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Evidence for research over the past decade shows that epigenetic regulation mechanisms
run through the development and prognosis of tumors. Therefore, small molecular
compounds targeting epigenetic regulation have become a research hotspot in the
development of cancer therapeutic drugs. According to the obvious abnormality of
histone acetylation when tumors occur, it suggests that histone acetylation modification
plays an important role in the process of tumorigenesis. Currently, as a new potential anti-
cancer therapeutic drugs, many active small molecules that target histone acetylation
regulatory enzymes or proteins such as histone deacetylases (HDACs), histone
acetyltransferase (HATs) and bromodomains (BRDs) have been developed to restore
abnormal histone acetylation levels to normal. In this review, we will focus on summarizing
the changes of histone acetylation levels during tumorigenesis, as well as the possible
pharmacological mechanisms of small molecules that target histone acetylation in
cancer treatment.
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INTRODUCTION

Histone post-translational modifications (PTMs) directly impact gene transcription by regulating
the chromatin architecture (1). Histone acetylation is one of the most well-studied and important
PTMs, which mainly affects the status of local chromatin relaxation through changing the
distribution of histone acetylation marks in the local chromatin region, thereby regulating gene
transcription activation (2). In more detail, the acetylation of histones occurs in the lysine residues
on the N-terminal tail of the nucleosome histones composed of H2A, H2B, H3, and H4, and the
histone deacetylases (HDACs) and the histone acetyltransferases (HATs) are responsible for adding
or removing acetyl groups from the N-terminal tail of the nucleosome histones (3). A large amount
of research data demonstrated that histone acetylation widespread in cells is involved in various
cellular activities, including genome maintenance, biological processes, DNA damage repair, cell
cycle, and apoptosis (4). Once the dynamic balance between acetylation/deacetylation in cells is
disrupted, it will cause various diseases, such as Parkinson’s disease, leukemia, and even cancer (5–
7). The following will specifically explain the changes in histone acetylation levels during cancer
development, and how small molecules as cancer therapeutic drugs target and regulate intracellular
acetylation levels.
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IMBALANCED HISTONE ACETYLATION
LEVELS IN TUMORIGENESIS

Based on the role of histone acetylation in the activation of gene
expression, researchers speculated the mechanisms by which
histone acetylation participated in and regulated progression of
tumorigenesis (8). Multiple histone N-terminal acetylation sites
have been identified (Figure 1). And many lysine sites on
histones are obviously abnormally modified by acetylation in
cancer cells and tumor tissues, suggesting that changes in their
acetylation levels are closely related to the occurrence of cancer.
Consistent with this argument, it has been confirmed that some
HATs or HDACs are abnormally expressed when cancer occurs,
resulting in alteration of local chromatin structure by changing
the distribution of histone acetylation, ultimately affecting the
expression of genes related to tumorigenesis.

Ithasbeenreported that the level of acetyl-modificationonsome
histone lysine sites in cancer cells or tissues is obviously abnormal,
and the increase or decrease of the modification level varies
according to the type of cancer. Regarding H2A, Hat1
knockdown- or Tip60 abrogation-mediated downregulation of
HeLa cell H2A lysine 5 acetylation (H2AK5ac) decreases HeLa
cell colony size, suggesting that this acetylation can regulate cell
proliferation (9). Furthermore, Ras-ERK1/2 pathway activation-
induced osteosarcoma proliferation and migration co-occurs with
downregulated H2BK12ac, a phenotype rescued by HDAC1
knockdown-mediated H2BK12ac restoration (10). Relative to
other types of histone acetylation, the H2BK20ac modification
preferentially accumulates at promoters of cell type-specific genes,
indicating a role in regulating cell-specific functions (11).

Previous data indicate that the acetylation of specific histone
lysine sites is associated with the occurrence of certain cancers.
Recent research reported that histone H3 acetylation level is
correlated with the pathological stage of colorectal cancer,
especially with the depth of tumor invasion (12). For instance,
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downregulation of H3K4ac and H3K9ac has been observed in oral
squamous cell carcinoma and ovarian tumors, and the status of
acetylation level is tightly correlated with tumor stage, perineural
invasion and tumor prognosis (13–15). Part of the reason for the
above resultsmay be related to its distribution region on chromatin.
Because subsequent studies found that H3K4ac is enriched in the
promoter regions of genes which associated with cancer-related
phenotypic features, such as the estrogen response and the
epithelial-mesenchymal transition (EMT) pathway (16, 17). In
head and neck squamous cell carcinoma (HNSCC) cells, H3K4ac
modulated by HDAC3 is enriched around the transcription start
site of EMT related genes such like GLI1 and SMO, co-
overexpression of which promotes HNSCC cell invasion and
migration ability (18). In addition to H3K4ac and H3K9ac, high-
level of H3K23ac, which is correlated with TRIM24, has been
observed in patients with HER2-positive breast cancer, and this
correlates with a shorter survival interval (19). Moreover, H3K27
represents a site vulnerable to multiple modification types,
including methylation and acetylation, and upregulated H3K27ac
in colon cancer and glioma cells is correlated with tumor invasive
capability (20, 21). In esophageal squamous cell carcinoma (ESCC),
H3K27ac activates long non coding RNA colon cancer associated
transcript-1 (CCAT1), thereby promotes ESCC cells proliferation
and migration (22). It is worth noting that some lysine-sites
acetylation on histone H3 have been used as biomarkers. For
example, H3K18ac and H3K4me2 has been used as biomarker in
prostate, pancreatic, lung, and kidney cancers (23, 24). Taken
together, unbalanced acetylation level of histone H3 in various
cancer tissues or cells suggests that H3 acetylationmay be involved
in the transcriptional regulation of cancer-related genes.

Regarding H4, modifiable residue K16 is well-studied, and
H4K16ac is frequently downregulated in breast cancer,
medulloblastoma (25, 26), renal cell carcinoma (RCC),
colorectal cancer (CRC) (27, 28), and ovarian cancer (29, 30).
However non-small cell lung carcinoma (NSCLC) exhibits
FIGURE 1 | Aberrant acetylation on histone N-terminal sites in certain cancer. K, Lysine.
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upregulation of H4K16ac and HAT hMOF, resulting in
downstream gene expression alterations correlating with tumor
size, cell proliferation, and migration (31, 32). In particularly, in
NSCLC cells hMOF promotes S phase entry by regulating Skp2,
thereby stimulates NSCLC tumorigenesis (31). On the other
hand, downregulation of H4K5ac observed in acute myeloid
leukemia (AML) is associated with shorter survival intervals, and
suppressed H4K5ac by MYST2 (Moz-Ybf2/Sas3-Sas2-Tip60)
inhibition promotes AML cell growth and colony formation
(33). In addition, downregulated H4K12ac consistent with
HDAC1, HDAC2, and HDAC6 have been demonstrated in
situ in invasive ductal carcinoma (34). Whereas upregulated
H3K18ac and H4K12ac are observed in pancreatic cancer (24). A
unique role for H4K20ac enriched at transcriptional start sites,
co-localizing with NRSF/REST to participate in gene repression
has been noted in cancer cells (35).

In summary, biological mechanisms employing acetylated
histones are much more diverse than chromatin structure
regulation alone. The numerous N-terminal tail lysine residue
acetylation sites of H2A, H2B, H3, and H4 allow them to
participate in various signaling pathways, and facilitate their
multi-faceted roles in cancer cell biology. Indeed, various cancers
exhibit a globally dysregulated histone acetylation pattern,
correlating with progression, pathological stage, and prognosis.
As such, acetylation patterns may have potential as valuable
prognostic markers (24).
HATS, HDACS AND BRDS
ACT AS “WRITERS”, “ERASERS,”
AND “READERS” RESPECTIVELY

Biological mechanisms employing acetylated histones are much
more diverse than chromatin structure regulation alone. The
numerous N-terminal tail lysine residue acetylation sites of
H2A, H2B, H3, and H4 allow them to participate in various
signaling pathways, and facilitate their multi-faceted roles in
cancer cell biology. As mentioned, various cancers exhibit a
globally dysregulated histone acetylation pattern, correlating
with progression, pathological stage, and prognosis. As such,
acetylation patterns may have potential as valuable prognostic
markers (24). Noting that the dynamic change and reversible
process of the acetyl-group at the N-terminal lysine site of histones
can be controlled by certain proteins just like writers, erasers and
readers. Cancer-associated abnormal histone acetylation profiles
are due to corresponding aberrant expression or catalytic activities
of these enzymes. HATs function as “writers”, transferring the
acetyl group (-COCH3) from acetyl-CoA (Ac-CoA) to a target
histone, whereas HDACs function as “erasers”, removing the
acetyl group of a target histone (36, 37). However, whether it is
to remove the acetyl group or recruit proteins to a specific acetyl-
modified lysine site, the proteins usually have to recognize the
acetyl group on a specific protein just like a reader.

Histone-mark readers often recognize marks through the
functional domain contained in itself. Based on published
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literatures, the readers that can recognize histone acetylation are
roughly divided into three categories including bromodomain-
containing protein (BRD), PHD finger and YEATS domains.
Among them, PHD finger and YEATS domain proteins have a
wide range of functions. In addition to acetyl-group, they can also
recognizemethyl-grouporotherproteins. For example,PHDfinger
proteins can able to acquaint acetylated or unacetylated and
methylated histones. However, BRD is the only protein group
featuring a domain that is able to recognize and bind acetylated
histone lysine residues. BRD-containingproteins arewidelypresent
in most tissues. According to the sequence or structure similarity,
BRDs are divided into eight families exhibiting various activities,
including histonemodification and chromatin remodeling (Figure
2) (38, 39). For example, one of the most well-known BRD family
members, BRD4, accumulates in highly acetylated and
transcriptionally prone chromatin regions (including promoters
and enhancers) and promotes RNA polymerase II (RNA Pol II)
activity, thereby stimulating transcription initiation and transcript
elongation. BRD4 is involved in HCC cell growth and invasiveness
in vitro, and it is significantly upregulated in HCC tissue (a feature
also associated with HCC progression) (40). Such functions are
largely dependent on the ability of BRD4 to recognize acetylated
proteins (41).

Considering the above description, the addition, removal and
recognition of acetyl groups on histones is an indispensable
dynamic balance. In other words, acetylation profiles regulated by
HATs, HDACs, and BRDs, ultimately impact an abundance of
target genes involved in tumorigenesis, thus regulating numerous
cellular processes. For example, downregulation of TIP60 in 61% of
primary gastric cancer patients is correlated with invasiveness and
metastasis (42). Later researchdata supports this result. Currently, it
is generally believed that alteration of HATs or HDACs level is
involved in the occurrence and progression of cancer. From the
published literature, thedecrease ofHATsand its enzymatic activity
or the excessively high activity of HDACs can directly or indirectly
affect the global acetylation level in cells. HAT MOF expression is
downregulated in numerous cancers, including RCC, ovarian
cancer, gastric cancer, and CRC (33). For additional detail,
accumulating data reveals mutation residues on HATs in certain
cancer, such as TIP60 in CRC (8). On the contrary, higher level of
HDACs such as SIRT1, SIRT2, and SIRT7 were detected in cancer
cells (43–45).Given this close relationship, an increasing number of
small molecules targeting histone acetylation-regulating proteins
are being investigated for their anti-cancer therapeutic potential.
SMALL MOLECULES TARGETING HATS,
HDACS, AND BRDS IN CANCER THERAPY

HDAC Inhibitors (HDACis)
HDACs are enzymes that remove acetyl group on Lys residues of
histone proteins, the following four classes of HDACs are
recognized: I (HDAC1, 2, 3, and 8), II (A: HDAC4, 5, 7, and 9;
B: HDAC6 and 10), III (SIRT1-7), and IV (HDAC11) (Figure 2)
(46). Given that the HDACs frequently show higher expression
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levels in cancer cells, small molecules targeting HADCs were first
investigated. At present, many small molecules have been developed
as HDAC inhibitors (HDACis). These HDACis may target different
stages of cancer or different signaling pathways, and ultimately
achieve the purpose of inhibiting or treating cancer.

So far, five HDACis Vorinostat (SAHA), Belinostat (PXD-101),
Panobinostat (LBH589), and chidamide (CS055, HBI-8000) and
Romidepsin (FK228) have been approved by the U.S. FDA (Food
and Drug Administration) as medicines for treatment of skin T-
cell lymphoma (TCL) and peripheral TCL (47, 48). The former
three HDACis inhibit class I, II, and IV HDACs, while
Romidepsin selectively targets class I (47). As one of the best-
studied and pan-HDACi SAHA induces autophagy of chronic
lymphocytic leukemia, breast cancer as well as colon cancer cell
lines, and the induced autophagy modulates mutant p53
degradation, further affects cancer cell survival (49, 50). In
addition to use alone, SAHA induces radio treatment pancreatic
cancer cell cycle arrest and apoptosis by targeting RAD51,
clarifying the function of SAHA in enhance radiosensitivity (51).
In combination with other anti-cancer drugs, such as oxaliplatin
(Eloxatin) and ruxolitiniband, SAHA optimally inhibits cancer
cell proliferation (52, 53). In addition, an isotretinoin-SAHA
combination for the treatment of neuroblastoma is currently
undergoing phase I clinical trials (54).

In addition to SAHA, there are already more than 20 kinds of
HDACis are in different stages of clinical research, indicating
Frontiers in Oncology | www.frontiersin.org 4
that the research and development of HDACis is very popular
and has broad development prospects. Most of the HDACis
studied extensively are aimed at the proliferation of tumor cells
by targeting cell cycle and apoptosis, growth, and migration
capability (55). CG200745, is a pan HDACi, targets HDACs and
modulates acetylation, thereby regulates down-stream genes
including p53, myeloid cell leukemia-1 (Mcl-1) and B-cell
lymphoma-extra large (Bcl-xL) (56, 57). In detail, CG200745
inhibits NSCLC cell growth by modulating the profile of
H4K16ac at the transcription start site of cell proliferation
related genes (58). Moreover, CG200745 (59, 60) enhances
the expression of p53 target genes by regulating p53
acetylation, thereby inducing clonogenic cell death (56). (61)
In pancreatic cancer, CG200745 elevates the H3 acetylation
level and induces the expression of apoptotic proteins,
furthermore, CG200745 works better in combination with
gemcitabine or erlotinib in suppressing cancer cell proliferation
(62). The ability of CG200745 to sensitize tumor cells to existing
chemotherapeutic drugs (such as 5-fluorouracil (5-FU), cisplatin,
and oxaliplatin) has also been demonstrated (57, 62–64). These
data recommend the pan-HDACi CG200745 as a candidate anti-
tumor drug or chemotherapy adjuvant, and is currently
undergoing the phase I/II clinical trials for pancreatic cancer
(62, 65–67).

Although the aforementioned pan-HDACis were approved
for clinical application, side effects of these drugs like
FIGURE 2 | Histone acetylation “writers”, “erasers” and “readers”. ASH1L,ash1 (absent, small, or homeotic)-like; ATAD2, Two AAA domain containing protein;
ATAD2B, KIAA1240 protein; BAZ, Bromodomain adjacent to zinc finger domain; BPTF, Fetal Alzheimer antigen; BRD, Bromodomain-containing protein; BRDT,
Bromodomain-containing protein, testis specific; BRPF1, Bromodomain- and PHD finger-containing protein; BRWD3, Bromodomain-containing protein disrupted in
leukemia; CBP, CREB-binding protein; CECR2, Cat eye syndrome chromosome region, candidate 2; CREBBP, CREB Binding Protein; EP300, E1A-binding protein
p300; GCN5L2, General control of amino acid synthesis 5-like 2; GNAT, GCN5-related N-acetyltransferase; HAT, histone acetyltransferase; HDAC, histone
deacetylases; MLL, Myeloid/lymphoid or mixed lineage leukemia; MYST, Moz-Ybf2/Sas3-Sas2-Tip60; ORPHAN, Orphan-containing family P300, E1A binding protein
p300; PBRM1,Polybromo 1; PCAF, P300/CBP-associated factor; PHIP, Pleckstrin homology domain-interacting protein; SIRT, sirtuin; SMARCA, SWI/SNF-related
matrix associated actin-dependent regulator of chromatin a; SP100, Nuclear antigen Sp100; SP110, Nuclear antigen Sp110 A; SP140, SP140 nuclear body protein;
SP140L, SP140 nuclear body protein like; TAF1,TAF1 RNA polymerase II, TATA box-binding protein (TBP)-associated factor; TAF1L, TAF1-like RNA polymerase II,
TATA box-binding protein (TBP)-associated factor; TIP60, Tat interactive protein 60-kDa; TRIM24, Tripartite motif-containing 24; WDR9, WD repeat domain 9;
ZMYND8, Zinc Finger MYND-Type Containing 8; ZMYND11, remodeling factor containing 11.
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fatigue, nausea, thrombocytopenia, and cardiotoxicity limit
its application (67). Thus, selective HDACis that target
HDAC6, SIRT1 and SIRT2 have also appeared in recent
years. For example, at least six HDAC6-selective inhibitors
including SKLB-23bb, ACY1215 (rocilinostat), ACY241,
Tubacin, Tubastatin A, and C1A have been reported (68). In
several types of cancer cells such as bladder cancer, malignant
melanoma and glioblastoma, HDAC6 is frequently over-
expressed (69–71). As a mysterious of HDAC family, HDAC6
possess two catalytic domains and a ubiquitin-binding domain
(BUZ), and selective-HDAC6 inhibitors are designed to block
the effects of those special functional domains. Selective HDAC6
inhibitors Tubacin and tubastatin A are first developed because
they can inhibit the proliferation of glioma and NSCLC by
inhibiting autophagy and mediating the Notch1 signaling
pathway (72, 73). Further research found that tubastatin A
suppresses the ability of colony formation and migration, while
in combination with temozolomide, tubastatin A accelerates
glioblastoma cells apoptosis, and help glioblastoma multiforme
cells overcome ER stress-tolerance (60, 74). Subsequent
developed highly selective HDAC6 inhibitors including J22352,
ACY1215 (Ricolinostat) and its analogue ACY241, JW-1,
ACY1083 etc. come out one after another. Those small
molecules present highly effective anti-cancer effects. Among
them, ACY1215 and its analogue ACY241 appeared a good anti-
tumor effect in synergy with other drugs (59, 61, 75). In
particular, ACY1215 has already entered phase II treatment of
multiple myeloma (76, 77), and ACY241 has been completed the
phase I clinical trial in combination with paclitaxel in solid tumor
models (66). In fact, more compounds are still in the
experimental research stage. For example, J22352 as a highly
HDAC6-selective inhibitor suppresses the proliferation as
well as migration of glioblastoma through promoting the
proteolysis degradation of HDAC6 and resulting in anti-cancer
effect by inhibiting autophagy (71). It is worth noting
that HDAC6 is a microtubule-associated deacetylase,
which mediates microtubule-dependent cell motility (78, 79).
HDAC6 inhibitors JW-1, ACY1083 as well as tubastatin A
anchor this characteristic of HDAC6. By inhibiting HDAC6,
they can promote the acetylation of a-tubulin (80–82) thereby
regulating cancer cell cycle and proliferation (74, 83, 84).
HDAC6-selective inhibitor C1A exhibits an additional
mechanism of action, inhibiting neuroblastoma and CRC
xenograft growth through the modulation of autophagy
substrates (85). While MPT0G211 targets HDAC6 thereby
accelerates the acetylation of heat shock protein 90 (Hsp90),
further inhibits breast cancer metastasis (80). In combination
with other anticancer drugs, HDAC6 inhibitor A542 suppresses
the proliferation of follicular lymphoma (FL), chronic
lymphocytic leukemia (CLL), germinal center diffuse large B-
cell lymphoma cells (DLBCL) and CRC by targeting HDAC6 (86,
87). Furthermore, HDAC6 inhibitors such as JOC1, SKLB-23bb,
MPT0G413 as well as MPT0G612 show great anticancer activity,
whereas the cytoplasm toxic as well as the mechanism are to be
further investigated (68, 88–91).
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Sirtuins (SIRT1-7) are human homologs of the yeast Sir2
(silent information regulator-2) protein and are divided into four
main classes: SIRT1-3 are class I, SIRT4 is class II, SIRT5 is class
III and SIRT6-7 are class IV (92). SIRT proteins belong NAD-
dependent deacetylases that act as intracellular regulators and are
thought to have ADP-ribosyltransferase activity (93). It has been
reported that (94–97) SIRT1 and SIRT2 as deacetylases modulate
the acetylation of p53, thereby regulating p53 target genes and
cancer cell progression (81, 98). JQ-101, which inhibits SIRT1-
mediated H4K16 and p53 acetylation, thereby inducing A549 cell
senescence and inhibiting tumor growth and invasiveness,
similar phenomenon and mechanism has been detected in
SIRT1 specific inhibitor EX527 treated glioma cells (82, 99).
Moreover, AEM1 and AEM2 also can facilitate p53 acetylation
by targeting SIRT2 and further regulating the expression of p53
target genes (e.g., cell cycle regulator p21), thereby sensitizing
NSCLC cells to genotoxic stress (100). However, tenovin-6
modulates the mRNA and protein level of p21 in cancer cell
lines but through a p53-independent mechanism (101–104).

Recently, with the development of HDAC inhibitors, many
newly synthesized, derived derivatives or modified compounds
have come out, and pre-clinical experiments have begun. For
instance, a novel HDACi (OH-VPA) was developed by
modifying a traditional HDACi (VPA), representing a new
approach to novel HDACi development. The derivative
HDACi is more effective in inhibiting HeLa cell proliferation
than its parent molecule (105). In addition, many compounds are
still in pre-clinical development, such as abexinostat, AR-42,
chidamide, CHR-3996, CI-994, CUDC-101, CUDC-907,
entinostat (MS-275), givinostat, MGCD0103, mocetinostat,
phenylbutyrate, pivanex, pracinostat, quisinostat, ricolinostat,
valproic acid (VPA). Some confer added benefits in
combination with other drugs and are undergoing phase I/II
clinical trials (Table 1) (62, 65, 94–97, 102–104, 106–109, 112–
120, 123–130, 132–135, 139–143, 175, 176).

Small Molecules Targeting HATs
This review limits its scope to discussing only HAT inhibitors which
have been approved for cancer therapy or commercialization,
since the specific mechanisms of HAT modulation-mediated
anti-cancer effects are complex and ambiguous (177, 178). It
appears that HAT influence during carcinogenesis is context-
specific because HATs are able to act as both oncogenes and
tumor suppressors (179). The possible reason is that different
tumors show mutations in different HAT members, which
directly or indirectly affects any steps in the continuous
process of tumor progression from tumorigenesis to
carcinogenesis and metastasis (180). Based on sequence
homology and shared structural features, HATs can be divided
into two different classes. One is the GCN5-related N-
acetyltransferases (GNATs) family, including GCN5 and p300/
CBP-associating factor (PCAF), that can acetylate lysine residues
on histones and non-histone proteins (181). In lung cancer cells,
p300 may promote Snail-dependent EMT (epithelial-
mesenchymal transition) by acetylating Snail at K187 site
November 2020 | Volume 10 | Article 560487
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TABLE 1 | Selective HDAC inhibitors in clinical trials (completed) (from clinicaltrials.gov as of October 2020).

Compound HDAC Selectivity Clinical Trial Phase and Indication(s) ID# of clinical
trial

Reference(s)

Abexinostat Class I, II Phase I for advanced solid tumors. NCT01543763 (106, 107)
Phase I/II for Hodgkin lymphoma. NCT00724984
Phase I/II for non-Hodgkin lymphoma. NCT04024696
Phase I/II for chronic lymphocytic leukemia. NCT00724984
Phase I, combined with doxorubicin, for metastatic sarcoma. NCT01027910 (108)

ACY241 HDAC6 Phase I, in combination with paclitaxel in patients with advanced solid tumors NCT02551185 (66)
Phase I, in combination with ipilimumab and nivolumab to patients with advanced melanoma. NCT02935790 –

AR-42 Class I, IIb Phase I for multiple myeloma and T- and B-cell lymphomas. NCT01129193 (109)
Phase I, in combination with decitabine in AML in adults and children. NCT01798901 (110, 111)

Belinostat Class I, II, IV FDA approved for peripheral T-cell lymphoma. NCT00865969 (94–97, 112,
113),Phase I/II for lymphomas and solid tumors. NCT01273155

Phase I, combined with cisplatin and etoposide, for solid lung tumors. NCT00926640 (114–117),
Phase I/II, combined with doxorubicin, for soft tissue sarcomas. NCT00878800
Phase II, combined with paclitaxel/carboplatin, for carcinoma. NCT00873119
Phase I/II, combined with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial
tumors.

NCT01100944

Chidamide HDAC1-3,10 Phase II, combined with paclitaxel and carboplatin for advanced NSCLC. NCT01836679 (118)
CHR-3996 Class I Phase I for refractory solid tumors. NCT00697879 (102)
CI-994 Class I Phase II, with or without gemcitabine for pancreatic cancer. NCT00004861 (103)

Phase II for myeloma. NCT00005624 (104)
phase III with or without gemcitabine for advanced NSCLC. NCT00005093 (119)

CUDC-101 Class I, II HDAC/
EGFR/HER2

Phase I for advanced solid tumors. NCT00728793 (120)
Phase Ib, for advanced head and neck, gastric, breast, liver, and non-small cell lung cancer
tumors.

NCT01171924 (121)

Phase I, in combination with concurrent cisplatin and radiation therapy in patients with locally
advanced head and neck cancer.

NCT01384799 (122)

CUDC-907 Class I, II Phase I for B-cell lymphoma. NCT02674750 (123)
Phase I, for advanced/relapsed solid tumors NCT02307240 –

Entinostat
(MS-275)

Class I Phase I/II for RCC. NCT03552380 (124, 125),
Phase II for relapsed and refractory Hodgkin lymphoma. NCT00866333
Phase II, combined with 5-azacitidine and entinostat, for advanced breast cancer and
metastatic CRC.

NCT01105377 (126, 127),

Phase I for advanced solid tumors or lymphoma. NCT00020579 (128–130)
Phase I/II, combined with avelumab for epithelial ovarian cancer. NCT02915523
Phase I, combined with exemestane, for breast cancer. NCT02833155
Phase II, combined with azacitidine, for metastatic CRC. NCT01105377
Phase I/II, combined with azacitidine, for recurrent advanced NSCLC. NCT00387465

Givinostat
(ITF2357)

Class I, II Phase II, ITF2357 followed by Mechlorethamine administered to patients with relapsed/
refractory Hodgkin’s lymphoma.

NCT00792467 - (131)

Mocetinostat
(MGCD0103)

Class I, IV Phase I for advanced solid tumors or Non-Hodgkin’s Lymphoma. NCT00323934 (132)
Phase I, combined with docetaxel for advanced solid tumors. NCT00511576 (133)
Phase II for relapsed/refractory lymphoma. NCT00359086 (134, 135)
Phase II, combined with gemcitabine, for metastatic leiomyosarcoma NCT02303262 (133)
Phase II, for advanced urothelial carcinoma. NCT02236195 (136)
Phase I/II, combined with durvalumab for advanced solid tumors and NSCLC NCT02805660 –

Phase II for refractory chronic lymphocytic leukemia NCT00431873 (137)
Phase I for leukemia. NCT00324194 (138)
Phase I/II, in combination with azacitidine for AML. NCT00324220 –

Phase I/II, combined with gemcitabine for solid tumors. NCT00372437 (133)
Panobinostat Class I, II, IV FDA approved for multiple myeloma. NCT02568943 (139–141)

Phase II for lymphoma/waldenstrom macroglobulinemia. NCT01261247
Phase I/II, combined with bortezomib, thalidomide, and dexamethasone, for relapsed multiple
myeloma.

NCT01023308 (142)

Phenylbutyrate Class I, II Phase I for solid tumors or lymphomaa. NCT00002909 (143)
Phase I, combined with azacitidine, for refractory solid tumors. NCT00005639 (144)
Phase II, for brain tumors in children NCT00006450 –

Phase I, for brain neoplasms and neuroblastoma NCT00001565 –

Phase I, in combination with azacitidine for AML NCT00004871 (145)
Pivanex Class I, II Phase II, in combination with docetaxel for advanced NSCLC. NCT00073385 (146)
Pracinostat
(SB939)

Class I, II, IV Phase I, treatment alone or with azacitidine for advanced solid tumors. NCT00741234 (147)
Phase I, combined with azacitidine for AML. NCT01912274 (148)
Phase I, for locally advanced or metastatic solid tumors. NCT00504296 –

(Continued)
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(182, 183). At present, several small molecule compounds
targeting p300 have been developed and proved to have anti-
cancer effects. For example, (184) Garcinol facilitate HeLa
cell apoptosis via inhibiting the HAT activity of P300 and
PCAF (185). Similarly, the molecule PU141, a selective CBP/
P300 inhibitor, suppresses murine SK-N-SH neuroblastoma
xenograft survival (186). Another HAT inhibitor C646
suppresses gastric cancer cell survival and invasive capability
through competitively disrupting the interaction between Ac-
CoA and CBP/P300 (187, 188). Recently discovered compounds
CCT077791 and CCT077792 were also found to target P300 and
PCAF, and resulting in the reduction of global acetylation level in
colon tumor cell acetylation levels and inhibiting tumor cell
growth (189).
Frontiers in Oncology | www.frontiersin.org 7
Another HAT family is the MYST superfamily, exhibiting a
conserved catalytic MYST domain, and large group membership,
including MOZ, Ybf2, Sas2, TIP60, and hMOF (181). The role of
MYST family in tumorigenesis is beyond doubt. Based on
laboratory research data, Tip60 can harbor substrates including
histones and non-histone proteins like p53 and ATM kinase,
through which TIP60 plays critical roles in regulating cancer
progression such as cell cycle, invasiveness and metastasis in
gastric cancer and breast cancer cells (190, 191). Importantly,
changes of downregulation of TIP60 is correlated with
overall survival of breast cancer patients (42, 192). In addition,
by regulating PI3K/AKT pathway, Tip60 suppresses the
proliferation and migration of cholangiocarcinoma (111, 193)
Given the critical role of TIP60 (a HAT which forms part of the
TABLE 1 | Continued

Compound HDAC Selectivity Clinical Trial Phase and Indication(s) ID# of clinical
trial

Reference(s)

Phase I, for solid tumors and leukemia NCT01184274 –

Phase II, for recurrent or metastatic prostate cancer. NCT01075308 (149)
Phase II, for advanced or recurring sarcoma. NCT01112384 (150)

Quisinostat
(JNJ-26481585)

Class I, II Phase I for advanced solid tumors and lymphoma. NCT00677105 (151)
Phase II, in combination with paclitaxel and carboplatin for advanced epithelial ovarian cancer,
primarily peritoneal or fallopian tube carcinoma.

NCT02948075 –

Phase II, for cutaneous T-cell Lymphoma. NCT01486277 (152)
Phase I, in combination with gemcitabine and cisplatin for NSCLC, in combination with
paclitaxel and carboplatin for NSCLC and ovarian cancer

NCT02728492 –

Phase I, in combination with bortezomib and dexamethasone for relapsed multiple myeloma NCT01464112 (153)
Ricolinostat
(ACY1215)

HDAC6 Phase Ib, ACY-1215 monotherapy in patients with lymphoid malignancies. NCT02091063 –

Phase Ib, combined with lenalidomide and dexamethasone for relapsed or refractory multiple
myeloma.

NCT02189343 (154)

Phase I and phase IIa, alone or in combination with bortezomib and dexamethasone in
patients with relapsed or relapsed/refractory multiple myeloma.

NCT01323751 (155)

Romidepsin
(FK228)

Class I FDA approved for cutaneous/peripheral T-cell lymphoma. NCT00007345 (47, 156)
Phase I/II for Japanese patients with relapsed or refractory peripheral T-cell lymphoma. NCT00426764
Phase I, combined with ifosfamide, carboplatin, and etoposide for relapsed or refractory
peripheral T-cell lymphoma.

NCT01590732 (131, 157)

Phase I/II, combined with erlotinib hydrochloride, for lung cancer and metastatic cancer. NCT01302808
Phase I/II, combined with abraxane for metastatic inflammatory breast cancer. NCT01938833
Phase I/II, combined with cisplatin and nivolumab, for triple negative breast cancer. NCT02393794
Phase II for recurrent and/or metastatic thyroid cancer. NCT00098813
Phase I, combined with gemcitabine for pancreatic cancer. NCT00379639

Valproic Acid
(VPA)

Class I, II Phase II for prostate cancer. NCT00670046 (158–160)
Phase II, combined with bevacizumab, mFOLFOX6/mOXXEL, Capecitabine,5-fluorouracil, for
ras-mutated metastatic CRC.

NCT04310176

Phase I, combined with azacitidine, for advanced cancers. NCT00496444
Phase I, combined with etoposide for neuronal tumors and brain metastases NCT00513162

Vorinostat
(SAHA)

Class I, II, IV FDA approved for cutaneous T-cell lymphoma. NCT00958074 (161)
Phase I, combined with isotretinoin, for refractory/recurrent neuroblastoma. NCT01208454 (54, 162,

163)Phase II, combined with bevacizumab, for malignant glioma. NCT01738646
Phase I/II, combined with bevacizumab and temozolomide, for recurrent malignant gliomas. NCT00939991
Phase II, combined with MK0683 and vorinostat, for advanced cutaneous T-cell lymphoma. NCT00091559 (164–166)
Phase II for progressive metastatic prostate cancer. NCT00330161 (167, 168)
Phase II for progressive or recurrent glioblastoma multiforme. NCT00238303 (169)
Phase I/II for advanced BRAF mutated melanoma. NCT02836548 (170)
Phase II, combined with paclitaxel, carboplatin, placebo, for stage III or stage IV NSCLC. NCT00481078 (171)
Phase I/II, combined with pembrolizumab for squamous cell head and neck cancer or salivary
gland cancer.

NCT02538510 (172)

Phase I, combined with pazopanib for advanced cancer. NCT01339871 (173)
Phase I/II for multiple myeloma. NCT00857324 (174)
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TIP60/NuA4 complex) in DNA damage repair, several TIP60
inhibitors have been investigated for their anti-cancer
therapeutic potential, including TH1834, NU9056, and 6-
alkylsalicylates. Indeed, TH1834 (which blocks the binding site
of TIP60) disrupts DNA damage repair to induce breast cancer
cell apoptosis (194), and NU9056 both inhibits prostate cancer
cell growth and induces apoptosis (195). Similarly, frequent
downregulation of MOF has been detected in numerous
cancers, including RCC, ovarian cancer, gastric cancer,
and CRC (33). Developed MOF inhibitor DC-M01-7
downregulates H4K16ac, inhibiting proliferation of human
colon cancer (HCT116) cells (196). Furthermore, through the
role of HATs in DNA damage repair, several novel HAT
inhibitors sensitize cancer cells to the cytotoxic effects of
radiation therapy, suggesting their potential as adjuvants in
this context (197, 198). However, there are few reports on
selective inhibitors targeting members of this family.

BRD Inhibitors
It is common for both histone acetylation and BRDs to become
dysregulated in cancer. Current BRD inhibitors (e.g., isoxazoles,
purines, quinolinones, tetrahydroquinolines, naphthyridines,
and acetylated lysine analogs) exhibit high affinity and
specificity for the BET bromine domain (199). Both I-BET 151
and I-BET 762 down-regulate c-Myc transcription, result in
inhibition of myeloma cell proliferation (177). Moreover, I-
BET 762 suppresses pancreatic cancer cell proliferation (178),
and I-BET 762 inhibits breast and lung cancer cell proliferation
through cell growth arrest and immune modulation (200).
Frontiers in Oncology | www.frontiersin.org 8
Whereas another BRD inhibitor JO1, by competing with
histone acetylated residues, releases BRD4 from chromatin,
thereby modulating RNA-Pol II activity to regulate the
transcription of key cancer-associated genes (201). In addition,
JQ1 decreases the acetylation level and activity of mutant p53,
inducing cell growth arrest and subsequent senescence in
HNSCC (202). OTX015 (MK-8628, birabresib), one of BRD
and extra-terminal domain inhibitors, exhibits antitumor
activity in medulloblastoma, B-cell lymphoma, and lung
cancer (179, 184, 203). In addition, BET inhibitors such like
PLX51107 and NHWD-870 have been identified the activity of
tumor proliferation suppression (204, 205). By targeting the
interaction of BRDs and acetylated lysine residues on histone,
BRD inhibitors modulate chromosome structure and cancer-
associated gene expression including c-Myc.
CONCLUSIONS AND PERSPECTIVES

Altered histone acetylation—one of the earliest-identified and
best-studied epigenetic modifications—is associated with
tumorigenesis and tumor progression. Aberrant acetylation
profiles are present across various cancer cells, tissues, and
types. Given that dynamic histone acetylation/deacetylation is
regulated by HDACs, HATs, and BRDs, many small molecules
and novel synthesized compounds targeting enzyme catalytic
activity or BRD/histone interaction are under investigation for
their anti-cancer therapeutic potential (Figure 3). While several
agents are already FDA-approved for clinical use, many more are
FIGURE 3 | Links between histone acetylation level and cell cycle/cancer progression.
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undergoing clinical trials, and additional novel agents are being
developed and tested. Indeed, the full clinical therapeutic scope
and commercial value of such agents in the field of oncology is
only just emerging.
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