation therapy (RT), which
predominantly limits further increases in TV dose distribution and reduces the local control
rate. Thus, the accurate target delineation is crucial. Recently, technological
improvements for precise target delineation have obtained more attention in the field of
RT. The addition of functional imaging to RT can provide a more accurate anatomy of the
tumor and normal tissues (such as location and size), along with biological information that
aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application
of some common MRI-based functional imaging techniques in clinical practice. In
addition, we summarize the main challenges and prospects of these imaging
technologies, expecting more inspiring developments and more productive research
paths in the near future.

Keywords: functional imaging, organs at risk, target volume, radiation therapy, therapeutic index
INTRODUCTION

Radiation therapy (RT) is the cornerstone of curative cancer care (1). Ideally, the optimal RT
strategy is supposed to deliver the highest potential radiation dose to the tumor target volume (TV)
without affecting nearby structures or organs at risk (OARs). To meet the requirement, radiation
oncology has undergone a huge transition in the last decades from 2D therapy to 3D conformal RT
(3DCRT) and intensity-modulated RT (IMRT), and even to intensity-modulated proton therapy
(IMPT), which allows for better performance in terms of dose escalation in the TV and dose
reduction in the OARs. Theoretically, therapeutic index (TI) is optimized by maximizing the dose in
the TV while minimizing the dose in the OARs in the treatment plan (Figure 1D).

With regard to IMPT, it has been widely studied due to its unique depth–dose characteristics of
protons, which can increase the dose to the TV while reducing the dose exposure to normal tissue,
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however, the majority of studies on the application of IMPT is
based on small-scale studies and is poorly cost-effective (2).
Therefore, herein, we focus on photon-based RT techniques
such as 3DCRT and IMRT, which are currently the main RT
strategies in large-scale clinical practice, despite the lack of TI
optimization during RT. Fortunately, a growing body of evidence
suggests that the integration of functional imaging techniques
into RT brings hope for improving TI based on photon-based
RT. In RT, imaging plays a critical role in tumor location,
staging, target delineation, and outcome monitoring (3). In
contrast to conventional IMRT and imaging-guided RT
(IGRT), functional imaging-guided IMRT tends to provide a
more accurate delineation of TV and OARs, resulting in
diminishing treatment margin of the gross tumor volume
(GTV), clinical target volume (CTV), and planning target
volume (PTV) in tumor target and a smaller volume of OARs
and planning OAR volume (PRV) in OARs (Figure 1A). In
addition to anatomical information (such as location and size),
functional imaging provides the physiological and functional
status of the tumor and its surroundings compared with
conventional magnetic resonance imaging (MRI) (3).
Currently, functional imaging plays various roles in radiation
oncology, such as tumor localization, staging, target delineation,
assessment of early response to therapy, prognosis, and
monitoring recurrence (4).

In general, functional imaging has widely enabled clinicians
to improve TI ratios by reducing the risk of geographic miss and
selectively increasing radiotherapy (RT) dose to the TV, and
minimizing unnecessary dose exposure to the OARs
simultaneously. In this review, we outline several common
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MRI-based functional imaging techniques that used in the field
of RT to explore improvement in TI ratios. Furthermore, we
summarize current challenges and prospects.
FUNCTIONAL IMAGING

At present, many functional imaging techniques have been
gradually integrated into oncologic RT planning. Herein, we
review some common imaging techniques in clinical practice,
including diffusion-weighted (DW) imaging (DWI), intravoxel
incoherent motion DWI (IVIM-DWI), MR-spectroscopic
imaging (MRSI), dynamic susceptibility contrast (DSC),
dynamic contrast-enhanced (DCE), diffusion tensor imaging
(DTI)-MRI, and blood oxygenation level-dependent functional
MRI (BOLD-fMRI) (Table 1).

Diffusion-Weighted MRI
DWI is a simple and readily available functional imaging
technique with capability to visualize the motion of the water
molecules (also called Brownian motion) in biological tissues (5).
DWI can evaluate the differences in tissue cellular density and
offer visibility of cellular construction (102, 103). Sensitized b-
value, known as, the real diffusion weighting (measured in s/
mm2), is used to measure the levels of diffusion weighting
applied. Motion-sensitizing gradients are used for parameter
acquisition. Thus, there is no need for contrast injection on
DW-MRI due to its tissue contrast. The amount of diffusion
(o f wa te r mo lecu le s ) in d i ff e r en t t i s sue s can be
quantificationally evaluated using the apparent diffusion
A B

D

C

FIGURE 1 | Interaction among imaging-guided techniques, treatment margins of tumor target, and organs at risk (OARs) based on the accuracy of imaging
approaches. Decreasing volume around gross tumor volume (GTV, in red), clinical target volume (CTV, in orange), planning target volume (PTV, in blue), planning
organ at risk volume (PRV, in green), and organs at risk (OARs, in yellow); distance changes between treatment margins and OARs in intensity-modulated radiation
therapy (IMRT), image-guided radiation therapy (IGRT), and function imaging-guided IMRT. (A) Relations between distance (x-axis) of gross target and organ at risk.
(B) Relations between the distance (x-axis) and TV dose escalation (y-axis). (C) Relations between the distance (x-axis) and OARs dose exposure (y-axis).
(D) Relations between TV dose/OARs dose and therapeutic index.
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coefficient (ADC) value (6) and then presented as a map, which
holds better diffusion than traditional DWI. ADC value can be
calculated by changing gradient amplitude using different b-
values (104–106) and at least two b-values (107). In clinical
practice, to achieve the lower mobility of water molecules and
shorter diffusion distances in these tissues, using a larger b-value
(e.g., b = 500 s/mm2) on DWI is suggested.

Generally, the spread of water molecules on DW-MRI is
restricted on malignant lesions with hypercellular areas or
complex structures, presenting a high signal on DWI and
accompanying low ADC value (108, 109). Clinical practice
shows (110) that the standard ADC value obtained by the
traditional single-index DWI model is affected by the water
molecule diffusion and microcirculation perfusion in the tissue
and cannot well reflect the movement of water molecules in the
tumor tissue. IVIM-DWI introduced by Le Bihan (5, 27) can
more accurately assess diffusion movement and microcirculation
perfusion in tumor tissues due to its ability to separate diffusion
and perfusion. IVIM-based parameters involve pure diffusion
coefficient (D), pseudodiffusion coefficient (D*), and perfusion
fraction (f).

Based on the fact that the ADC value and signal intensity
between tumor and normal tissue are significantly different,
recently, DWI has been gradually explored to accurately
delineate TV and OARs in radiation treatment planning. For
example, it has been indicated that the addition of DWI to MRI
can better distinguish lung cancer from atelectasis (7). DWI also
takes advantage of nodal staging (8–10); thus, DWI provides
smaller nodal TV delineation than conventional imaging (8).
Similarly, DWI provides smaller rectal tumor volume (GTV)
delineation than does T2-weighted (T2W) MRI (11–13), and
probably because DWI provides a better edge contrast than T2W
images (111). These findings indicate that a better RT boost to
TV is possible. The quantitative data provided by DW-MRI
could reflect intratumoral heterogeneity, highlighting more
radioresistant areas (14, 15). Subsequently, elective dose
escalation can be individually delivered to these areas.
Moreover, DWI may be a potential tool to evaluate the salivary
gland function in head and neck cancer (HNC) patients (16),
resulting in the accurate protection for normal tissue, also with
the ability to predict RT-induced xerostomia incident in RT.
Several studies conclude that ADC histogram has a promising
value of predicting overall survival (OS) and progression-free
survival (PFS) and risk stratification in recurrent glioblastoma
patients treated with bevacizumab (19–22).

Regarding clinical applications, IVIM-DWI can be used to
detect positive resection margins in breast cancers (30, 31), lung
tumors (26), and hepatic lesions in liver cancer (32, 33); and the
diagnostic efficacy of D values is the highest (28, 29). A meta-
analysis showed that the IVIM-DWI parameter (D value)
showed better diagnostic performance than mono-exponential
ADC (26). In addition, IVIM plays a pivotal role in benign and
malignant identification (33, 34), especially for the D value (33).
The D value is superior to ADC in distinguishing benign and
malignant lesions (35). Moreover, IVIM-DWI-derived
parameters can be used to grade malignant lesions (28, 34, 36)
Frontiers in Oncology | www.frontiersin.org 3
and have the potential to differentiate true progression from
pseudoprogression after early chemoradiotherapy in
glioblastoma multiforme (GBM) (23, 24). Besides, IVIM can
predict treatment response, such as parotid changes and
vertebral bone marrow changes (17, 18). Taken together, the
ability of IVIM-DWI to detect and identify benign and
malignant would be helpful in target delineation and OAR
avoidance in RT. Regarding tumor grading, IVIM-DWI may
aid in predicting tumor aggressiveness and prognosis. In terms of
pseudo/true progression identification and prediction of
treatment response, IVIM may help to determine early
therapeutic intervention and improve prognosis.

Overall, DWI may be a promising tool to obtain a better TI
when being incorporated into RT planning assistance. However,
some limitations of DWI, such as geometric distortions, which
are closely related to TV delineation, and uncertainty of diffusion
parameters, where low reproducibility means high variations,
impede its widespread use within clinical practice. To solve this
issue, conjunction with other MR images is suggested such as
higher-resolution anatomic images, high-quality data with
different b-values, and, if possible, contrast material-enhanced
images (25).

MR-Spectroscopic Imaging
MRSI allows non-invasive measurement of biochemical
information in tissues, especially in the brain with the
existence of tumors. MRSI is also an analytical and non-
injected contrast agent (CA) technique without ionizing
radiation, related to MRI in vivo (37, 38). However, unlike
MRI, which can only identify the anatomic structure and
location of a tumor or normal tissue, MRSI can be used to
determine the concentration and presence of various
biochemical substances, often referred to as “metabolites”
because of their role in metabolism. Therefore, MRSI can
effectively supplement the characterization of tissue beyond
MRI function. In recent years, proton MRSI has gained a great
popularity due to its higher sensitivity and greater convenience,
since proton MRSI does not need hardware modification while
being performed on most MRI machines. Therefore, the
remainder of this article in brain tumor studies focuses on
protocols for 1H-MRSI. The common metabolites of 1H-MRSI
include choline (Cho), N-acetyl aspartate (NAA), lactate (Lac),
and creatine (Cr) in clinical routine (37).

In normal conditions, NAA exists in the intact neuronal and
axonal structures, and its reduction demonstrates loss or damage
of neuronal tissue (40). Cho is associated with phospholipid
membrane turnover, and an increase in Cho indicates a process
of leading to elevated glial proliferation and membrane synthesis
(41). Lactate is implicated in various cancer mechanisms such as
facilitating cancer cell proliferation and angiogenesis (112).
Creatine is related to cellular energy metabolism. It is
considered a useful reference metabolite due to its relative
stability in different pathological processes involved in the
central nervous system. In malignant tumors, NAA is reduced
or lost since neurons are replaced by neoplastic tissue; Cho is
increased directly; lactate may implicate a high level of
August 2021 | Volume 11 | Article 645177
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malignancy (41). Based on the above, the NAA/Cho ratio is a
sensitive marker for brain tumors, with the potential to
distinguish active tumors from normal tissue and other non-
cancerous lesions, such as necrosis (42). Cho/NAA ratio is widely
utilized to describe tumor volume and invasion, because these
metabolites change inversely in the tumor, increasing contrast
(47). At present, the application of MRSI in clinical practice is
involved in differential diagnosis (43–46), classification (45, 46),
staging (46), treatment planning (49, 50), and posttreatment
monitoring (54). Moreover, Lac/Cr, NAA/Cho, and Lac/NAA
can predict overall survival (OS) and progression free survival
(PFS) (41).

Herein, we mainly focus on the use of MRSI in radiation
planning. In glioma, compared with conventional RT alone,
adding of MRSI could provide metabolism information of
tumor cells and OARs, resulting in more accurate target
delineation (50). Croteau et al. conducted a study in 31 low-
and high-grade-glioma patients. Their findings showed that
MRSI can more accurately define the tumor boundary and
normal tissues and can quantify the extent of the disease
compared with conventional MRI via histopathological
validation (54). Pirzkall et al. studied 34 patients with high-
grade gliomas (52). When using T2 to define high-risk regions,
the volume is extended by as much as 28 mm as compared with
tumor definition from MRSI. Thus, the MRSI technique may
have the potential to accurately optimize dose distribution of
tumor TV and reduce the exposure to normal tissue (52).
Moreover, Narayana et al. showed that Cho/Cr greater or
equal to 3 defined by MRSI reduced 40% GTV volumes
(GTVs) compared with GTVs defined by T1-weighted MRI
(49). A study by Deviers et al. showed that tumor areas with
lactate-to-N-acetyl aspartate ratio (LNR) 0.4 voxels before RT are
likely to relapse, suggesting additional biological TVs for dose
painting in GBM (53). In addition, a small study demonstrates
that MRSI can aid in the delineation of hypoxic regions in solid
tumors by exploring the metabolic outcome of tumor hypoxia,
presenting increased total choline-containing metabolites (tCho)
and lipid CH3 in breast tumors (51). Previous studies
demonstrated that MRSI possesses great potential for the
differentiation of tumor recurrence from radiation necrosis (37,
55, 56). This technology would be helpful for reirradiation
settings in brain tumors due to its accurate delineation of
recurrent lesions and successful avoidance of normal structures
or radiation-induced reactions.

Overall, it seems that MRSI has been gradually and widely
used to improve treatment planning for RT, with the ability to
deliver dose escalation at particular tumor targets and reduce
dose exposure to OARs. Even for recurrent disease, MRSI may
perform well in improving TI, such as identifying and predicting
tumor lesion recurrence. However, we should also be aware of
the limitations of MRSI, such as the presence of spectral artifacts,
which can result in false information, and lower specificity,
although spectral artifacts may be solved by the automatic
testing system (57) and by obtaining a higher field strength,
like using 3T (113). A combination between MRSI and DW-MRI
may improve the specificity of MRSI (114). However, other
obstacles in MRSI, concerning low spatial resolution, long-time
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acquisition, and unstable acquisition of high-quality spectral
images, have impeded the widespread translation of MRSI in
clinical practice.

Perfusion MRI
Perfusion MRI is a well-established perfusion imaging technique,
mainly including three techniques: DSC, DCE, and arterial spin
labeling (ASL) MRI. Based on perfusion MRI modality, different
parameters could be calculated, such as blood volume (BV) and
blood flow (BF) in DSC, also the transfer rate constant (Ktrans)
and the extravascular extracellular volume fraction (Ve) value in
DCE. In perfusion MRI, individuals under inspection need a
gadolinium-based agent via a peripheral vein during the
continuous imaging process.

DSC refers to the BF through a certain tissue in a unit of time,
which is an important physiological characteristic of the tissue
and can specifically reflect the characteristics of vascular lesions.
In DSC, the post-processed acquired time series can be used to
acquire perfusion maps with the above parameters. DCE can
measure the hemodynamic properties of tissues, such as density,
integrity, leakiness, and permeability of tissue vasculature, by
obtaining continuous MRI from the pre- and post-intravenous
injection of a CA (58, 61). To acquire quantitative DCE-MRI
data, three main components of measurements are needed: 1) an
original T1 map before contrast administration; 2) acquiring T1-
weighted images after CA injection at a proper temporal
resolution; and 3) a method to evaluate the arterial input
function (59). Compared with DSC-MRI, T1 DCE-MRI has a
lower temporal resolution and is mainly used to reflect the
density of microvessels.

Based on all aforementioned data, perfusion MRI plays an
essential role in tumor treatment within clinical practice. The
formation of increasing new blood vessels is essential to the
growth of malignancy (73); as a result, BV and BF will rise
correspondingly. In brain tumors, previous studies have shown
that cerebral BV (CBV) and cerebral BF (CBF) are associated
with predicting clinical outcomes, such as OS and PFS (62). A
study in high-grade-glioma and low-grade-glioma patients
indicated that CBV (the mean relative CBV = 1.75) correlates
positively with disease progression (62). However, in clinical
practice, the use of median CBV and CBF is limited because of
highly heterogenous gliomas, resulting in low sensitivity and
specificity of assessing efficacy. Additionally, it should be noticed
that a tumor may display low-rise CBV. An increasing number of
studies indicate that DCE-MRI may improve differential
diagnosis, localization, tissue features, staging, and monitoring
treatment response in neoplastic diseases (60, 70, 115, 116). In
prostate cancer, previous studies demonstrate that DCE-MRI
may be useful for delineating both tumors and surrounding
normal tissues in the prostate gland with sensitivity of 59%–87%
and specificity of 74%–84% (63, 64, 117). DCE could predict the
volume change of radiation-induced parotid by evaluating
individual microvascular perfusion and tissue diffusion rates in
HNC patients, suggesting an adjustment of the treatment plan
before RT (17, 65). In advanced cervical carcinoma, evidence
illustrates that DCE is likely to provide a clinically useful
biomarker for the prognosis based on pharmacokinetic analysis
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of DCE-MRI data (118, 119). Additionally, different levels of
tumor hypoxia are common during RT but are not easily
assessable in patients. In clinical practice, parameter Ktrans is a
potentially useful biomarker for tumor hypoxia, RT resistance,
and metastasis in cancers (66–69) as well as Ve (66, 69).

Although DSC and DCE have been relatively mature, there
are still some limitations of parameter calculation in clinical
practice. First, CBV and CBF are always changeable in any region
of gliomas owing to circuitous vasculature and immature
vascular structures, especially in high-grade gliomas (71, 72).
Second, many factors may influence the leakiness of blood
vessels, such as vascular permeability, BF, vascular lumen area,
and even temperature (120–122). Therefore, Ktrans and Ve value
can be influenced easily by the above factors and not only reflect
vessel permeability. A study conducted by Law et al. probably
provides us with some insights into which a combination
between DSC and DCE can significantly improve diagnostic
accuracy and sensitivity (62).
Blood Oxygenation Level-Dependent
Functional MRI
BOLD-fMRI signals provide real-time cerebral oxygen
distribution under normal physiological conditions, based on
local magnetic field properties resulting from a mismatch
between local oxygen consumption caused by neuronal activity
and increased CBF reactivity (85). BOLD signal has four
parameters: onset time, time to peak, full width at half
maximum (FWHM), and amplitude (86). The increase of local
CBF causes a reduction in the local amount of deoxygenated
hemoglobin generated by metabolism in response to neuronal
activity, presenting signal enhancement (T2 and T2*) in related
brain regions (100). Among these regions, transparent contrast
relies on repeatedly averaging subtle differences of signal
enhancement. Brain activation mapping using BOLD-fMRI is
based on the prerequisite that there is a tight coupling between
neuronal activity and hemodynamic changes (101).
Deoxyhemoglobin in the blood vessels is regarded as an
endogenous CA during the production of functional activation
maps. Oxyhemoglobin contains an unpaired electron and is
therefore diamagnetic. Deoxyhemoglobin contains four
unpaired electrons and is a paramagnetic substance. The
d i ff e r en t con c en t r a t i on s o f o x yh emog l ob i n and
deoxyhemog lob in wi l l cause loca l magne t i c fie ld
inhomogeneity, leading to the difference in the signal on the
image and then production of imaging.

Current clinical application is mainly used for the positioning
of the functional cortical center, including vision, movement,
and hearing. BOLD-fMRI has become a valuable tool for
presurgical functional brain mapping. In surgery, BOLD-fMRI
can guide the safest surgical trajectory between functionally
viable brain tissue and the lesion. In particular, in brain tumor
patients, who are often neurologically impaired, we should take
patient preparation and neurobehavioral evaluation into special
consideration when performing fMRI. BOLD-fMRI for
preoperative planning allows for accurate risk assessment of
surgery-related brain damage, such as postoperative motion,
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visual and somatosensory deficits, and intraoperative cortical
stimulation (ICS) mapping, reducing surgical time (97) and need
for further preoperative diagnostic studies (123). Moreover,
BOLD-fMRI demonstrates an excellent concordance with ICS
for motor mapping (87–90) and language mapping (91–93).
Wang et al. and Pantelis et al. have demonstrated that the
combination of BOLD-fMRI and DTI could be beneficial of
marking and sparing OARs in radiation treatment planning,
resulting in less radiation toxicity (95, 96). In addition, a study
showed that BOLD-fMRI is a non-invasive technique that could
explore hypoxia information by analyzing the correlations of the
*R value and HIF-1a (94).

Spatial resolution is one of the limitations of BOLD-fMRI, as
flow increases in some of the larger arteries or veins feeding or
draining large neuronal areas. The solution is to insert a
“diffused” gradient pulse (corresponding to low b-values) into
the MRI sequence; the largest vascular contribution in the BOLD
signal (high D* values are associated with fast flow) can be
squeezed to improve the spatial resolution of the activation map
(98, 99). In addition, neurovascular uncoupling is another key
limitation that could affect the accuracy of BOLD-fMRI
surrounding brain tumors, but combining an observed vaso-
task dependency with the BOLD signal analysis may partially
overcome this shortcoming (101).

Diffusion Tensor Imaging–MRI
DTI-MRI is an MRI technique that can be used in vivo non-
invasively to measure anisotropic diffusion of water molecules
in various tissues, leading to producing neural tract images
(74). Abnormalities in the fiber structure of the axonal (white
matter) can be detected by DTI-MRI, which can model brain
connectivity. Thus, it has been rapidly developed to implement
RT of white matter disorders (77). At present, DTI-MRI had been
extensively utilized for glioma researches. DTI parameters include
ADC and fractional anisotropy (FA) values (74).

Price et al. showed that glioma cells are prone to invade tissue
along the direction of white matter tracks (WMTs) (75). Another
study by Krishnan et al. calculated routes of water diffusion from
the primary tumor location to tumor progression location by
using DTI-MRI in glioma patients. Meanwhile, this study also
showed that the direction of elevated water diffusion may be a
reliable indicator of routes of tumor progression (78), which is
consistent with Price’s study. Thus, DTI MRI would help localize
and identify the possible microscopic disease and will help to
delineate CTVmore accurately. Also, some previous studies have
proved that it may aid in the optimal delineation of biological
CTV by incorporating DTI-MRI into RT planning while
reducing the dose exposure to nearby function regions (76, 78–
81). A study by Conti et al. demonstrated that radiation dose
exposure to OARs was decreased by up to 16.86% after the
integration of functional neuroimaging as compared with their
initial values (124). In addition, DTI-MRI can evaluate response
to neoadjuvant chemotherapy in patients with breast cancer
(82, 83).

In DTI, there are still some other technique defects, such as
the distortion of the image because of an uneven magnetic field
and poor display for smaller fiber bundles (84). However, DTI
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has been rapidly developed in nervous system diseases, with an
extensive clinical prospect to optimize TV, predict prognosis,
and better protect functional regions of the brain.
THERAPEUTIC INDEX IN RADIATION
THERAPY

Conventional MRI already anatomically offers better soft tissue
imaging in contrast to CT (125). However, it is not enough to
provide high sensitivity and specificity delineation of TV due to a
lack of functional indications. At the anatomic level, previous
studies have demonstrated that functional imaging can provide a
more accurate delineation of tumor TV base on better
background contrast between tumor and normal tissue (12, 63,
64, 113, 117). Accurately defining the boundaries between tumor
and normal tissue gives rise to the increased distance between
tumor and OARs in function imaging-guided IMRT
(Figure 1A). Moreover, the increased distance is beneficial for
imaging-guided dose escalation in TV and decreased dose
exposure in OARs (Figures 1B, C). In addition to the clear
anatomical display, we note that there are several concepts and
advanced radiation techniques related to fMRI-based RT that
have great potential to improve TI, including tumor hypoxia,
dose painting, adaptive RT (ART), local recurrence, and MR-
guided linear accelerator (MR-LINAC). Among them, the
integration of fMRI can provide TI benefits.

Tumor Hypoxia
Despite improvement in the accuracy of target delineation and
radiation delivery due to advances in RT and imaging techniques,
in-field recurrence remains the predominant local failure model
(126), which may be explained by the fact that the PTV of the
entire primary tumor and the involved lymph nodes is delivered
with a homogenous radiation dose without considering the
intratumoral heterogeneity. Heterogeneity is one of the inherent
characteristics of tumors, which is mainly manifested in the
heterogeneity of intracellular and molecular biological features
(including glucose metabolism, cell proliferation, hypoxia,
epithelial growth factor receptor (EGFR) expression, and choline
metabolism, etc.) (127). Tumor hypoxia is fairly common in RT
due to abnormal vessel structures. Hypoxia is highly associated
with poor prognosis because oxygen-deprived cells are strongly
resistant to chemoradiotherapy, which leads to failure. Therefore,
identifying and quantifying tumor hypoxia are important and
necessary for improving TI in RT treatment. Numerous studies
have shown that fMRI is an attractive option to identify, quantify,
and spatially map hypoxic areas prior to therapy, as well as to track
hypoxia changes during radiation (51, 66–69, 94), resulting in
guiding increased radiation doses to hypoxic RT-resistant areas.

Dose Painting
The concept of dose painting has been proposed to improve local
control through increasing the dose to a segment of intra-tumor
radiation-resistant while decreasing the dose to a radiosensitive
segment based on fMRI (126). IMRT can deliver non-uniform
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dose distribution, but how to follow the region of interest (ROI)
remains unknown. Therefore, biological/molecular information
derived from fMRI may be a help to identify and track tumor
hypoxia, proliferation, and other ROIs. The fMRI-based dose
painting opens a new era called “biological conformality.”
Previous studies showed that fMRI-guided imaging could help
radiation dose boost in certain areas by means of dose painting in
tumor target (128–131) while sparing OARs (128–132).
According to the quantitative parameter maps from functional
imaging (126, 133), the radiation dose can be spatially
redistributed in the target area and OARs. The dose mapping
seems to be more reasonable than surgery, a way of all-or-
nothing therapy, as intratumoral heterogeneity is a natural
feature. DCE-MRI can also be used for dose painting based on
its ability to display microvasculature permeability and BF,
which is associated with the tumor’s oxygenation (134–137).
DWI can reflect areas with a higher tumor burden (138, 139) and
with radiation resistance (14, 15). MRSI possesses the ability to
monitor tumor metabolism (140, 141) and is also useful for
dose painting.

Adaptive Radiation Therapy
In clinical practice, the target for RT is dynamic. It changes over a
time frame, including position, size, shape, and biology. ART
strategies systematically track variations in targets and adjacent
structures to timely inform treatment-plan modification during
RT. Monitoring variations is necessary because a single pre-
treatment plan is inadequate to reflect the actual dose
distribution on the tumor and its surroundings during RT
(142). This technology allows for increasing doses delivered to
tumors while simultaneously limiting dose exposure to the
normal structures. MRI-guided ART provided both
personalized geometric and biological adaption (143). Bladder
cancer is well suitable for ART since the bladder has large inter-
fractional changes and intra-fractional motion (144, 145). MRI-
guided adaptive brachytherapy in cervical cancer (146, 147) and
primary vaginal cancer (148) results in effective and stable long-
term local control at all stages of cervical cancer, while decreasing
severe radiation-induced morbidity. Similarly, promising results
are also observed in liver tumors (149), prostate cancer (150),
and unresectable primary malignancies of the abdomen. It seems
like MRI-guided ART is more suitable for highly radiosensitive
tumors with large motion changes and volume changes over the
course of RT.

Local Recurrence
Despite advances in RT and imaging techniques, in-field
recurrence remains a common failure model. Recurrent lesions
are a treatment challenge because of RT resistance and radiation
dose limitation to surrounding normal tissues. The ability of
fMRI to differentiate tumor recurrence to post-radiation
treatment effects, including pseudoprogression and radiation
necrosis, provides assistance in reirradiation settings in patients
treated after primary chemoradiotherapy (23, 24). ADC values
for radiation necrosis were found to be higher than for
recurrence in some studies; however, the reported values are
inconsistent and may be explained by technical factors (151).
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A study by Xu et al. (152) using DTI showed that the mean ADC
ratios for radiation necrosis in recurrent tumors were 1.62 and
1.34. An alternative to DTI is that it favors tumor recurrence over
radiation necrosis when diffusion restriction is present on the
ADC image, which does not show diffusion restriction. DCE-
MRI perfusion measures CBV and CBF, which can be accurately
measured in the presence of a blood–brain barrier breakdown
(151). A study by Larsen et al. (153) measured CBV in patients
with MRI contrast-enhanced. They found that lesion regression
shows low CBV (less than 1.7 ml/100 g), while lesion progression
shows high CBV (>2.2 ml/100 g). Therefore, Larsen et al.
concluded that an absolute CBV threshold of 2.0 ml/100 g can
detect lesion degeneration or progression, with a reported
sensitivity and specificity of 100%. Several studies have shown
that patients with tumor recurrence have higher Cho/Cr and
Cho/NAA values than patients with radiation necrosis (151,
154). In addition, fMRI can predict tumor aggressiveness and
early treatment response, with the assistance of deciding early
therapy intervention and improving the prognosis (17, 23, 24).

MR-Guided Linear Accelerator
In recent years, with the advancement of MR-guided RT,
accurate radiation is facing new challenges and prospects. MR-
LINAC is a new technology and the first machine in the world to
combine radiation equipment (such as a linear accelerator
or 60Co sources) and high-resolution MRI (155). The key
benefits of MR-LINAC are that it can record MR images for
every fraction and use these for daily plan adaptation. During the
radiation treatment of the tumor, the radiation beams are
accurately located in and destroy tumors, while avoid radiating
and harming the nearby healthy tissues. Currently, MR-LINAC
has been applied in various tumors, including pancreatic cancer,
prostate cancer, and liver cancer (156–159). To date, MR-LINAC
seems to be the most efficient method to optimize the TI of RT in
cancer treatment. Combining MRI with the most accurate RT
techniques, such as proton therapy, will be our ultimate goal
(160). However, prolonged treatment times, patient
tolerance, and high cost are the major obstacles. At present,
related studies on MR-LINAC are still at an early stage with
sparse clinical evidence, despite interesting potential.
CHALLENGES AND PROSPECTS

Although the use of quantitative imaging was studied since the
early 1990s in RT (125), there are still significant barriers to its
widespread use in clinical practice. Excitingly, with the
development of fMRI techniques, some prospects are inspiring.

Challenges of Functional MRI for
Radiation Therapy
From the object technology perspective, inconsistent imaging is
commonly produced by different vendors, machines, and
imaging protocols. However, quantitative imaging in RT is not
a simple substitute for quantitative imaging in radiology. For
example, in an RT scan, the patient’s position needs to be as
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similar as possible to the treatment setting. However, it is not
easy to accomplish this in many institutions because of various
policies and management. In addition, robust calibration for
biomarkers is still a big challenge, as the current quantitative
imaging technique needs one or multiple measurable parameters
to produce a voxel, leading to in worse signal-to-noise ratio
(SNR) and greater voxels than traditional imaging (107). Last but
not least, when applying different imaging techniques together, it
is difficult for clinicians to interpret multiparametric functional
images with transparently conflicting information; for example,
the overlap is largely restricted in the area identified by DWI and
DCE-MRI simultaneously.

On the artificial perspective, currently, delineation of most
tumors and OARs are still through manual procedures, in which
the TV is determined by a radiation oncologist and a radiologist
together on the basis of clinical information and images. Therefore,
differences in which different spectators have various definitions in
anatomic features of OAR boundary may cause inconsistency in the
OAR definition. Moreover, errors caused by mistakenly missing or
adding parts can give rise to inaccurate delineation in OARs. Finally,
a small part of oncologists, particularly those in rural areas, do not
receive sufficient training and clear instructions which leads to
discrepancies in the anatomic definition of OARs.

From the economic perspective, compared with conventional
MRI, fMRI is more expensive. This is because the application of
fMRI requires higher machine costs. Some studies speculate that
models combined with multiparametric MRI (mpMRI) have
advantages of cost-effectiveness, but their findings are based on
several a priori assumptions for every model (161–165). Therefore,
any change in the selected criteria might result in a major change in
the cost and, consequently, in the conclusions. Notably, to date, the
evidence for the use of mpMRI to consider further biopsy is at best
based on minimal clinical data (166, 167). Furthermore, such a
policy is still under observation, as almost all publications are related
only to systematic biopsy. There are several limitations associated
with the widespread utilization of mpMRI in clinical practice. First,
low-quality mpMRI is still a major issue. Surprisingly, the initial cost
of repeat low-quality mpMRI is very common but not mentioned.
Most importantly, there are no standardized principles to evaluate
mpMRI progression in patients on AS. For example, how should we
assess the lesion status in Prostate Imaging-Reporting? Is it an
increase in tumor size, if so, how about the threshold? Finally, above
all, evidence is mainly from small studies and extrapolation of
various strategies such as enlarging the merit of initial mpMRI
for biopsy.

Prospects of Functional MRI for
Radiation Therapy
According to the above challenges, there are some relative
solutions. To acquire consistent and continuous images, we
suggest that it would be better if patients are willing to receive
a complete examination under same conditions. To analyze the
conflicting information, some researchers suggest defining the
area identified by two imaging approaches as gross tumor
volume (GTV); the areas indicated by only one of the imaging
techniques can be defined as CTV with high risk. To reduce
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inter-observer variability of OAR delineation, an automatically
delineated system might be recommended in the future. Also,
standardized training should be publicized widely.

Concerning cost-effectiveness improvement, the growing body
of evidence demonstrates that fMRI may bring cost-effectiveness in
prostate cancer. In contrast to transrectal ultrasound-
guided biopsy (TRUS) alone, the use of mpMRI to select patients
for repeat biopsy holds fewer biopsies and lower cost, despite that a
few cancers are being missed, but further research is needed to
determine whether missed cancers represent clinically significant
tumors (168). Another study showed that an mpMRI-first strategy
and then TRUS are cost-effective to diagnose clinically significant
prostate cancer (169). In patients with low-risk cancer,
overtreatment will lead to adverse effects and unnecessary costs
(170). Active surveillance (AS) program, which contains digital
rectal examination (DRE), prostate-specific antigen (PSA), and
standard repeated 12-core TRUS, is currently recommended for
avoiding overtreatment (170). However, the standard AS has some
limitations, including missing high-risk tumors and performing
unnecessary biopsies. The strategy of using mpMRI combined with
limited MR-guided TRUS can improve quality of life and greatly
reduce cost in low-risk prostate cancer patients during follow-up
(170). Adequate data are further needed from large randomized
prospective cohorts in the future.

In terms of some new insights or techniques, based on the
above, the application of fMRI to guide dose painting and ART to
detect tumor hypoxia area and postoperative local recurrence, in
combination with MR-LINAC, has led to some promising
findings. Despite the lack of a uniform measurement standard,
we expect to further explore the function of fMRI in improving
TI through large-scale randomized clinical studies.
CONCLUSION

Incorporating functional imaging techniques into RT planning has
big potential to improve TI in RT via different mechanisms.
Functional imaging possesses potential advantages, as follows. First,
quantitative imaging may provide superior contour and visibility
between tumors and normal tissues, with the benefit of dose
escalation in TV and dose reduction in OARs, with the promising
potential for guiding de-escalation in oropharyngeal carcinoma
patients (171, 172). Second, quantitative imaging may be a potent
toxicity prediction tool during RT. These can give us a clinical
indication for precaution. Third, the combination of different
functional imaging techniques may make up for shortcomings that
exist in single imaging. We believe that it is worthwhile to overcome
the above challenges and explore larger, multicenter, randomized
clinical studies on quantitative imaging in RT.
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