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Researchers worldwide are seeking to repurpose existing drugs or discover new drugs
to counter the disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). A promising source of candidates for such studies is molecules that
have been reported in the scientific literature to be drug-like in the context of viral
research. However, this literature is too large for human review and features unusual
vocabularies for which existing named entity recognition (NER) models are ineffective.
We report here on a project that leverages both human and artificial intelligence to detect
references to such molecules in free text. We present 1) a iterative model-in-the-loop
method that makes judicious use of scarce human expertise in generating training data
for a NER model, and 2) the application and evaluation of this method to the problem of
identifying drug-like molecules in the COVID-19 Open Research Dataset Challenge
(CORD-19) corpus of 198,875 papers. We show that by repeatedly presenting
human labelers only with samples for which an evolving NER model is uncertain, our
human-machine hybrid pipeline requires only modest amounts of non-expert human
labeling time (tens of hours to label 1778 samples) to generate an NERmodel with an F-1
score of 80.5%—on par with that of non-expert humans—and when applied to CORD’19,
identifies 10,912 putative drug-like molecules. This enriched the computational screening
team’s targets by 3,591 molecules, of which 18 ranked in the top 0.1% of all
6.6 million molecules screened for docking against the 3CLPro protein.

Keywords: coronavirus disease-19, coronavirus disease-19 open research dataset challenge, named entity
recognition, long-short term memory, data mining

1 INTRODUCTION

The Coronavirus Disease (COVID-19) pandemic, caused by transmissible infection of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in tens of millions of
diagnosed cases and over 1,450,000 deaths worldwide (Dong et al., 2020); straining healthcare
systems, and disrupting key aspects of society and the wider economy. It is thus important to identify
effective treatments rapidly via discovery of new drugs and repurposing of existing drugs. Here, we
leverage advances in natural language processing to enable automatic identification of drug
candidates being studied in the scientific literature.

The magnitude of the pandemic has resulted in an enormous number of academic publications
related to COVID-19 research since early 2020. Many of these articles are collated in the COVID-19
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Open Research Dataset Challenge (CORD-19) collection (Allen
Institute For AI, 2020; Wang et al., 2020). With 198,875 articles at
the time of writing, that collection is far too large for humans to
read. Thus, tools are needed to automate the process of extracting
relevant data, such as drug names, testing protocols, and protein
targets. Such tools can save domain experts significant time and
effort.

Extracting named entities from scientific texts has been
studied for more than 2 decades. Prior work relied on
matching tokens (words) in text to entries in existing
databases or ontologies (Rindflesch et al., 1999; Furrer et al.,
2019). However, for our task, existing drug databases like
DrugBank cover both too much, in that they include entities
of many types (for example, “rabbit” is in DrugBank as an
allergen), and too little: because the creation of such databases
is time-consuming, they cannot keep up with the new entities in
the latest COVID’19-related publications (∼200 k papers in the
CORD’19 corpus), which is exactly what we want to extract here.

Machine learning (ML) and deep learning (DL) methods have
also been used for identifying named entities from free text.While
less dependent on a comprehensive ontology, they need labeled
data for training. Traditional training data collection employs a
brute-force approach, collecting a large corpus and labeling each
and every word indiscriminatingly (Bada et al., 2012). The time
and human resources involved is enormous. We, in contrast, had
access to just a few assistants who worked on labeling only during
free time in their day job. Thus we needed a more careful
approach of selective labeling to maximize their effectiveness.

Towards this goal, we describe here how we have tackled two
important problems: creating labelled training data via judicious
use of scarce human expertise, and applying a named entity
recognition (NER) model to automatically identify drug-like
molecules in text. We are looking not only for novel drugs
under development, but also any small molecule drug that has
been used to treat patients with COVID’19 or similar infectious
diseases like SARS and MERS. In the absence of expert-labeled
data for the growing COVID literature, we employ an iterative
model-in-the-loop collection process inspired by our previous
work (Tchoua et al., 2019a,b) and demonstrate that it can build a
high quality training set without input from domain scientists.
We first assemble a small bootstrap set of human-verified
examples to train a model for identifying similar examples.
We then iteratively apply the model, use human reviewers to
verify the predictions for which the model is least confident, and
retrain the model until the improvement in performance is less
than a threshold. (The human reviewers were administrative staff
without scientific backgrounds, with time available for this task
due to the pandemic.)

Having collected adequate training data via this model-guided
human annotation process, we then use the resulting labeled data
to re-train a NER model originally developed to identify polymer
names in materials science publications (Hong et al., 2020b) and
apply this trained model to CORD-19. We show that the labeled
data produced by our approach are of sufficiently high quality
than when used to train NER models, which achieves a best F-1
score of 80.5%—roughly equivalent to that achieved by non-
expert humans.

The labeled data, model, and model results are all available
online, as described in Section 5.

2 MATERIALS AND METHODS

We aim to develop and apply new computational methods to
mine the scientific literature to identify small molecules that have
been investigated or found useful as antiviral therapeutics. For
example, processing the following sentence should allow us to
determine that the drug sofosbuvir has been found effective
against the Zika virus: “Sofosbuvir, an FDA-approved
nucleotide polymerase inhibitor, can efficiently inhibit
replication and infection of several ZIKV strains, including
African and American isolates.” (Bullard-Feibelman et al., 2017).

This problem of identifying drug-like molecules in text can be
divided into two linked problems: 1) identifying references to
small therapeutic molecules (“drugs”) and 2) determining what
the text says about those molecules. In this work, we consider
potential solutions to the first problem.

A simple way to identify entities in text that belong to a
specialized class (e.g., drug-like molecules) is to refer to a
curated list of valid names, if such is available. In the case of
drugs, we might think to use DrugBank (Wishart et al., 2018) or
the FDA Drug Database (Center for Drug Evaluation and
Research, 2020), both of which in fact list sofosbuvir.
However, such databases are not in themselves an adequate
solution to our problem, for at least two reasons. First, they are
rarely complete. The tens of thousands of entity names in
DrugBank and the FDA Drug Database together are just a
tiny fraction of the billions of molecules that could
potentially be used as drugs. Second, such databases may be
overly general: DrugBank, for example, includes the terms
“rabbit” and “calcium,” neither of which have value as
antiviral therapeutics. In general, the use of any such list to
identify entities will lead to both false negatives and false
positives. We need instead to employ the approach that a
human reader might follow in this situation, namely to scan
text for words that appear in contexts in which a drug name is
likely to appear. In the following, we explain how we combine
human and artificial intelligence for this purpose.

2.1 Automated Drug Entity Extraction From
Literature
Finding strings in text that refer to drug-like molecules is an
example of Named Entity Recognition (NER) (Nadeau and
Sekine, 2007), an important NLP task. Both grammatical and
statistical (e.g., neural network-based) methods have been applied
to NER; the former can be more accurate, but require much effort
from trained linguists to develop. Statistical methods use
supervised training on labeled examples to learn the contexts
in which entities of interest (e.g., drug-like molecules) are likely to
occur, and then classify previously unseen words as such entities
if they appear in similar contexts. For instance, a training set may
contain the sentence “Ribavirin was administered once daily by
the i. p. route” (Oestereich et al., 2014), with ribavirin labelled as
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Drug. With sufficient training data, the model may learn to assign
the label Drug to arbidol in the sentence “Arbidol was
administered once daily per os using a stomach probe”
(Oestereich et al., 2014). This learning approach can lead to
general models capable of finding previously unseen candidate
molecules in natural language text.

The development of effective statistical NER models is
complicated by the many contexts in which names can occur.
For example, while the contexts just given for ribavirin and
arbidol are similar, both are quite different from that quoted
for sofosbuvir earlier. Furthermore, authors may use different
wordings and sentence structures: e.g., “given by i. p. injection
once daily” rather than “administered once daily by the i. p.
route.” Thus, statistical NER methods need to do more than learn
template word sequences: they need to learn more abstract
representations of the context(s) in which words appear.
Modern NLP and NER systems do just that (Chiu and
Nichols, 2016).

2.1.1 SpaCy and Keras-Long-Short Term Memory
Models
We consider two NER models in this paper, SpaCy and a Keras
long-short term memory (LSTM) model. Both models are
publicly available on DLHub (Li et al., 2021) and GitHub, as
described in Section 5.

SpaCy (Honnibal and Montani, 2020a; Honnibal et al.,
2020) is an open source NLP library that provides a pre-
trained entity recognizer that can recognize 18 types of
entities, including PERSON, ORGANIZATION, LOCATION,
and PRODUCT. Its model calculates a probability distribution
of a word over the entity types, and outputs the type with the
highest probability as the predicted type for that word. When
pre-trained on the OntoNotes five dataset of over 1.5 million
labeled words (Weischedel et al., 2013), the SpaCy entity
recognizer can identify supported entities with 85.85%
accuracy. However, it does not include drug names as a
supported entity class, and thus we would need to retrain the
SpaCy model on a drug-specific training corpus. Unfortunately,
there is no publicly available corpus of labeled text for drug-like
molecules in context. Thus, we need to use other methods to
retrain this model (or other NER models), as we describe in
Section 4.

While SpaCy is easy to use, it lacks flexibility: its end-to-end
encapsulation does not expose many tunable parameters. Thus
we also explore the use of a Keras-LSTMmodel that we developed
in previous work for identification of polymers in materials
science literature (Hong et al., 2020b). This model is based on
the Bidirectional LSTM network with a conditional random field
(CRF) layer added on top. It takes training data labeled according
to the “IOB” schema. The first word in an entity is given the label
“B” (Beginning), the following words in the same entity are
labeled “I” (Inside), and non-entity words are labeled “O”
(outside). During prediction, the Bi-LSTM network tries to
assign one of “IOB” to each word in the input sentence, but it
has no awareness of the validity of the label sequence. The CRF
layer is used on top of Bi-LSTM to lower the probability of invalid
label sequences (e.g., “OIO”).

We compare the performance of SpaCy and Keras-LSTM
models under various conditions in Section 2.2.

2.1.2 Model-In-The-Loop Annotation Workflow
We address the lack of labeled training data by usingAlgorithm 1
(and see Figure 1) to assemble a set of human- and machine-
labeled data from CORD-19 (Wang et al., 2020). In describing
this process, we refer to paragraphs labeled automatically via a
heuristic or model as silver and to silver paragraphs for which
labels have been corrected by human reviewers as gold. We use
the Prodigy machine learning annotation tool to manage the
review process: reviewers are presented with a silver paragraph,
with putative drug entities highlighted; they click on false negative
and false positive words to add or remove the highlights and thus
produce a gold paragraph. Prodigy saves the corrected labels in
standard NER training data format.

Our algorithm involves three main phases, as follows. In the
first bootstrap phase, we assemble an initial test set of gold
paragraphs for use in subsequent data acquisition. We create a
first set of silver paragraphs by using a simple heuristic: we
select N0 paragraphs from CORD-19 that contain one or more
words in DrugBank with an Anatomical Therapeutic Chemical
Classification System (ATC) code, label those words as drugs,
and ask human reviewers to correct both false positives and
false negatives in our silver paragraphs, creating gold
paragraphs. In the subsequent build test set phase, we
repeatedly use all gold paragraphs obtained so far to train
an NER model; use that model to identify and label additional
silver paragraphs, and engage human reviewers to correct false
positives and false negatives, creating additional gold
paragraphs. We repeat this process until we have Nt initial
gold paragraphs.

In the third build labeled set phase, we repeatedly use an
NER model trained on all human-validated labels obtained
to date, with the Nt gold paragraphs from the bootstrap phase
used as a test set, to identify and label promising paragraphs
in CORD-19 for additional human review. To maximize the
utility of this human effort, we present the reviewers only
with paragraphs that contain one or more uncertain words,
i.e., words that the NER model identifies as drug/non-drug
with a confidence in the range (min, max). We continue this
process of model retraining, paragraph selection and
labeling, and human review until the F-1 score improves
by less than ϵ.

The behavior of this algorithm is influenced by six parameters:
N0,N,Nt, ϵmin, andmax.N0 andN are the number of paragraphs
that are assigned to human reviewers in the first and subsequent
steps, respectively.Nt is the number of examples in the test set. ϵ is
a threshold that determines when to stop collecting data. The min
and max determine the confidence range from which words are
selected for human review. In the experimental studies described
below, we usedN0 � 278,N � 120,Nt � 500, ϵ � 0, min � 0.45, and
max � 0.55.

The NER model used in the model-in-the-loop annotation
workflow to score words might also be viewed as a parameter. In
the work reported here, we use SpaCy exclusively for that
purpose, as it integrates natively with the Prodigy annotation
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tool and trains more rapidly. However, as we show below, the
Keras-LSTM model is ultimately somewhat more accurate when
trained on all of the labeled data generated, and thus is preferred
when processing the entire CORD-19 dataset: see Section 3.1.1
and Section 3.2.

This semi-automated method saves time and effort for human
reviewers because they are only asked to verify labels that have
already been identified by our model to be uncertain, and thus
worth processing. Furthermore, as we show below, we find that
we do not need to engage biomedical professionals to label drugs
in text: untrained people, armed with contextual information
(and online search engines), can spot drug names in text with
accuracy comparable to that of experts.

We provide further details on the three phases of the algorithm
in the following, with numbers in the list referring to line
numbers in Algorithm 1.

A) Bootstrap
1. We start with the 2020–03-20 release version of the CORD-19

corpus, which contains 44,220 papers (Wang et al., 2020). We
create C, a random permutation of its paragraphs from which
we will repeatedly fetch paragraphs via next (C).

2. We bootstrap the labeling process by identifying asD the 2,675
items in the DrugBank ontology with a Anatomical
Therapeutic Chemical Classification System (ATC) code
attached (eliminating many, but not all, drug-like molecule
entities).

3. We create an initial set of silver paragraphs,P0, by selectingN0

paragraphs from C that include a word from D.

4. We engage human reviewers to remove false positives and
label false negatives in P0, yielding an initial set of gold
paragraphs, B.

B) Build test set
5. We expand the test set that we will use to evaluate the model

created in the next phase, until we have Nt validated examples.
6. We train the NER model on 60% of the data collected to date

and evaluate it on the remaining 40%, to create a new trained
model, M, with improved knowledge of the types of entities
that we seek.

7. We use the probabilities over entities returned by the model to
select, as our N new silver paragraphs, P, paragraphs that
contain at least one uncertain word (see above).

8. We engage human reviewers to convert these new silver
paragraphs, P, to gold, V.

9. We add the new gold paragraphs, V, to the bootstrap set B.

11–12. Having assembled at least Nt validated examples, we select
the first Nt as the test set, T , and use any remaining
examples to initialize the new gold set, G.

C) Build labeled set
13. We assemble a training set G, using the test set T assembled

in the previous phases for testing. This process continues
until the F-1 score stops improving see Section 2.2.

14–17. Same as Steps 6–9, except that we train on G and test on T .
Human reviewers are engaged to review new silver

FIGURE 1 |Overview of the training data collection workflow, showing the three phases described in the text and with the parameter values used in this study. Each
phase pulls paragraphs from the CORD-19 dataset (blue dashed line) according to the Select criteria listed (yellow shaded box). Phases B and C repeatedly update the
weights for the NER model (green arrows) that they use to identify and label uncertain paragraphs; human review (yellow and gold arrows) corrects those silver
paragraphs to yield gold paragraphs. Total human review work is ∼278 + 600+960 � 1838 paragraphs.
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paragraphs and produce new gold paragraphs, which are
then added to G instead of T .

2.2 Data-Performance Tradeoffs in
Named-Entity Recognition Models
As noted in Section 2.1.2, our model-in-the-loop annotation
workflow requires repeated retraining of a SpaCy model. Thus we
conducted experiments to understand how SpaCy prediction
performance is influenced by model size, quantity of training
data, and amount of training performed.

As the training data produced by the model-in-the-loop
evaluation workflow are to be used to train an NER model
that we will apply to the entire CORD-19 dataset, we also
evaluate the Keras-LSTM model from the perspectives of big
data accuracy and training time.

2.2.1 Model Size
We first need to decide which SpaCy model to use for model-in-
the-loop annotation. Model size is a primary factor that affects
training time and prediction performance. In general, larger
models tend to perform better, but require both more data
and more time to train effectively. As our model-in-the-loop
annotation strategy requires frequent model retraining, and
furthermore will (initially at least) have little data, we
hypothesize that a smaller model may be adequate for our
purposes.

To explore this hypothesis, we study the performance
achieved by the SpaCy medium and large models (Honnibal
and Montani, 2020b) on our initial training set of 278 labeled
paragraphs. We show in Figure 2 the performance achieved by
the two models as a function of number of training epochs.
Focusing on the harmonic mean of precision and recall, the
F-1 score (a good measure a model’s ability to recognize
both true positives and true negatives), we see that the two
models achieve similar prediction performance, with the
largest difference in F-1 score being around 2%. As the
large model takes over eight times longer to train per
epoch, we select the medium model for model-in-the-loop
data collection.

2.2.2 Word Embedding Models
The Keras LSTM model requires external word vectors since,
unlike SpaCy, it does not include a word embedding model. To
explore the affect of different word embedding models we trained
both BERT (Devlin et al., 2018), a top-performing language
model developed by Google, and FastText (Bojanowski et al.,
2016), a model shown to have outperformed traditional
Word2Vec models such as CBOW and Skipgram in our
previous work (Hong et al., 2020b). While Google has released
pre-trained BERTmodels, and researchers often build upon these
models by “fine-tuning” them with additional training on small
external datasets, it is not suitable to our problem as the
vocabulary used in the CORD-19 is very different than the

Algorithm 1 | Model-in-the-loop Annotation Workflow
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datasets used to train these models.1 Rather than use a pre-trained
BERT model, we trained a BERT model on the CORD-19 corpus
using a distributed neural network training framework from our
previous work (Pauloski et al., 2020). As the CORD-19 corpus is
approximately 20% of the size of the training data used by Google
used to train BERT, we reduced the word embedding size
proportionally from 768 to 128 to avoid over-fitting. For
FastText word embeddings we set the size to the default 120.

We used word embeddings derived from both models to train
the Keras LSTM model on the same training and testing data
collected in Section 2.1.2. The model using FastText embeddings
achived a slightly higher F-1 score (80.5%) than the model trained
with BERT embeddings (78.7%). This result is likely due to the
limited training data and embedding size. In short, the
humongous BERT model requires an equally humongous
amount of data to achieve the best performance, and without
such it will not necessarily outperform other much smaller and
less computationally intensive word embedding models. In the
remainder of the paper, we use the FastText word
embedding model.

2.2.3 Amount of Training Data
As data labeling is expensive in both human time and model
training time, it is valuable to explore the tradeoff between
time spent collecting data and prediction performance. To this
end, we manually labeled a set of 500 paragraphs selected at
random from CORD-19 (Wang et al., 2020) as a test set. Then,
we used that test set to evaluate the results of training the
SpaCy and Keras-LSTM models of Section 2.1.1 on increasing
numbers of the paragraphs produced by our human-in-the-
loop annotation process. Figure 3 shows their F-1 score curves
as we scale from 0 to 1,000 training samples. With only 100
training examples, SpaCy and Keras-LSTM achieve F-1 scores
of 57 and 66%, respectively. SpaCy performs better than Keras-

LSTM with fewer training examples (i.e., less than 300), after
which Keras-LSTM overtakes it and maintains a steady 2–3%
advantage as the number of examples increases. This result
motivates our choice of Keras-LSTM for the CORD-19 studies
in Section 3.2.

We stopped collecting training data after 1,000 examples. We
see in Figure 3 that the performance of the SpaCy and Keras-
LSTMmodels is essentially the same with 1,000 training examples
as with 700 examples, with the F-1 score even declining when the
number of available examples increases to 800 or 900. At 1,000
examples the F-1 score is greatest for both models. We conclude
that the 1,000 training examples, along with the other 500
withheld as the test set, are best-suited to train our models.
There are 4,244 and 1861 entities in the training and test set,
respectively.

2.2.4 Training Epochs
Prediction performance is also influenced by the number of
epochs spent in training. The cost of training is particularly
important in a model-in-the-loop setup, as human reviewers
cannot work while an model is offline for training.

Figure 4 shows the progression of the loss, precision, recall,
and F-1 values of the SpaCy model during 100 epochs of training
with the initial 278 examples. We can see that the best F-1 score is
achieved within 10–20 epochs. Increasing the number of epochs
does not result in any further improvement. Indeed, F-1 score
does not tell us all about the model’s performance. Sometimes
training for more epochs could lead to lower loss values while
other metrics (such as precision, recall, or F-1) no longer
improve. That would still be desirable because it means the
model is now more “confident,” in a sense, about its
predictions. However, that is not the case here. As shown in
Figure 4, after around 40 epochs the loss begins to oscillate
instead of continuing downwards, suggesting that in this case
training for 100 epochs does not result in a better model than only
training for 20 epochs.

Figure 5 shows the progression of accuracy and loss value for
the Keras-LSTM model with the initial 278 examples. In
Figure 5A, we see that validation accuracy improves as
training accuracy increases during the first 50 epochs. After
around epoch 50, the training and validation accuracy curves

FIGURE 2 | Precision, recall, and F-1 scores of medium and large SpaCy
models trained on 278 examples.

FIGURE 3 | Training curves for the SpaCy and Keras models for different
number of examples collected.

1A biomedical-focused BERT model PubMdBERT (Gu et al., 2020) was released
after the work described in this paper was done. We have fine-tuned the
PubMedBERT-base-uncased-abstract-fulltext model on our dataset with the
following parameters: batch size: 16, warmup steps: 500, weight decay: 0.01,
training epochs: 3. It achieved a F-1 score of 0.885.
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diverge: the training accuracy continues to increase but the
validation accuracy plateaus. This trend is suggestive of
overfitting, which is corroborated by Figure 5B. After about
50 epochs, the validation loss curve turns upwards. Hence we
choose to limit the training epochs to 64. After each epoch, if a
lower validation loss is achieved, the current model state is saved.
After 64 epochs, we test the model with the lowest validation loss
on the withheld test set.

3 RESULTS

We present the results of experiments in which we first evaluate
the performance of our models from various perspectives and
then apply the models to the CORD-19 dataset.

3.1 Evaluating Model and Human
Performance
We conducted experiments to compare the performance of the
SpaCy and Keras-LSTM NER models; compare the performance
of the models against humans; determine how training data
influences model performance; and analyze human and model
errors.

3.1.1 Performance of SpaCy and Keras Named-Entity
Recognition Models
We used the collected data of Section 2.1.2 to train both the
SpaCy and Keras-LSTM NER models of Section 2.1.1 to
recognize and extract drug-like molecules in text. The
SpaCy model used is the medium English language model
en_core_web_md (Honnibal and Montani, 2020b). For the
Keras model, the input embedding size is 120, the LSTM and
Fully-connected hidden layers have a size of 32, and the
dropout rate is 0.1. The model is trained for 64 epochs with
a batch size of 64. We find that the trained SpaCy model
achieved a best F-1 score of 77.3%, while the trained Keras-
LSTM model achieved a best F-1 score of 80.5%, somewhat
outperforming SpaCy.

As shown in Figure 3, the SpaCy model performs better than
the Keras-LSTM model when trained with small amounts of
training data—perhaps because of the different mechanisms
employed by the two methods to generate numerical
representations for words. SpaCy’s built-in language model,
pre-trained on a general corpus of blog posts, news,
comments, etc., gives it some knowledge about commonly
used words in English, which are likely also to appear in a
scientific corpus. On the other hand, the Keras-LSTM model
uses custom word embeddings trained solely on an input corpus,
which provides it with better understanding ofmulti-sense words,
especially those that have quite different meanings in a scientific
corpus. However, without enough raw data to draw contextual
information from, custom word embeddings can not accurately
reflect the meaning of words.

3.1.2 Comparison Against Human Performance
Recognizing drug-like molecules is a difficult task even for
humans, especially non-medical professionals (such as our
non-expert annotators). To assess the accuracy of the
annotators, we asked three people to examine 96 paragraphs,
with their associated labels, selected at random from the labeled
examples. Two of these reviewers had been involved in creating
the labeled dataset; the third had not. For each paragraph, each
reviewer decided independently whether each drug molecule
entity was labeled correctly (a true positive), was labeled as a

FIGURE 4 | Loss, precision, recall, and F-1 of SpaCy model during
training for 100 epochs on 278 paragraphs.

FIGURE 5 | Evolution of the training and validation accuracy (A) and loss (B) as the Keras-LSTM model is trained for from 1 to 256 epochs.
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drug when it was not (a false positive), or was not labeled (a false
negative). If all three reviewers agreed in their opinions on a
paragraph (the case for 88 of the 96 paragraphs), we accepted
their opinions; if they disagreed (the case for eight paragraphs),
we engaged an expert.

This process revealed a total of 257 drug molecule entities in
the 96 paragraphs, of which the annotators labeled 201 correctly
(true positives), labeled 49 incorrectly (false positives), and
missed 34 (false negatives). The numbers of true positives and
false negatives do not sum up to the total number of drug
molecules because in some cases an annotator labeled not to a
drug entity but the entity plus extra preceding or succeeding word
or punctuation mark (e.g., “sofosbuvir,” instead of “sofosbuvir”)
and we count such occurrences as false positives rather than false
negatives. In this evaluation, the non-expert annotators achieved
an F-1 score of 82.9%, which is comparable to the 80.5% achieved
by our automated models, as shown in Figure 3. In other words,
our models have performance on par with that of non-expert
humans.

3.1.3 Effects of Training Data Quality on Model
Performance
We described in the previous section how review of 96 paragraphs
labeled by the non-expert annotators revealed an error rate of
about 20%. This raises the question of whether model
performance could be improved with better training data. To
examine this question, we compare the performance of our
models when trained on original vs. corrected data. As we
only have 96 corrected paragraphs, we restrict our training
sets to those 96 paragraphs in each case.

We sorted the 96 paragraphs in both datasets so that they are
considered in the same order. Then, we split each dataset into five
subsets for K-fold cross validation (K � 5), with the first four
subsets having 19 paragraphs each and the last subset having 20.
Since K is set to five, the SpaCy and Keras models are trained five
times. In the ith round, each model is trained on four subsets
(excluding the ith) of each dataset. The ith subset of the corrected
dataset is used as the test set. The ith subset of the original dataset
is not used in the ith round.

We present the K-fold cross validation results in Tables 1, 2.
The models performed reasonably well when trained on the

original dataset, with an average F-1 score only 2% less than
that achieved with the corrected labels. Given that the expert
input required for validation is hard to come by, we believe that
using non-expert reviewers is an acceptable tradeoff and probably
the only practical way to gather large amounts of training data.

3.2 Applying the Trained Models
After training the models with the labeled examples, we applied
the trained models to the entire CORD-19 corpus (2020–10-04
version with 198,875 articles) to identify potential drug-like
molecules. Processing a single article takes only a few seconds;
we adapted our models to use data parallelism to enable rapid
processing of these many articles.

We ran the SpaCymodel on two Intel Skylake 6,148 processors
with a total of 40 CPU cores; this run took around 80 core-hours
and extracted 38,472 entities. We ran the Keras model on four
NVidia Tesla V100 GPUs; this run took around 40 GPU-hours
and extracted 121,680 entities. We recorded for each entity the
number of the times that it has been recognized by each model,
and used those numbers as a voting mechanism to further
determine which entities are the most likely to be actual
drugs. In our experiments, “balanced” entities (i.e., those
whose numbers of detection by the two models are within a
factor of 10 of each other) are most likely to appear in the
DrugBank list. As shown in Figure 6, we sorted all extracted
entities in descending order by their total number of detections by
both models and compared the top 100 entities to DrugBank. We
found that only 77% were exact matches to drug names or aliases,
or 86% if we included partial matches (i.e., the extracted entity is a
word within a multi-word drug name or alias in DrugBank). In
comparison, among the top 100 “balanced” entities, 88% were
exact matches to DrugBank, or 91% with partial matches.

Although DrugBank provides a reference metric to evaluate
the results, it is not an exhaustive list of known drugs. For
instance, remdesivir, a drug that has been proposed as a
potential cure for COVID-19, is not in DrugBank. We
manually checked via Google searches the top 50 “balanced”
and top 50 “imbalanced” entities not matched to DrugBank, and
found that 70% in the “balanced” list are actual drugs, but only
26% in the “imbalanced” list. Looking at the false positives in
these top 50 lists, the “balanced” false positives are often

TABLE 1 | K-fold (K � 5) validation of the SpaCy model on 96 paragraphs with
original vs. corrected labels. The first five rows are the results of each fold; the
last row is the average F-1 score of the five folds.

Original labels Corrected labels

Precision Recall F-1 Precision Recall F-1

100.0 25.6 40.7 100.0 20.9 34.6

93.8 50.6 65.7 88.9 53.9 67.1

93.0 63.5 75.5 92.0 73.0 81.4

76.5 45.2 57.1 68.6 61.4 64.8

98.9 92.3 95.5 99.2 92.1 95.5

Average — 66.9 Average — 68.7

TABLE 2 | K-Fold (K � 5) validation of the Keras-LSTM model on 96 paragraphs
with original vs. corrected labels. The first five rows are the results of each fold;
the last row is the average F-1 score of the five folds.

Original Labels Corrected Labels

Precision Recall F-1 Precision Recall F-1

88.5 53.5 66.7 80.6 69.1 74.4

70.6 57.8 63.6 90.2 59.1 71.4

70.0 67.7 68.9 82.9 47.5 60.4

80.8 55.3 65.6 80.8 51.2 62.7

78.1 56.8 65.8 75.0 67.9 71.3

Average — 66.1 Average 68.0
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understandable. For example, in the sentence “ELISA plate was
coated with . . . and then treated for 1 h at 37.8°C with
dithiothreitol . . . ”, the model mistook the redox reagent
dithiothreitol for a drug entity, probably due to its context
“treated with.” On the other hand, we found no such plausible
explanations for the false positives in the “imbalanced” list, where
most false positives are chemical elements (e.g., silver, sodium),
amino acids (e.g., cysteine, glutamine), or proteins (e.g.,
lactoferrin, cystatin).

Finally, we compared our extraction results to the drugs being
used in clinical trials, as listed on the United States National
Library of Medicine website (National Institutes of Health (2020).
We queried the website with “covid” as the keyword and
manually screened the returned drugs in the “Interventions”
column to remove stopwords (e.g., tablet, injection, capsule)
and dosage information (e.g., 2.5 mg, 2.5%) and only keep the
drug names. Then we compared the top 50 most frequently
appeared drugs to the automatically extracted drugs from
literature. The “balanced” entities extracted by both models
matched to 64% of the top 50 drugs in clinical trial, whereas
the “imbalanced” entities only matched to 6% in the same list.

The results discussed here are available in the repository
described in Section 5.

3.3 Validating the Utility of Identified
Molecules
We are interested to evaluate the relevance to COVID research
of the molecules that we extracted from CORD19. To that end,
we compared our extracted molecule list against ZINC and
Drugbank sets that a group of scientists at Argonne National
Laboratory had used for computational screening. We found
that our list contained an additional 3,591 molecules not found
in their screening sets (filtered by their canonical SMILE
strings). Applying their methods to screen those 3,591
molecules for docking against a main coronavirus protease,
3CLPro, revealed that 18 had docking scores in the top 0.1% of
the 6.6 M ZINC molecules that they had screened previously
(Saadi et al., 2020)—significantly more than the four that we
would expect by chance.

As reported by Babuji et al. (2020a), those researchers have
leveraged the outputs of our models in a computational screening
pipeline that leverages HPC resources at scale, coupled withmultiple
artificial intelligence and simulation-based approaches (including
leads from NLP), to identify high-quality therapeutic compounds to
screen experimentally. A further manuscript, detailing the end-to-
end process from data collection to simulation, incorporation of
these results, cellular assays, and identification of high performing
therapeutic compounds, is in preparation.

4 DISCUSSION: ANALYSIS OF HUMAN AND
MODEL ERRORS

Finally, we explore the contexts in which human reviewers and
models make mistakes. Specifically, we study the tokens that appear
most frequently near to incorrectly labeled entities. To investigate the
effects of immediate and long-distance context, we control, aswindow
size, the maximum distance between a token and a entity for that
token to be considered as “context” for that entity.

One difficulty with this analysis is that the most frequent
tokens identified in this way were mostly stop words or
punctuation marks. For instance, when the window size is set
to three, the 10 most frequent tokens around mislabeled words
are, in descending order, “comma (,),” “and,” “mg,” “period (.),”
“right parenthesis ()),” “with,” “of,” “left parenthesis ((),” “is,” and
“or.” Only “mg” is neither a stop word nor punctuation mark.

Those tokens provide little insight as to why human
reviewers might have made mistakes, and furthermore are
unlikely to have influenced reviewer decisions. Thus we
exclude stopwords and punctuation marks when providing,
in Table 3, lists of the 10 most frequent tokens within
varying window sizes of words that were incorrectly identified
as molecules by human reviewers.

FIGURE 6 | Percentage of detected entities that are also found in
DrugBank, when running either on all words found by our model or on just the
balanced subset, and with “found” defined as either a full or partial match.

TABLE 3 | The 10 most frequent tokens, excluding stopwords and punctuation
marks, within various window sizes around entities incorrectly labeled by
human reviewers.

Window size = 1 Window size = 3 Window size = 5#

Token Count Token Count Token Count

1 300 4 Mg 19 mg 23

2 oral 3 once/day 7 daily 8

3 dose 3 treatment 6 treatment 8

4 intravenous 2 300 5 once/day 7

5 500 2 treated 4 300 7

6 intravenously 1 Oral 4 oral 6

7 include 1 Once 4 recipients 5

8 Both 1 Dose 4 treated 4

9 resistance 1 Cidofovir 3 twice 4

10 treatment 1 resistance 3 include 4
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TABLE 4 | The 10 most frequent tokens, excluding stop words and punctuation marks, within various window sizes around entities correctly labeled by human reviewers.

Window size = 1 Window size = 3 Window size = 5#

Token Count Token Count Token Count

1 resistance 176 Tetracycline 230 Tetracycline 230

2 treatment 9 resistance 177 resistance 178

3 mM 4 Trimethoprim 118 Trimethoprim 118

4 oral 3 treatment 11 treatment 14

5 after 3 20 ∼ 7 20 ∼ 8

6 analogue 3 Figure 5 placebo 7

7 responses 3 concentration 5 effects 6

8 antibiotics 2 compared 4 Figure 6
9 exposure 2 100 4 KLK5 6
10 pharmacokinetics 2 mM 4 Matriptase 6

TABLE 5 | The 20 most frequent tokens, including stop words and punctuation
marks, within various window sizes around entities incorrectly labeled by
human reviewers. Words that are neither stop words nor punctuation words are in
boldface.

Window size = 1 Window size = 3 Window size = 5#

Token Count Token Count Token Count

1 — 27 — 49 — 74

2 — 14 And 21 — 28

3 And 14 Mg 19 And 28

4 with 8 — 18 Mg 23

5 ( 7 ) 13 ) 21

6 Is 7 With 10 Of 18

7 Of 6 Of 10 ( 17

8 Was 6 ( 9 with 13

9 Or 4 Is 9 to 12

10 300 4 Or 7 the 11

11 oral 3 once/day 7 a 11

12 Has 3 A 7 in 10

13 To 3 The 6 is 9

14 [ 3 Was 6 or 9

15 dose 3 To 6 daily 8

16 intravenous 2 treatment 6 was 8

17 In 2 In 5 treatment 8

18 may 2 300 5 ] 8

19 500 2 Be 4 once/day 8

20 A 2 Treated 4 were 7

TABLE 6 | The 20 most frequent tokens, including stop words and punctuation
marks, within various window sizes around entities incorrectly labeled by the
Keras model. Words that are neither stop words nor punctuation words are in
boldface.

Window size = 1 Window size = 3 Window size = 5#

Token Count Token Count Token Count

1 — 166 — 347 — 468

2 ( 86 and 126 and 176

3 And 81 ( 117 ( 162

4 Of 58 ) 89 ) 143

5 ) 30 of 85 of 130

6 To 28 the 73 the 121

7 Or 24 to 60 to 85

8 22 48 in 75

9 mM 18 with 44 with 72

10 With 17 a 41 68

11 In 15 in 37 a 62

12 For 15 or 35 was 52

13 Is 14 was 33 or 47

14 As 14 mM 32 is 43

15 The 13 is 31 for 42

16 Was 12 as 29 that 37

17 That 11 that 25 mM 36

18 [ 11 by 22 by 35

19 treatment 9 for 22 as 32

20 A 9 [ 22 were 31
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We see that there are indeed several deceptive contextual words.
With a window size of one, the 10 most frequent tokens include
“oral,” “dose,” and “intravenous.” It is understandable that an
untrained reviewer might label as drugs words that immediately
precede or follow such context words. Similar patterns can be seen for
window sizes of three and five. Without background knowledge to
draw from, non-experts are more likely to rely on their experience
gained from labeling previous paragraphs. One may hypothesize that
after the reviewers have seen a few dozen to a few hundred
paragraphs, those deceptive contextual words must have left a
deep impression, so that when those words re-appear they are
likely to label the strange unknown word close to them as a drug.

To investigate this hypothesis, we also explored the most
frequent words around drug entities that are correctly labeled
by human reviewers: see Table 4. Interestingly, we found overlaps
between the lists in Tables 3, 4: in all, three, four, and two
overlaps for window sizes of one, three, and five, respectively,
when treating all numerical values as identical. This finding
supports our hypothesis that those frequent words around real
drug entities may confuse human reviewers when they appear
around non-drug entities.

We repeat this comparison of context words around human and
model errors while considering stopwords and punctuation marks.
Tables 5, 6 show the 20 most frequent tokens in each case. We see
that 20–25% of the tokens in Table 5, but only 5–10% of those in
Table 6, are not stop words or punctuationmarks. As the model only
learns its word embeddings from the input text, if a token often co-
occurs with drug entities in the training corpus the model will treat it
as an indication of drug entities near its presence, regardless of
whether or not it is a stopword. This apparently leads the model to
make incorrect inferences. Humans, on the other hand, are unlikely
to think that stopword such as “the” is indicative of drug entities, no
matter how frequently they appear together.

5 DATA AVAILABILITY AND FORMATS

We have made our annotated training data, trained models, and
the results of applying the models to the CORD-19 corpus
publicly available online. (Babuji et al., 2020b).

In order to facilitate training of various models, we published
the training data in two formats—an unsegmented version in
line-delimited JSON (JSONL) format, and a segmented version in
Comma Separated Value (CSV) format. The JSONL format
contains the most comprehensive information that we have
collected on the paragraphs in the dataset. We choose JSONL
format rather than a JSON list because it allows for the retrieval of
objects without having to parse the entire file. A JSON object in
the JSONL file has the following structure:

• text: The original paragraph stored as a string without any
modification.

• tokens: The list of tokens from text after tokenization.
• text: The text of the token as a string.
• start: The index of the first character of the token in text.
• end: The index of the first character after the token in text.
• id: Zero-based numbering of the token.

• spans: The list of spans (sequences of tokens) that are
labeled as named entities (drugs)

• start: The index of the first character of the span in text.
• end: The index of the first character after the span in text.
• token_start: The index of the first token of the span in text.
• token_end: The index of the last token of the span in text.
• label: The label of the span (“drug”)

Another commonly adopted labeling scheme for NER
datasets is the “IOB” labeling scheme, in which the original
text is first tokenized and each token is assigned a label “I,” “O,”
or “B.” The label “B (eginning)”means the corresponding token
is the first in a named entity. A label “I (nside)” is given to every
token in a named entity except for the first token. All other
tokens gets the label “O (utside)” which means they are not part
of any named entity. The aforementioned JSONL data are
converted according to the IOB scheme and stored in
Comma Separated Value (CSV) files with one training
example per line. Each line consists of two columns: a first of
tokens that made up of the original texts, and a second of the
corresponding IOB labels for those tokens. In addition to a
different labeling scheme, the samples in the CSV files are
segmented, meaning that each sentence is treated as a
training sample instead of an entire paragraph. This structure
aligns with that used in standard NER training sets such as
CoNLL03 (Sang and De Meulder, 2003).

The trained SpaCy and Keras models and the results of
applying the models to the 198,875 articles in the CORD-19
corpus are also available in this GitHub repo. Additionally,
the pre-trained SpaCy model is provided as a cloud service via
DLHub (Hong et al., 2020a; Li et al., 2021). (The Keras model
could not be hosted there due to compatibility issues with
DLHub.) This cloud service allows researchers to apply the
model to any texts they provide with as few as four lines
of code.

6 CONCLUSION AND FUTURE
DIRECTIONS

We have presented a human-machine hybrid pipeline for collecting
training data for named entity recognition (NER) models. We
applied this pipeline to create a NER model for identifying drug-
like molecules in COVID-19-related research papers. Our pipeline
facilitated efficient use of valuable human resources by presenting
human labellers only with samples that were most likely to confuse
the NER model. We explored various trade-offs, including model
size, number of training samples, and training epochs, to find the
right balance between model performance and time-to-result. In
total, human reviewers working with our pipeline validated labels for
278 bootstrap samples, 1,000 training samples, and 500 test samples.
As this work was performed in conjunction with other tasks, we
cannot accurately quantify the total effort taken to collect and
annotate the above training and test samples, but it was likely
around 100 person-hours.

NER models trained with these training data achieved a best F-1
score of 80.5% when evaluated on our collected test set. Our models
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correctly identified 64% of the top 50 drugs that are in clinical trials
for COVID-19, andwhen applied to 198,875 articles in the CORD-19
collection, identified 10,912 molecules with potential therapeutic
effects against the SARS-CoV-2 coronavirus. The code, model,
and extraction results are publicly available. Our work provided
an additional 3591 SMILES strings to scientists at Argonne National
Laboratory to be used in computational screening pipelines, of which
18 ranked in the top 0.1% of the molecules screened. Babuji et al.
(2020a) have leveraged the outputs of our models in a
computational screening pipeline that leverages HPC
resources at scale to identify high-quality therapeutic
compounds to screen experimentally. A further manuscript
detailing the end-to-end process of identifying high
performing therapeutic compounds is in preparation.
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