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Abstract

In humans, chronic inflammation, severe injury, infection and disease can result in changes in steroid hormone titers and
delayed onset of puberty; however the pathway by which this occurs remains largely unknown. Similarly, in insects injury to
specific tissues can result in a global developmental delay (e.g. prolonged larval/pupal stages) often associated with
decreased levels of ecdysone – a steroid hormone that regulates developmental transitions in insects. We use Drosophila
melanogaster as a model to examine the pathway by which tissue injury disrupts developmental progression. Imaginal disc
damage inflicted early in larval development triggers developmental delays while the effects are minimized in older larvae.
We find that the switch in injury response (e.g. delay/no delay) is coincident with the mid-3rd instar transition – a
developmental time-point that is characterized by widespread changes in gene expression and marks the initial steps of
metamorphosis. Finally, we show that developmental delays induced by tissue damage are associated with decreased
expression of genes involved in ecdysteroid synthesis and signaling.

Citation: Hackney JF, Zolali-Meybodi O, Cherbas P (2012) Tissue Damage Disrupts Developmental Progression and Ecdysteroid Biosynthesis in Drosophila. PLoS
ONE 7(11): e49105. doi:10.1371/journal.pone.0049105

Editor: Andreas Bergmann, University of Massachusetts Medical School, United States of America

Received July 13, 2012; Accepted October 4, 2012; Published November 13, 2012

Copyright: � 2012 Hackney et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Common Themes in Reproductive Diversity training grant from the National Institutes of Health – Child Health and
Human Development (5-T32HD49336-07), funds from the METAcyte Initiative awarded to Indiana University from the Lilly Endowment, and support from the
Indiana University Cox Research Scholars Program. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cherbas@indiana.edu

¤ Current address: School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, United States of America.

Introduction

Insects proceed through a series of precisely timed develop-

mental transitions during their life cycle. In Drosophila melanogaster,

after egg hatching, larvae progress through three instars that are

separated by a molt during which the cuticle is shed and re-

synthesized to accommodate continued growth [1,2]. The third

and final instar is followed by pupariation, the onset of the larval-

pupal transition which is characterized by eversion of anterior

spiracles, contraction of the larval body and tanning of the larval

cuticle to form the puparium [3,4]. It is within this protective

casing that metamorphosis to the adult occurs [3,4,5]. The timing

of these developmental transitions is influenced by nutritional and

environmental cues and is regulated by systemic signals such as

steroid hormones that direct coordinated developmental responses

throughout the insect [6,7,8].

In insects, localized tissue damage is frequently associated

with a systemic injury response resulting in delayed develop-

ment (e.g. prolonged larval or pupal stages)

[9,10,11,12,13,14,15,16,17,18,19,20,21]. In Drosophila, dam-

age to imaginal (adult precursor) tissues via irradiation,

induction of cell death clones, or localized activation of

apoptosis causes a prolonged third larval instar

[10,11,13,14,20,21]. The mechanism by which localized tissue

damage disrupts developmental progression is poorly under-

stood but appears to involve a reduced systemic hemolymph

ecdysteroid titer.

In Drosophila, as in most arthropods, the timing of developmental

transitions is coordinated by a transient rise in the titer of the

steroid hormone ecdysone (E) [22,23]. Production and release of

ecdysteroids is regulated by a small secreted neuropeptide known

as prothoracicotropic hormone (Ptth) [24,25,26,27,28,29,30]. Ptth

stimulates ecdysone synthesis, at least in part, by regulating

transcription of a number of Halloween genes, a family of genes

encoding cytochrome P450 enzymes that are required for

ecdysone synthesis in the prothoracic gland cells of the ring gland

[24,25,26,27,28,29]. Ecdysone is released from the ring gland into

the hemolymph and transported to peripheral tissues where it is

converted to its active form, 20-hydroxyecdysone (20E), which

binds to its receptor comprised of the Ecdysone receptor (EcR) and

Ultraspiracle (Usp) [31,32,33]. EcR/Usp heterodimers bind to

DNA and regulate transcription of target genes such as Ecdysone-

inducible proteins 271CD (Eip71CD), 274EF (Eip74EF), 275B

(Eip75B), 278C (Eip78C), and Br (Broad) leading to widespread

physiological changes and developmental progression

[34,35,36,37,38,39,40,41,42]. It has been suggested that imaginal

disc damage triggers developmental delays, possibly by preventing

the synthesis or release of ecdysone [17,20,21,43]. The mechanism

by which injury leads to decreased hemolymph ecdysteroid titers

remains unclear but appears to involve delayed release of Ptth

[9,10,20,44,45,46]. The effects of tissue damage on other

components required for ecdysone synthesis and signaling are less

clear.

The effects of injury on developmental progression are

dependent upon the developmental stage of the animal at the
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time injury is sustained [9,10,11,13,19]. Imaginal tissue damage

induced by irradiation or genetic cell ablation only appears to

retard pupariation when induced at or before an Injury Response

Checkpoint (IRC) which is reached sometime during the second

half of the third larval instar [10,11,13,17,20,21,47]. The exact

time that the IRC is reached has not been clearly defined, however

a number of studies in Drosophila and Lepidoptera (Ephestia kuhniella

and Lymantria dispar) have demonstrated that tissue damage

induced early in the last larval instar retards development while

injury inflicted closer to pupariation time no longer affects

developmental timing [10,11,13,19,20,21,48,49]. In Drosophila,

there are two additional critical developmental time points that are

known to occur during the third larval instar. One of these critical

periods is Critical Weight (CW), a size-assessment checkpoint

reached early in the third instar, after which starvation no longer

influences the time to pupariation [50]. The second critical period

is the Mid-third Instar Transition (MIT), a developmental time

point which marks the initial steps of metamorphosis, is associated

with widespread changes in gene expression, and occurs during

the middle of the third larval instar [51]. The possibility that the

IRC corresponds with another critical developmental checkpoint

(e.g. CW, MIT) has not been explored.

Here we examine the timing of the IRC and the mechanism by

which localized tissue damage triggers developmental delays. We

find that imaginal disc damage leads to delayed onset of the MIT,

pupariation and adult eclosion. The effects of injury on

developmental timing are minimized or absent closer to puparia-

tion time and the switch from retardation to no response is

coincident with the MIT. In addition, we find that tissue damage is

associated with (1) reduced ecdysteroid titers, (2) decreased

expression of most genes involved in ecdysteroid synthesis and

signaling and (3) increased expression of Ecdysone oxidase (Eo), a

gene involved in ecdysone catabolism. Together our data suggest

that systemic injury response signals act on multiple targets to

regulate ecdysteroid titers and ecdysone signaling pathway

components.

Results

Timing of Developmental Transitions at 18uC
To induce tissue damage, we utilized flies containing a

rnGAL4 enhancer trap [52], a UAS-eiger transgene, and a

temperature sensitive GAL80 variant driven by a tubulin

promoter (tubGAL80ts), all recombined onto a single third

chromosome (Figure 1A) [21]. The rnGAL4 driver is expressed

throughout the third larval instar in the wing pouch, the

peripodial epithelium overlying the wing pouch, the haltere

disc and a ring in the leg discs [21]. In addition, we observed

low but detectable levels of rnGAL4 expression in 1–3 cells in

each salivary gland throughout the third larval instar. Eiger (egr)

encodes the Drosophila ortholog of tumor necrosis factor-alpha

(TNFa) and induces cell death via downstream activation of c-

Jun N-terminal kinase (JNK) [53,54]. The temperature

sensitive variant of GAL80 represses GAL4 function at 18uC
but not at 30uC [55] and was used to regulate egr expression.

As shown in Figure 1A, Males of the genotype w*;rnGAL4,

UAS-egr, tubGAL80ts/TM6 Tb1, tubGAL80 were crossed to

w1118;+;+ (not shown) or w*; P{Sgs3-GFP}3 females to produce

w*;+;rn-GAL4,UAS-egr,tubGAL80ts/P{Sgs3GFP}3 (referred to as

Ablating Genotype) and w*;+;TM6Tb1, tubGAL80/

P{Sgs3GFP}3 (referred to as Non-Ablating Genotype).

The timing of developmental transitions is known to be

influenced by temperature as well as genetic background

[8,56,57]. Our first set of experiments was therefore designed to

determine the timing of a number of developmental transitions for

each of the genotypes (Ablating and Non-Ablating) when

maintained at a constant temperature of 18uC, a temperature at

which GAL80ts inhibits GAL4 thereby preventing eiger-induced

cell death. The molt from 2nd (L2) to 3rd larval instar (L3) was

determined by examination of larval mouth hooks in animals

reared at 18uC (Figure 2A). Larvae of the Ablating (n = 59) and

Non-Ablating (n = 63) genotype molted to L3 at a similar time,

approximately 130 hours after egg laying (AEL; Figure 2A,

Figure 3).

The Mid-third Instar Transition (MIT) is a developmental

time point associated with a low titer ecdysteroid pulse and is

characterized by widespread changes in gene expression

including induction of a glue gene – Salivary gland secretion 3

(Sgs3) [51,58]. The timing of the MIT was determined by

examination of an Sgs3GFP reporter that is expressed in

salivary glands beginning at the MIT [58,59]. As shown in

Figure 2B, there was no significant difference in the timing of

onset of Sgs3GFP expression between Ablating (n = 250) and

Non-Ablating (n = 192) genotypes when maintained at 18uC.

Based on visualization of GFP in the salivary glands of whole

larvae, the MIT appears to occur between 185 and 195 hours

AEL (Figure 2B, Figure 3).

Larvae were maintained at 18uC and checked at intervals of 24

hours for completion of puparium formation (Figure 2C) and adult

eclosion (Figure 2D). Pupariation time (time from midpoint of the

egg-laying period to completion of puparium formation) was

approximately 235 hours AEL for both Ablating (n = 42) and Non-

Ablating (n = 44) genotypes (Figure 2C, Figure 3). Similarly, we

found no significant difference in time to adult eclosion between

Ablating and Non-Ablating animals. Adult eclosion occurred at

approximately 420 and 425 hours AEL for Ablating (n = 37) and

Non-Ablating (n = 42) genotypes, respectively (Figure 2D,

Figure 3).

Critical Weight (CW) is the weight at which starvation no longer

delays time to pupariation [50]. A second size assessment

checkpoint is Minimum Viable Weight (MVW) which represents

the weight at which larvae have enough nutritional stores in the

form of fat body to survive the next developmental transition [50].

In Drosophila, CW and MVW occur at approximately the same

time, early in the third larval instar [60,61]. To identify the time

that these checkpoints are reached in Ablating and Non-Ablating

genotypes when maintained at 18uC, we determined the minimum

weight needed for larvae to pupariate following starvation

(Minimum Weight to Pupariate, MWP; Figure 2F). Third instar

larvae of known weights were starved and the proportion of larvae

that successfully pupariated was measured. Larvae of both the

Ablating and Non-Ablating genotypes exhibited a 50% threshold

for pupariation after starvation at approximately 0.9 mg/larva.

Based on the growth rate observed during L3 (Figure 2E), larvae of

both the Ablating (n = 199) and Non-Ablating (n = 200) genotypes

are predicted to reach the CW/MVW checkpoint at approx-

imately 142 hours AEL (MWP, Figure 3).

Effects of Tissue Damage on the Mid-Third Instar
Transition

To examine how localized tissue damage influences the timing

of the MIT, we induced cell ablation in the wing imaginal discs

(Figure 1B) at 172 hours AEL and examined larvae for expression

of the Sgs3GFP reporter in salivary glands (Figure 4). At 164 hours

AEL, before the induction of cell ablation, Sgs3GFP expression was

observed in 3.6% of Non-Ablating larvae (n = 28; Figure 4A) and

2.6% of Ablating larvae (n = 38; Figure 4D). Following the heat-

treatment to induce cell death via eiger expression in the wing discs,

Tissue Damage Disrupts Developmental Timing
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most (77.3%; n = 22) larvae of the Non-Ablating genotype

expressed Sgs3GFP by 197 hours AEL (Figure 4B). Sgs3GFP

expression was maintained at high levels throughout the remain-

der of the third larval instar and was detected in 91.7% of larvae at

215 hours AEL (n = 26; Figure 4C) and in 100% of larvae at 236

hours AEL (n = 19; data not shown) in Non-Ablating animals. In

contrast, following induction of cell death, only 10.0% (n = 30) of

Ablating larvae displayed any Sgs3GFP expression by 197 hours

AEL and expression was consistently lower in Ablating larvae

compared to Non-Ablating controls at this time point (compare

figure 4E to 4B). High levels of Sgs3GFP expression were detected

in only 53.9% (n = 26) of Ablating larvae by 215 hours AEL

(Figure 4F) and in only 75.0% (n = 28) of larvae by 236 hours AEL

(data not shown). We detected no obvious morphological defects in

salivary glands following cell ablation and no signs of cell death

within salivary glands at any time following cell ablation suggesting

that delayed onset of Sgs3GFP expression is a result of imaginal disc

cell ablation (data not shown).

Influence of Tissue Damage on Time to Pupariation and
Eclosion

Delay of pupariation was measured as the difference between

mean pupariation time of Ablating larvae and Non-Ablating

larvae housed in the same vial. To examine how localized tissue

damage influences the timing of pupariation we induced cell

ablation in the wing imaginal discs at 173 hours AEL, and then

monitored the time to pupariation (Figure 5A). Cell ablation in the

wing discs delayed pupariation by 59 hours (p,0.0001; Figure 5A).

Similarly, adult eclosion was delayed by 64 hours (p,0.0001;

Figure 5B) following the induction of cell death in imaginal discs at

173 hrs AEL.

Influence of Larval Age on the Systemic Injury Response
To assess the effects of larval age on the systemic injury

response we induced tissue damage in the wing imaginal discs

in larvae of various ages. Cell ablation in the wing disc at 173

hours AEL delayed pupariation and adult eclosion by 59 and

64 hours, respectively (Figure 5A, B). Similar results were

obtained when cell ablation was induced at 150, 162 or 184

hours AEL (Figure 3). Wing disc cell ablation induced at 198

hours AEL delayed mean pupariation and adult eclosion times

by 49 hours (p,0.0001) and 79 hours (p,0.0001), respectively

(Figure 5C, D). Similar results were obtained when cell

ablation was induced at 190 hrs AEL (Figure 3). Injury

induced between 190–198 hrs AEL resulted in two groups of

Ablating larvae – those that delayed development in response

to tissue damage and those that developed at the same time as

Non-Ablating controls (See Figure 5D). Larvae that delayed

development in response to wing disc ablation typically eclosed

as adults with regenerated wings while those that eclosed at the

same time as Non-Ablating controls emerged as wingless adults

(Figure S1).

Wing disc cell ablation induced between 213–223 hours AEL

resulted in no significant difference in the mean time to

pupariation or adult eclosion in Ablating animals compared to

Non-Ablating controls (Figure 5E, 5F; Figure 3). None of the

Figure 1. Cell Ablation Strategy. (A) Strategy used to produce Ablating and Non-Ablating larvae. w*; P{Sgs3-GFP}3 females were crossed to
w*;+;rn-GAL4,UAS-egr,tubGAL80ts/TM6Tb, tubGAL80 males to give rise to the Ablating genotype (w*;+;rn-GAL4,UAS-egr,tubGAL80ts/Sgs3GFP) and the
control Non-Ablating genotype (w*;+;TM6Tb, tubGAL80/Sgs3GFP). (B) Strategy to induce cell ablation. Embryos of the Ablating and Non-Ablating
genotypes were collected at room temperature in four hour intervals and transferred to 18uC. First-instar larvae (48 hours AEL) were transferred to a
vial containing standard cornmeal-yeast-agar medium and were allowed to develop at 18uC until the designated time for ablation induction. At the
designated time during L3 (130–230 hours AEL) vials were transferred to 30uC for 40 hours, returned to 18uC and monitored daily to document the
time to Sgs3GFP expression, pupariation or eclosion. RNA for qPCR and samples for EIA experiments were collected at time points T0–T3.
doi:10.1371/journal.pone.0049105.g001
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Ablating animals showed any evidence of tissue regeneration; all

emerged as wingless adults (Figure S1).

Ecdysteroid Titers Following Tissue Damage
The developmental retardation observed following imaginal disc

cell ablation suggested the presence of an underlying ecdysteroid

deficiency in injured animals. To measure the ecdysteroid titers in

Ablating and Non-Ablating larvae, we performed an enzyme

immunoassay (EIA) utilizing an ecdysteroid antiserum (Cayman

Chemical). We examined ecdysteroid levels at four time points

(Figure 1B): (T0) 170 hrs AEL - immediately before cell ablation was

induced, (T1) 190 hrs AEL - half-way through the cell ablation

period, (T2) 210 hrs AEL - immediately after the completion of cell

ablation, and (T3) 234 hrs AEL –24 hours after cell ablation

treatment was complete. As shown in Figure 6, just prior to the

induction of cell ablation (T0) there was no significant difference in

ecdysteroid titers between Ablating (1.6560.98 pg 20E Equiva-

lents/mg tissue) and Non-Ablating (2.0461.99 pg 20E equiv/mg

tissue) larvae. At T1 we detected a small (not statistically significant)

difference between ecdysteroid concentrations in Ablating and Non-

Ablating larvae; ecdysteroid concentrations were 1.6560.34 and

2.6661.03 pg 20E equivalents/mg tissue for larvae of the Ablating

and Non-Ablating genotypes, respectively. Following the cell

ablation period, ecdysteroid levels were significantly reduced

(p,0.05) in Ablating larvae compared to their sibling Non-Ablating

controls. At T2, ecdysteroid concentrations were 1.1260.28 and

3.4260.57 pg 20E equivalents/mg tissue for Ablating and Non-

Ablating larvae, respectively while at T3 we detected 3.0160.44 and

6.1160.040 pg 20E equivalents/mg tissue for Ablating and Non-

Ablating larvae, respectively.

Effects of Tissue damage on Ecdysteroid Biosynthesis
To examine the effects of tissue damage on ecdysteroid

signaling, we used qRT-PCR to examine injury-induced changes

in expression of genes involved in ecdysone synthesis and

signaling. Total RNA was isolated from Ablating and Non-

Ablating larvae at time points T0–T3 (Figure 1B). For each

genotype (Ablating and Non-Ablating), transcript levels in larvae

at each time point (T1–T3) were compared to transcript levels in

larvae at T0 to determine relative changes in gene expression.

To assess how tissue damage influences ecdysone synthesis,

we examined expression of genes including (1) ptth, which

encodes the neuropeptide that stimulates ecdysone synthesis in

the ring gland [30], (2) genes encoding enzymes required for

ecdysone synthesis in the ring gland including neverland (nvd)

[62], spookier (spok) [63], disembodied (dib) [64], phantom(phm) [65],

and shadow (sad) [66], and (3) genes encoding additional

components required for ecdysone synthesis including ecdysone-

Figure 2. Timing of Developmental Transitions in Larvae Reared at 18uC. (A–F) Ablating genotype (w*; rnGAL4, UAS-egr, tubGAL80ts/
Sgs3GFP) is shown in Red. Non-Ablating genotype (w*; TM6, Tb1, tubGAL80/Sgs3GFP) is shown in Blue. All larvae were maintained at 18uC. (A) Fraction
of larvae of the indicated genotype that had ecdysed to the 3rd Larval Instar is plotted relative to time in hours After Egg Laying (AEL). (B) Fraction of
larvae of the indicated genotype that had reached the mid-third transition (as measured by Sgs3GFP expression) is plotted relative to hours AEL. (C)
Fraction of larvae of the indicated genotype that had undergone pupariation is plotted relative to hours AEL. (D) Fraction of larvae of the indicated
genotype that had eclosed as adults is plotted relative to the time in hours AEL. (E) Plot of average larval weight (mg) at a given time after egg laying
for Ablating and Non-Ablating larvae. (F) Fraction of larvae that underwent pupariation after starvation at a given size for Ablating and Non-Ablating
larvae.
doi:10.1371/journal.pone.0049105.g002
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less (ecd) [67], Drosophila adrenodoxin reductase (dare) [68], and

transcription factors molting defective (mld) [69] and without children

(woc) [70]. Following cell ablation in the wing disc (T2 and T3),

we observed decreased expression of most ecdysteroidogenic

genes in Ablating samples compared to Non-Ablating controls

(Figure 7A-B, T3 Shown; Figure S2).

Conversion of ecdysone to 20-hydroxyecdysone is catalyzed

by the Cyp450 enzyme encoded by shade (shd), which is

expressed in peripheral tissues [71]. Following cell ablation in

the wing disc, we observed increased shd expression in Ablating

larvae compared to Non-Ablating controls (Figure 7C, T3

Shown; Figure S3).

Effects of Injury on Ecdysone Signaling
The functional ecdysone receptor is comprised of a

heterodimer formed by the Ecdysone Receptor (EcR) and the

RXR homolog encoded by ultraspiracle (usp) [31,32,33]. Lower

levels of expression were observed for both EcR and usp in

Ablating larvae compared to Non-Ablating Controls following

cell ablation in the wing imaginal disc (Figure 7D, T3 Shown;

Figure S4).

To further examine the effects of injury on ecdysone signaling,

we examined expression of ecdysone inducible genes including

Broad (br) [41,42], Eip74EF [39], Eip75B [40], Eip71CD [38], and

Eip78C [37]. Expression of Eip75B, Eip74EF, and Eip78C were

significantly reduced in Ablating larvae compared to Non-

Ablating controls following cell ablation at time points T2 and

T3 (Figure 7E, T3 Shown; Figure S5). There was no significant

effect on tissue damage observed for br or Eip71CD (Figure 7E, T3

Shown; Figure S5).

Ecdysone Catabolism Following Localized Tissue Damage
Ecdysone oxidase (Eo) is an enzyme that catalyzes the

conversion of ecdysteroids into inactive 3-dehydroecdysteroids

[72]. This ecdysteroid inactivation results in decreased ecdysteroid

titers and helps to regulate the sharp ecdysteroid peaks that trigger

developmental transitions. Following cell ablation in the wing disc

(time points T2 and T3), Eo expression was elevated in Ablating

samples compared to Non-ablating controls (Figure 7F, T3 Shown;

Figure S3).

Early Response to Injury
To identify potential differences between the early and late

response to injury we examined expression of genes involved in

ecdysteroid synthesis and signaling at an earlier time point, half-

way through the cell ablation treatment (T1; Figure 1B). There was

no significant difference for most genes examined in Ablating

samples compared to Non-Ablating controls at T1 (Figure 8). Only

five genes displayed reduced levels of expression in Ablating larvae

compared to Non-Ablating controls at this early time point. At T1,

ablating samples displayed significantly lower levels of expression

of ptth, spok, dib, Br, and Eip78C compared to Non-Ablating controls

(Figure 8).

Discussion

Previous studies have indicated that injury to imaginal tissues is

associated with prolonged larval and pupal stages but the effects of

injury on developmental timing is minimized or even reversed in

older larvae, after the animal has passed an Injury Response

Checkpoint (IRC) [10,17,20,47]. We find that cell ablation in wing

imaginal discs delays all subsequent developmental transitions

including the MIT (Figure 4), pupariation (Figure 5A), and adult

eclosion (Figure 5B). We demonstrate for the first time that once

larvae have progressed through the MIT, a time point that marks

the initial steps of metamorphosis, injury no longer results in

developmental retardation (Figure 3, 5,). These data suggest that

the IRC coincides with the MIT and that events initiated at the

onset of metamorphosis inhibit components of the systemic injury

response.

Following wing disc cell ablation, the damaged tissues

produce signals that retard development, thus providing time

for imaginal tissue regeneration to occur [20,21,73,74]. Tissue

regeneration is inhibited if tissue damage is inflicted following

the IRC (Figure S1) [20,21]. It is possible that one or more of

the genes that are up-regulated at the MIT may act to inhibit

the injury response signals that mediate tissue regeneration and

developmental retardation; however, interactions between

injury response components, genes required for tissue regen-

eration, and genes that are differentially regulated at the MIT

have not been explored.

Figure 3. Switch in Injury Response Coincides with the Mid-third Instar Transition. Cell ablation was induced as described (Figure 1) at
various time points (arrows) during the third larval instar. Cell ablation resulted in delayed pupariation (Red Arrows), no effect on developmental
timing (Green Arrows), or a mixed effect (Yellow Arrows) in which some animals delayed development and others developed at the same time as
controls.
doi:10.1371/journal.pone.0049105.g003
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Injury induced developmental delays are characterized by

decreased hemolymph ecdysteroid titers. Halme et al [20]

demonstrated that injury induced via x-irradiation triggers

decreased expression of ptth, which encodes the cerebral

neuropeptide that stimulates ecdysone synthesis in the ring

gland. Similarly, here we have shown that targeted cell

ablation in the wing imaginal disc leads to decreased

expression of ptth and many genes required for ecdysone

synthesis and signaling. Ptth has been shown to regulate

expression of a number of genes required for ecdysone

synthesis including nvd, spok, phm and dib, but it does not

appear to directly regulate the expression of sad or shd [24]. We

find that tissue damage is associated with decreased expression

of ecdysteroidogenic genes with the exception of sad in the ring

gland, and shd in peripheral tissues. These results are consistent

with a model that injury produces signals that trigger

decreased ptth expression, which in turn leads to transcriptional

down-regulation of ecdysteroidogenic genes and subsequent

decreases in ecdysone signaling components. It must be noted

that ecdysteroidogenic genes can be regulated at both the

transcriptional and post-translational level in response to

signals other than Ptth including nutritional cues and insulin

signaling [30]. A recent study has identified dILP8, a Drosophila

insulin-like peptide that is produced by damaged imaginal

tissues and mediates developmental delays [74]. Garelli et al

(2012) demonstrated that dILP8 influences expression of both

dib and phm but has no effect on ptth expression [74]. Together,

these studies indicate that multiple factors likely participate in

mediating the injury response.

Based on the observation that most ecdysteroidogenic genes

are decreased following cell ablation in the wing disc, it is likely

that the reduction in the ecdysteroid titer is due to decreased

ecdysone synthesis in the ring gland. Our data indicate that

decreased ecdysone titers may also result from enhanced

ecdysteroid inactivation (Figure 7F). We observed an increase

in expression of ecdysone oxidase – an enzyme that catalyzes the

oxidation of ecdysteroids - following tissue damage [72]. This

suggests the presence of multiple mechanisms that act in

concert to reduce circulating ecdysteroid levels following

injury.

Ecdysone response genes are largely down regulated in

response to tissue damage. Two exceptions are Eip71CD and br

(Figure 7E). Eip71CD and br each show tissue specific responses

to ecdysone and are induced in response to ecdysone in some

tissues and repressed by ecdysone in other tissues [51]. Our

observations likely represent the combined effects of tissue-

specific responses of these genes to ecdysone.

To assess the early effects of injury we analyzed changes in

gene expression mid-way through the cell ablation procedure

(T1, Figure 1B). At this early time point, we found that most

ecdysteroidogenic genes were not yet affected (Figure 8). In

contrast, five genes (ptth, spok, dib, br, Eip78C) displayed

reduced expression in Ablating samples compared to Non-

Ablating controls at T1. It is possible that these genes represent

direct targets of the injury response and that systemic injury

Figure 4. Imaginal Disc Damage Delays the Mid-Third Instar Transition. (A–F) Timing of the mid-third instar transition (as measured by
Sgs3GFP expression) in larvae that were heat-treated for 24 hours at 172 hours AEL to induce tissue damage in wing discs. (A–C) Sgs3GFP expression
in Non-Ablating (w*; TM6, Tb1, tubGAL80/Sgs3GFP) larvae. (A) Sgs3GFP expression is absent in most larvae at 164 hours AEL, just before heat treatment
(Sgs3GFP+ = 3.664.7%; n = 28). Sgs3GFP is expressed at high levels after heat treatment in salivary glands at (B) 197 hours AEL (Sgs3GFP+ = 77.360.6%;
n = 22), at (C) 215 hours AEL (Sgs3GFP+ = 91.767.9%; n = 12) and at 236 hours AEL (Sgs3GFP+ = 10060.0%; n = 19) – data not shown. (D–F) Sgs3GFP
expression in Ablating (w*; rnGAL4, UAS-egr, tubGAL80ts/Sgs3GFP) larvae. (D) Sgs3GFP expression is absent in most larvae at 164 hours AEL, just before
heat treatment (Sgs3GFP+ = 2.663.1%; n = 38). (E) Sgs3GFP expression is detected at low levels at 197 hours AEL in only a small fraction of larvae
examined (Sgs3GFP+ = 10.0613.3%; n = 30). (F) High levels of Sgs3GFP expression is visible at 215 hours AEL (Sgs3GFP+ = 53.9637.9%; n = 26) and at
236 hours AEL (Sgs3GFP+ = 75.061.3%; n = 28) – data not shown.
doi:10.1371/journal.pone.0049105.g004
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Figure 5. Damage to Wing Imaginal Discs Delays Pupariation and Adult Eclosion. (A–F) Timing of pupariation and adult eclosion following
induction of cell ablation in the wing disc at the indicated time. Fraction of larvae that had (A, C, E) pupariated or (B, D, F) eclosed as adults are plotted
relative to time in hours AEL for Ablating (Red - w*; rnGAL4, UAS-egr, tubGAL80ts/Sgs3GFP) and Non-Ablating (Blue - w*; TM6, Tb1, tubGAL80/Sgs3GFP)
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signals act directly on (1) the CNS to regulate ptth levels, (2)

prothoracic glands to influence expression of key ecdyster-

oidogenic enzymes and (3) peripheral tissues to influence the

expression of genes like br, which are essential during ecdysone

signaling for the induction of early primary response genes

[75].

Materials and Methods

Drosophila Stocks
w*;rnGAL4, UAS-egr, tubGAL80ts/TM6 Tb1, tubGAL80 [21]

was a generous gift from I. Hariharan. w*; P{Sgs3GFP}3 [58],

which expresses an Sgs3GFP fusion under the control of Sgs3

in an otherwise wild-type (Canton-S) background, and w1118

were obtained from the Bloomington Stock Center. Unless

otherwise indicated, flies were maintained at 22–25uC on a

standard cornmeal-yeast-agar medium (Bloomington recipe).

Developmental Timing Measurements
Fertilized eggs were collected at room temperature on grape

juice agar plates. Collections were done in four hour intervals after

which plates were transferred to 18uC. First instar larvae were

collected from these plates 48 hours after egg laying and

transferred (in groups of 30) to vials containing standard

cornmeal-yeast-agar medium. Larvae were maintained at 18uC.

For developmental progression, larvae were scored in 24 hour

intervals. Larval stages were determined by observing mouth hook

morphology. Pupariation was determined by observing contrac-

tion of larval body, eversion of spiracles, and onset of pigmentation

of the puparium. Mean developmental times were tested for

significant differences via two-sample t-test.

Minimum Weight to Pupariate
Larvae were cultured at 18uC. First-instar larvae were collected

48 hours after egg laying and were transferred in batches of 30 to

vials containing fresh cornmeal-yeast-agar medium. At the

designated time, larvae were weighed in batches of 3–5 and

transferred to a 35610 mm plate filled with either grape-juice agar

(fed) or 2% agar in water (starved). Pupariation was scored in 12

hour intervals for fed and starved animals.

Cell Ablation Strategy
Cell ablation (Figure 1) was induced essentially as described

by Smith-Bolton et al (2007) with the following modifications:

w1118;+;+ or w*; P{Sgs3-GFP}3 females were crossed to

w*;+;rn-GAL4,UAS-egr,tubGAL80ts/TM6Tb, tubGAL80 males

[21]. Flies were conditioned for two days on fresh yeast paste

and embryos were collected at room temperature in four hour

intervals on grape juice agar supplemented with a small

amount of fresh yeast paste. Plates were incubated at 18uC.

First-instar larvae (48 hours after egg laying) were transferred

in groups of 30 larvae to a vial containing standard cornmeal-

yeast-agar medium. Larvae were allowed to develop at 18uC
until the designated time for ablation induction. At the

designated time vials were transferred to 30uC for 40 hours,

returned to 18uC and monitored daily to document the time to

Sgs3GFP expression, pupariation or eclosion. Ablating animals

were w*;+;rn-GAL4,UAS-egr,tubGAL80ts/P{Sgs3GFP}3 or

w*;+;rn-GAL4,UAS-egr,tubGAL80ts/+ (collectively referred to as

Ablating). Mock-ablated discs were the siblings of the ablating

animals which were w*;+;TM6Tb, tubGAL80/P{Sgs3GFP}3 or

w*;+;rn-GAL4,TM6Tb, tubGAL80/+ (collectively referred to as

Non-Ablating).

Larval Collection
Cell ablation was induced at 170 hours AEL as described

(Cell Ablation Strategy; Figure 1A). Larvae were collected at

the following time points: (T0) just before induction of cell

ablation (170 hrs AEL), (T1) half-way through cell ablation

(190 hrs AEL), (T2) immediately after cell ablation (210 hrs

AEL), and (T3) 24 hours after cell ablation (234 Hrs AEL). For

qRT-PCR, three sets of larvae (five larvae/set) were collected

for each genotype (Ablating: w1118;+;rnGAL4,UAS-egr,tub-

GAL80ts/+ and Non-ablating: w1118;+;TM6BTb, tubGAL80/+)

at each time point. For ecdysteroid titer measurements, two

sets of larvae (15 larvae/set) were collected for each genotype

(Ablating/Non-Ablating) at each time point (T0–T3). Larvae

were flash frozen in liquid nitrogen and stored at 280uC for

future use.

larvae. n = 3 independent populations (30 larvae each) were assayed for each ablation time. (A–B) Timing of (A) pupariation and (B) adult eclosion for
larvae heat-treated at 173 hours AEL. Mean pupariation times are 286 and 227 hours AEL for Ablating and Non-ablating larvae, respectively. Mean
eclosion times are 504 and 440 hours AEL for Ablating and Non-ablating larvae, respectively. Similar results were obtained with larvae heat-treated at
150, 162, or 184 hours AEL (data not shown). (C–D) Timing of (C) pupariation and (D) adult eclosion for larvae heat-treated at 198 hours AEL. Mean
pupariation times are 279 and 230 hours AEL for ablating and non-ablating larvae, respectively. Mean eclosion times are 488 and 409 hours AEL for
ablating and non-ablating larvae, respectively. Similar results were obtained with larvae heat-treated at 190 hours AEL (data not shown). (E-F) Timing
of (E) pupariation and (F) adult eclosion for larvae heat-treated at 223 hours AEL. Mean pupariation times are 263 and 265 hours AEL for ablating and
non-ablating larvae, respectively. Mean eclosion times are 419 and 411 hours AEL for ablating and non-ablating larvae, respectively. Similar results
were obtained with larvae heat-treated at 213 and 220 hours AEL (data not shown).
doi:10.1371/journal.pone.0049105.g005

Figure 6. Ecdysteroid Titers Following Wing Disc Cell Ablation.
Ecdysteroid titers measured for larvae of Ablating (Red) and Non-
Ablating (Blue) genotypes at time points T0–T3 (See Figure 1B), as
determined by EIA. Values are expressed as the means of 20E
equivalents per mg of tissue. Error bars indicate the SEM (n = 2 samples
of 15 larvae each). Asterisks indicate differences statistically significant
at p#0.05 (t-test).
doi:10.1371/journal.pone.0049105.g006
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Ecdysteroid Titer Measurements
Ecdysteroid levels were quantified via competitive Enzyme

Immunoassay (EIA) (Cayman Chemicals, Inc., USA) [76,77]

using 20E (Sigma) and 20E acetylcholinesterase (Cayman

Chemicals, Inc., USA) as the standard and enzymatic tracer,

respectively. The antiserum detects ecdysone, 20-hydroxyec-

dysone and other ecdysteroid metabolites including 2-deoxy-

20-hydroxyecdysone and 2-deoxyecdysone [76,77,78]. The

standard curve was obtained with 20E (Sigma-Aldrich, USA)

and results are expressed as 20E equivalents. For sample

preparation, 15 staged larvae were weighed and preserved in

Figure 7. Effects of Tissue Damage on Ecdysone Biosynthesis and Signaling. qRT-PCR analysis of transcript levels of (A) ptth, (B) genes
required for ecdysone synthesis, (C) shd, (D) ecdysone inducible genes, (E) ecdysone receptor components and (F) ecdysone oxidase. Graphs show
changes in transcript levels 24 hours after heat treatment (T3; Figure 2B) compared to transcript levels immediately before heat treatment (T0;
Figure 2B). Ablating (Red - w*/w1118; rnGAL4, UAS-egr, tubGAL80ts/+). Non-Ablating (Blue - w*/w1118; TM6, Tb1, tubGAL80/+).
doi:10.1371/journal.pone.0049105.g007

Figure 8. Early Response to Tissue Damage. qRT-PCR analysis of transcript levels of (A) ptth, (B) genes required for ecdysone synthesis, (C) shd,
(D)ecdysone inducible genes, (E) ecdysone receptor components and (F) ecdysone oxidase. Graphs show changes in transcript levels mid-way through
heat treatment (T1; Figure 2B) compared to transcript levels immediately before heat treatment (T0; Figure 2B). Ablating (Red - w*/w1118; rnGAL4, UAS-
egr, tubGAL80ts/+). Non-Ablating (Blue - w*/w1118; TM6, Tb1, tubGAL80/+).
doi:10.1371/journal.pone.0049105.g008
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600 ml of methanol. Prior to the assay, samples were

homogenized and centrifuged (10 minutes at 18,0006g) twice

and the resulting methanol supernatants were combined and

dried. Samples were resuspended in 100 ml of enzyme

immunoassay (EIA) buffer (0.4 M NaCl, 1 mM EDTA, 0.1%

BSA in 0.1 M phosphate buffer). Ellmann reagent (Cayman

Chemicals, Inc., USA) was used for the chromogenic reaction

and absorbance was read at 415 nm. All assays were

performed in triplicate.

Real-Time PCR
Larvae were homogenized in Trizol reagent (Invitrogen).

RNA concentration was determined by spectrophotometric

analysis. RNA was flash frozen in liquid nitrogen and stored at

280uC. Reverse transcription was carried out using qScript

cDNA Supermix (VWR/Quanta). First Strand synthesis

reactions were incubated as follows: 5 minutes [25uC]; 30

minutes [42uC]; 5 minutes [85uC]; hold [4uC]. cDNA was

diluted 1:5 and 5 ml was used for each qRT-PCR reaction.

qRT-PCR was performed using PerfeCTa SYBR Green

FastMix (VWR/Quanta). Reactions were incubated in a real

time thermal detection system (Stratagene MX3000P) as

follows: 95uC [2 minutes]; 40 cycles [95uC (1 second); 60uC
(30 seconds)]. Fluorescence intensity was recorded at the end

of each elongation phase. A dissociation curve was added to

the end of the thermal cycle program. Results were analyzed

by using the MxPro qPCR Software version 4.1 (Stratagene)

and relative expression levels were normalized to mRNA for

ribosomal protein L32 (RpL32/Rp49). Primers used for qRT-PCR

are shown in Table 1. Statistical analyses were performed

using the nonparametric Mann-Whitney U test.

Supporting Information

Figure S1 Wing Phenotypes Following Cell Ablation.
All flies shown were heat treated at 198 hours AEL to induce

cell ablation. (A) Control (Non-Ablating) fly. (B–E) Flies from

the Ablating genotype representing the range of wing

phenotypes obtained following cell ablation at 198 hours AEL.

(TIF)

Figure S2 qRT-PCR Analysis of Ecdysteroidogenic En-
zymes Following Cell Ablation for time points T0–T3.

(TIF)

Figure S3 qRT-PCR Analysis of Ecdysteroidogenic
Genes and Ecdysone Oxidase Following Cell Ablation
for time points T0–T3.

(TIF)

Figure S4 qRT-PCR Analysis of Ecdysone Receptor
Components Following Cell Ablation for time points
T0–T3. Two primers sets (EcR-RA and EcR-RE) that each

amplify a region common to all EcR isoforms were utilized to

characterize the EcR response.

(TIF)

Figure S5 qRT-PCR Analysis of Ecdysone Response
Genes Following Cell Ablation for time points T0–T3.

(TIF)
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Table 1. Primers Used for qPCR.

Target
Gene Fwd Primer Rev Primer

Ptth ptth 59-TGGTGACCACCAAACGCAATGATG-39 59-ATCAGAAAGCGAGGGAAGTGCAGA-39

Ecdysone Synthesis dare 59-ATCTAGTTGCGTGGATACGGGCAT-39 59-AGCCAGCCAGCTACATAAAGTCCA-39

dib 59-AGTGGATGGAGTGACCAAGG-39 59-ACGAGCTCCAAAGGTAAGCA-39

ecd 59-AGCGACTCGGATGAGTGGTTGAAT-39 59-GGCATTCATTTGTCCGTTCGGCTT-39

nvd 59-AGCAACTTGTGTGTCATGCTTGGG-39 59-TTGGCTCCTAGGTGAGGGCAATAA-39

phm 59-TGGGAAACCAAGAAGCTGAC-39 59-CGATTTCCTCCTGCTCTCAC-39

sad 59-CAACGGGGACTGTTCTTCAT-39 59-CAGTGCGTCTTTTCCACTGA-39

shd 59-GCACGAGGTATATGCGGATT-39 59-GGAGGTCGGAATGGGTATTT-39

spok 59-GCTCTTTGGCGGTGATCGAAACAA-39 59-CGCCGAGCTAAATTTCTCCGCTTT-39

mld 59-ACTGTGCGAACGGAATTGAACAGC-39 59-TGAGGATGCCATTGAGTGTGGTCT-39

woc 59-ATCCCTGCTTCTCCGCCTTTAAGT-39 59-AGAAGACCTTCGGTGACTGCTGTT-39

Ecdysone Catabolism Eo 59-AAGACCTACTCTCGCCTGCAACAA-39 59-TGTTTCATCCGTGGTACACCCAGT-39

Ecdysone Receptor EcR-RA 59-ATATGTAGCTGTGCGTGGGTGTGT-39 59-AAGACTCCTATGCTGCAACCTCCA-39

EcR-RE 59-TAGACGATGCACTTGCACTGTGG-39 59-ACATGTAGTTCTCCCTGTCTTTATAGC-39

Usp 59-CCTGTGCCAAGTGGTCAACAAACA-39 59-ATCCAAGCGGCTTTCAGCAGAATC-39

Ecdysone Response eip74EF 59-TTTCATCAAGTGGACGAACCGGGA-39 59-CATGTCCGGCTTGTTCTTGTGCAT-39

eip75B 59-ATTGGATCAGGCGGCTCTTCTTCT-39 59-TGCTGCTGATGGTGCATATTGCTG-39

eip71CD 59-ACGGAGGTGCTGGAAATCGACTAT-39 59-TGGTCAGGCCATACTCATGGTTGT-39

eip78C 59-ATGTAAGCGGCGTACGTGTGAAGA-39 59-TTATTGGCACTATTGCAACCGCCC-39

Br 59-TCTGTGACTCGGTGACATTTGCGA-39 59-TTACTAGACCGCTTGCCGGATTGT-39

Control Rp49 59-AAGAAGCGCACCAAGCACTTCATC-39 59-TCTGTTGTCGATACCCTTGGGCTT-39

doi:10.1371/journal.pone.0049105.t001
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