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Abstract

Lyme disease is caused by infection with the bacterium Borrelia burgdorferi (Bb), which is

transmitted to humans by deer ticks. The infection manifests usually as a rash and minor

systemic symptoms; however, the bacteria can spread to other tissues, causing joint pain,

carditis, and neurological symptoms. Lyme neuroborreliosis presents itself in several ways,

such as Bell’s palsy, meningitis, and encephalitis. The molecular basis for neuroborreliosis

is poorly understood. Analysis of the changes in the expression levels of messenger RNAs

and non-coding RNAs, including microRNAs, following Bb infection could therefore provide

vital information on the pathogenesis and clinical symptoms of neuroborreliosis. To this end,

we used cultured primary human astrocytes, key responders to CNS infection and important

components of the blood-brain barrier, as a model system to study RNA and microRNA

changes in the CNS caused by Bb. Using whole transcriptome RNA-seq, we found signifi-

cant changes in 38 microRNAs and 275 mRNAs at 24 and 48 hours following Bb infection.

Several of the RNA changes affect pathways involved in immune response, development,

chromatin assembly (including histones) and cell adhesion. Further, several of the micro-

RNA predicted target mRNAs were also differentially regulated. Overall, our results indicate

that exposure to Bb causes significant changes to the transcriptome and microRNA profile

of astrocytes, which has implications in the pathogenesis, and hence potential treatment

strategies to combat this disease.

Introduction

Lyme disease (or Lyme borreliosis) is prevalent across the entire northern hemisphere, includ-

ing Europe and parts of Asia [1]. In the United States, the Lyme disease spirochete, Borrelia
burgdorferi (Bb), is the cause of more than 90% of all arthropod-borne diseases affecting humans

[2]. Roughly 30,000 cases are reported to the Centers for Disease Control and Prevention
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(CDC) every year, but the infection is likely underreported, and revised estimates suggest the

rate is closer to 300,000 people affected by Lyme disease per year [1, 3, 4]. Total direct medical

costs of Lyme disease and the controversial Post-Treatment Lyme Disease Syndrome (PTLDS)

in the USA are estimated at $700 million- $1.3 billion per year [5].

Infectious Bb causes a multisystem disorder including neurological complications [6]. Neu-

rological manifestations include cranial neuritis, facial nerve palsy, and meningitis [7–9].

More serious complications such as CNS vasculitis and hemorrhagic stroke, although rare, can

occur [10–12]. As many as ten percent of antibiotic-treated patients may continue to suffer

from post-treatment Lyme disease syndrome (PTLDS) [13], a disorder characterized by mus-

culoskeletal pain, fatigue and cognitive complaints that persist for at least 6 months after treat-

ment [14]. The pathophysiology behind the neurocognitive complaints of Lyme disease is

unclear, but the inflammatory response to the bacterium or its components is likely to play a

role [15, 16]. For example, patients with a history of Lyme disease and objective memory

impairment have elevated serum IFN-α levels compared to healthy controls, which remain ele-

vated despite antibiotic treatment [17], and human glia stimulated with Bb in vitro suggest

that the inflammatory milieu directly contributes to apoptosis of neurons [18–20].

There have been limited transcriptome analyses of human cells in culture in response to Bb
[21–23]. To build on these limited data sets, we chose to focus on transcriptional profiling of

gene and microRNA expression changes. MicroRNAs are small noncoding RNAs involved in

post-transcriptional regulation of gene expression through RNA silencing, mainly by binding

to the 3’ untranslated region of a target mRNA [24]. We chose to profile transcriptional

responses to Bb in astrocytes, abundant cells in the central nervous system that provide nutri-

ents, recycle neurotransmitters, and maintain homeostasis [25]. Astrocytes directly play active

roles in the transfer and storage of information in the brain, and the coordinated action of

both neurons and astrocytes are necessary to maintain synaptic plasticity [26]. Astrocytes are

also key responders to CNS injury and infection, responses that must be balanced to eliminate

threats while preserving surrounding tissue and without causing neurological impairment

[27]. We have previously shown robust chemokine expression from astrocytes stimulated with

Bb, including attractants for monocytes, neutrophils, and T cells [28]. If uncontrolled in the

context of neuroborreliosis, the astrocyte response could lead to long-term injury in the CNS.

Using primary astrocytes in culture, we demonstrate differential expression of over 200

genes following infection with Bb, as well as changes in 38 microRNAs following 48 hrs of

infection. Pathway analysis of transcriptional changes revealed gene categories that included

developmental pathways, chromatin assembly, cell-cell adhesion, and immune system pro-

cesses. A subset of transcription factors as well as long non-coding RNAs also change in

expression, suggesting that regulatory networks could be altered following the infection, result-

ing in long-term changes to the transcriptome. The microRNA profiling revealed changes in

expression of microRNAs involved in cell adhesion and several signaling pathways. Addition-

ally, over half of genes shown to be differentially expressed during co-culture with Bb were pre-

dicted to act as targets for one or more of the miRNAs that were concurrently differentially

expressed. Taken together, we present for the first time, a catalog of differential gene and

microRNA expression changes in astrocytes following Bb infection.

Results

RNA-seq reveals changes in the astrocyte transcriptome following Bb

infection

To date, there are limited studies examining the transcriptome changes in any cell type co-cul-

tured with Bb. We performed a time course of Bb infection in primary human astrocytes in
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culture (3 biological replicates per time point) and examined genome-wide RNA changes rela-

tive to untreated cells at 24 and 48 hours after infection (Fig 1A). At each time point, we iso-

lated RNA and microRNA, created Illumina sequencing libraries, and then sequenced each

time point using next-generation sequencing on Illumina’s HiSeq2000 (RNA) and the MiSeq

(microRNA) as described in the materials and methods. Multidimensional scaling (MDS)

plots (S1 Fig) indicated that the replicates clustered together with no outliers, and there were

clear differences between the untreated and Bb treatments for each day, also noted by heat

map analyses (Fig 1B). After data normalization, we extracted only those genes with a four-

fold (log2FC = 2) change or higher in expression (up or down) and an adjusted p-value (false

discovery rate or FDR) of 0.05 or lower. Using this filtered set of genes, we observed alterations

in steady state levels of 275 transcripts following 24 or 48 hrs of Bb infection, with considerable

overlap among differentially expressed genes at both timepoints (Fig 1C and S1 File). A previ-

ous study utilized microarray analysis to examine genes differentially expressed in Rhesus

macaque primary microglia after co-culture with Bb [15]. Of the 275 genes we found to be dif-

ferentially expressed in the current study, 43 of those (16%) were reported by Myers et al as

being differentially expressed in the same direction (i.e. up or down) in Rhesus macaque

microglia after co-culture with Bb. A subset of differentially expressed genes identified by

RNA-seq were further validated by RT-PCR following exposure to Bb relative to untreated

astrocytes. In agreement with our RNA-seq dataset, the highly upregulated genes TNSF18,

IL1B, CXCL6, and CXCL1 were also shown by RT-PCR to be significantly upregulated after 48

hours co-incubation with Bb (Fig 2A).

We categorized the sets of genes that changed following Bb infection for each time point

using the PANTHER classification system (pantherdb.org) [30]. Genes involved in develop-

ment, chromatin assembly, cell-cell adhesion and angiogenesis were among the top pathways

identified as changing significantly in expression following Bb infection (Fig 1D). Next, net-

work analysis using Ingenuity Pathway Analysis (IPA) tools revealed changes in networks at

24 hours (S2 and S3 Files), including those involving metabolism (S2 and S3 Files, network1),

development and disease (S2 and S3 Files, networks 2 and 3), and connective tissue disorders

(S2 and S3 Files, network 4). Changes in networks at 48 hours (S2 and S3 Files) included those

involving cancer and connective tissue disorders (S2 and S3 Files, network 1), neurological dis-

ease (S2 and S3 Files, network 2), cell-cell signaling (S2 and S3 Files, network 3) and cellular

movement and immune cell trafficking (S2 and S3 Files, network 9).

Fig 1. Transcriptome changes in astrocytes following Bb infection. Primary human astrocytes were

cultured untreated or treated with Bb for 24h (N = 3) or 48h (N = 3) respectively, and total RNA and

microRNAs isolated from the same preparation (A) and subject to massively parallel sequencing (see text for

details). The results were plotted as a heat map to reveal significant differences in gene expression (B; 1, 2, 3

represent individual biological replicates), with the largest number of gene expression changes being seen at

the 48h time point (C). PANTHER lysis (D) revealed a number of developmental and cell-adhesion pathways

were affected.

doi:10.1371/journal.pone.0170961.g001
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Several genes involved in inflammation and immune response, including those previously

implicated in Lyme disease, such as il1b and cxcl8, were differentially regulated at 24 and 48

hours (Table 1) [16, 28, 31–33]. Further, several transcription factors (Table 2), including

Forkhead box (FOX) protein family members were upregulated, while other regulators of tran-

scription such as the homeobox (HOX) genes such as engrailed homeobox 2, and several HOX
cluster genes were downregulated in response to Bb. HOX cluster genes appear to be among

the most strongly differentially expressed gene sets (Table 2), which have not previously been

implicated in Bb pathogenesis. Homeobox genes are highly conserved transcription factors

which are involved in development and body patterning [34]. Forkhead box (FOX) proteins

are a family of transcriptional regulatory proteins that control diverse cellular processes

including differentiation, metabolism, development, proliferation, and apoptosis [35–38].

In addition to mRNA expression changes in response to Bb, a number of non-coding RNAs

were also found to be significantly up or downregulated (Table 3), including two that followed

the expression patterns of their antisense transcripts, namely HOTAIRM1 (HOXA antisense

transcript), and FENDRR (FOXF1 adjacent non-coding developmental regulatory RNA). The

transcriptional signatures induced by Bb suggest that the biological program of astrocytes is

being changed by infection with the spirochete, and may reflect changes in the signaling envi-

ronment or other complex biological parameters that undergo a change in response to the

infection.

Fig 2. Validation of RNA-sequencing results. (A) Gene expression changes seen in a subset of genes following Bb treatment were validated. cDNA was

prepared and amplified using primers specific for TNFSF18, IL1beta, CXCL1, CXCL6, GJB2, MMP13, and the housekeeping gene GAPDH. Data are

expressed as the ratio of gene expression (Log2FC) in Bb-treated cells compared to untreated controls (n = 3) for each gene of interest normalized against

GAPDH expression calculated using the delta-delta Ct method [29]. Asterisks indicate significant difference compared to uninfected controls as determined

by one-way ANOVA followed by Holm-Sidak (p<0.01). (B-G) ELISAs were performed using control and astrocytes treated with Bb for 72h. Data represent the

mean and standard errors of the concentration of cytokine in the supernatant from two independent biological replicates analyzed in triplicate for each

condition. Asterisks indicate significant differences as determined using Student’s t-test.

doi:10.1371/journal.pone.0170961.g002
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To confirm whether transcripts upregulated in response to Bb resulted in protein produc-

tion and secretion after co-incubation with primary human astrocytes, we measured synthesis

of selected proteins in astrocyte supernatants by ELISA (Fig 2B–2G). There were no differ-

ences in secreted factors at 48 hours post-Bb treatment (data not shown). However, as protein

translation lags behind RNA production, we also measured selected proteins at 72 hours after

Bb stimulation. Angiopoietin-like4 (ANGPTL4), Serpin Family G Member 1 (SERPING1),

Chemokine (C-X-C Motif) Ligand 1 (CXCL-1), Chemokine (C-X-C Motif) Ligand 6 (CXCL-

6), Dickkopf-related protein 1 (DKK1), and Stanniocalcin-1 (STC-1) were all induced at

higher levels in Bb-treated astrocytes compared to untreated controls (Fig 2B–2G), which cor-

related with the observed changes in the respective transcripts for these genes by RNA-seq and

RT-PCR.

MicroRNA changes in astrocytes following Bb infection

MicroRNAs are a class of small, non-coding RNAs between 21-24nt in length and have been

shown to affect gene expression [39]. In order to investigate whether Bb infection causes

changes in microRNA levels, we used small-RNA sequencing of microRNAs from astrocytes

infected with Bb for 0, 24 and 48 hours. We isolated microRNAs using two methods based on

the Qiagen miRNeasy kit (Fig 3A); either the microRNA fraction by itself, which enriches the

population of microRNAs, or by purifying total RNA and microRNA, which is recommended

by several groups for sequencing or microarray purposes. We then size-selected microRNA

libraries (Fig 3B) for sequencing on the Illumina MiSeq. Although the recovery amounts were

much greater for the total RNA+microRNA fraction relative to the microRNA only fraction

Table 1. Selected inflammation and immune function genes altered in response to Bb.

24h 48h

Gene symbol Gene name FC p-Value FC p-Value

TNFSF18 Tumor necrosis factor (ligand) superfamily, member 18 439.59 6.85E-37 580.04 5.04E-45

IL1B Interleukin-1 beta 42.81 1.02E-36 36.50 7.16E-33

TXK TXK tyrosine kinase 18.25 3.68E-21 31.34 5.45E-33

ERAP2 Endoplasmic reticulum aminopeptidase 2 19.43 1.97E-28 23.10 2.04E-31

CXCL6 Chemokine (C-X-C motif) ligand 6 18.13 4.42E-77 22.16 4.89E-86

CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) 26.17 3.78E-41 18.00 6.05E-30

CXCL8 Interleukin-8 18.77 8.32E-11 16.68 3.27E-10

DPP4 Dipeptidyl-peptidase 4 12.55 9.17E-43 13.83 9.66E-46

SRGN Serglycin 6.32 4.17E-61 7.62 5.50E-73

CXCL1 Chemokine (C-X-C motif) ligand 1 5.28 4.93E-13 6.63 2.95E-16

EBI3 Epstein-Barr virus induced 3 4.41 9.42E-13 5.58 1.09E-17

NFATC2 Nuclear Factor of Activated T-Cells 2 -3.61 2.48E-06 -4.38 8.98E-08

CSF1R Colony Stimulating Factor 1 Receptor -3.12 2.37E-13 -5.06 2.23E-21

CD83 CD83 Molecule -6.36 1.19E-07 -5.24 1.75E-06

HLA-DPB1 Major Histocompatibility Complex, Class II, DP Beta 1 -5.31 1.41E-13 -5.54 5.37E-14

CMKLR1 Chemerin Chemokine-Like Receptor 1 -1.36 0.04 -5.66 4.32E-20

ICOSLG Inducible T-Cell Costimulator Ligand -4.44 5.05E-16 -6.02 2.94E-19

CX3CL1 C-X3-C Motif Chemokine Ligand 1 -4.76 2.08E-13 -6.19 9.08E-17

HLA-DPA1 Major Histocompatibility Complex, Class II, DP Alpha 1 -11.08 3.70E-66 -7.94 2.65E-53

LSP1 Lymphocyte-Specific Protein 1 -12.21 8.84E-84 -9.38 2.15E-71

IL21R Interleukin 21 Receptor -16.45 1.22E-10 -12.91 2.01E-09

RARRES2 Retinoic Acid Receptor Responder 2 -22.94 6.48E-11 -13.83 1.22E-08

doi:10.1371/journal.pone.0170961.t001
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Table 2. Selected transcription factors altered in response to Bb.

24h 48h

Gene symbol Gene name FC p-Value FC p-Value

EN2 engrailed homeobox 2 -16.02 6.07E-30 -27.72 2.10E-34

ERG v-ets avian erythroblastosis virus E26 oncogene homolog -15.40 4.26E-11 -10.26 6.06E-09

FOSB FBJ murine osteosarcoma viral oncogene homolog B -6.27 6.84E-06 -5.14 4.78E-05

FOXA1 forkhead box A1 4.63 1.86E-08 6.73 2.11E-12

FOXF1 forkhead box F1 4.29 6.94E-22 5.69 2.04E-30

FOXF2 forkhead box F2 5.27 1.51E-32 5.97 9.40E-38

FOXL2 forkhead box L2 5.89 1.85E-19 6.53 1.91E-21

FOXQ1 forkhead box Q1 18.35 4.32E-23 12.21 4.88E-16

HOXA2 homeobox A2 -22.00 1.49E-55 -14.14 1.20E-46

HOXA3 homeobox A3 -19.36 3.76E-74 -14.92 3.54E-65

HOXA4 homeobox A4 -20.61 4.62E-57 -11.97 2.89E-45

HOXA5 homeobox A5 -19.10 1.18E-43 -11.66 1.61E-35

HOXB3 homeobox B3 -4.26 2.80E-65 -4.14 7.56E-63

HOXB4 homeobox B4 -5.05 1.25E-39 -4.94 1.33E-38

HOXC4 homeobox C4 -12.83 8.31E-38 -8.25 3.35E-30

HOXD4 homeobox D4 -29.00 1.23E-32 -45.37 8.63E-34

MYOCD myocardin 7.14 1.74E-13 8.62 7.46E-16

NKX2-4 NK2 homeobox 4 25.76 5.95E-35 30.13 3.89E-40

NUPR1 nuclear protein, transcriptional regulator, 1 -6.92 1.10E-05 -4.32 6.28E-04

OSR1 odd-skipped related transcription factor 1 4.05 1.41E-21 4.03 2.94E-21

PAX3 paired box 3 -7.85 6.93E-84 -7.20 8.25E-78

RCOR2 REST corepressor 2 -4.81 1.08E-26 -6.81 1.56E-35

SHOX2 short stature homeobox 2 60.87 2.61E-64 51.93 9.97E-58

SIX3 SIX homeobox 3 5.88 3.94E-53 6.24 2.14E-56

SIX6 SIX homeobox 6 78.76 8.98E-117 113.25 1.40E-147

TBX18 T-box 18 4.93 7.91E-53 4.18 6.68E-43

TCF21 transcription factor 21 7.80 6.30E-24 9.37 3.45E-29

TFCP2L1 transcription factor CP2-like 1 -4.07 5.49E-54 -4.50 1.05E-59

doi:10.1371/journal.pone.0170961.t002

Table 3. Selected long non-coding RNAs altered in response to Bb.

24h 48h

Gene symbol Gene Name FC p-value FC p-value

FENDRR FOXF1 adjacent non-coding developmental regulatory RNA 4.37 1.06E-09 7.24 6.63E-18

HCP5 HLA complex P5 (non-protein coding) -5.19 5.51E-29 -4.06 1.01E-22

HOTAIRM1 HOXA transcript antisense RNA, myeloid-specific 1 -9.21 5.37E-38 -11.67 2.10E-41

LINC-PINT long intergenic non-protein coding RNA, p53 induced transcript 4.91 7.85E-27 4.73 1.59E-25

LINC00312 long intergenic non-protein coding RNA 312 -5.58 1.43E-06 -3.78 1.35E+04

LINC00842 long intergenic non-protein coding RNA 842 11.02 7.47E-25 22.41 1.27E-51

LINC01111 long intergenic non-protein coding RNA 1111 5.64 1.77E-24 5.28 4.48E-22

SNHG5 small nucleolar RNA host gene 5 (non-protein coding) 7.69 1.03E-169 6.87 1.10E-152

PLCE1-AS1 PLCE1 antisense RNA 1 2.21 9.99E+04 5.77 -0.009419462

APCDD1L-AS1 APCDD1L antisense RNA 1 (head to head) -2.10 5.55E+00 -4.57 3.88E-14

LMCD1-AS1 LMCD1 antisense RNA 1 (head to head) -3.57 6.60E-10 -5.17 6.07E-14

H19 H19, imprinted maternally expressed transcript (non-protein coding) 2.86 4.88E-06 4.18 8.98E-10

doi:10.1371/journal.pone.0170961.t003
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(about a tenth of the total fraction), and the total number of sequencing reads as well as %

alignments and unique reads were very comparable between the two fractions (Fig 3C), we

determined that the microRNA only fraction actually returned more unique reads that

mapped specifically to microRNAs (48% versus 18%) relative to the total RNA+miRNA frac-

tion. Therefore, we used the microRNA only fraction to make libraries and perform the micro-

RNA sequencing for the experiments described here.

Following isolation of microRNA only fractions from untreated (N = 3), Bb treated (N = 3;

24h) and Bb treated (N = 3; 48h) samples, we prepared pooled libraries using the TruSeq small

RNA library preparation kit (Illumina) according to the manufacturer’s instructions, and

sequenced the libraries on the MiSeq. A small subset of microRNAs were found to change

significantly following 24h (2 microRNAs) and 48h (38 microRNAs) of infection (Fig 4A and

4B and S4 File). Using the DIANA microT-CDS algorithm [40], we found that several of the

microRNAs that were differentially expressed were involved in signaling pathways, including

PI3K-AKT, calcium signaling, and MAPK signaling pathways. MicroRNAs involved in cell

adhesion, such as adherens junctions were also found to be affected (Fig 5). We validated

some of these microRNAs using the miR-VILO kit from Life Technologies, and found that

miR146b-1, miR199a1 and miR376a2 were significantly upregulated following 48h of Bb infec-

tion (Fig 4C). Another microRNA, miR143-3p was also upregulated, but failed to reach statis-

tical significance as it appears to fluctuate significantly from treatment to treatment (Fig 4C).

Of these microRNAs, hsa-miR-143-3p has been identified in plasma microRNA in chronic

fatigue syndrome/myalgic encephalomyelitis [41], and hsa-miR-146b-5p was shown to have a

role in stem cell differentiation processes [42].

To determine whether any known targets for these miRNAs are also altered, we used IPA

analyses to compare changes in miRNA expression with simultaneous changes in our RNA-

seq dataset (Table 4). Indeed, most microRNAs that were differentially expressed also corre-

sponded with changes in expression of their predicted potential mRNA targets (15 in the case

of miR-214-3p, for instance). Indeed, 58.5% of differentially expressed genes in this study were

Fig 3. The microRNA-only isolation method for sequencing resulted in a higher percentage of unique

reads that mapped to microRNAs. Astrocytes treated with Bb were lysed, and either total RNA and

microRNA, or the microRNA-only fractions were isolated using procedures according to the miRNeasy kit (A).

The microRNA from both preparations and libraries made using the Illumina TruSeq small RNA library kit. (B).

Libraries were size-selected using the Illumina custom RNA ladder for size selection of the ~145-160bp band,

and sequenced using the MiSeq. Lane 1: small RNA marker; lanes 2–3: duplicates of total RNA+miRNA

preps; lanes 4–5: duplicates of miRNA only preps (C). The total number of reads, the percent alignments and

number of unique reads were comparable in both conditions, but the microRNA-only fraction had a

significantly higher percentage of unique reads that mapped to microRNAs relative to the total RNA

+microRNA fraction (48% vs 18%). See text for details.

doi:10.1371/journal.pone.0170961.g003
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predicted to serve as targets for at least one of the differentially expressed microRNAs. The

functional importance and relevance of these microRNAs remains to be seen, and the question

of whether these are significantly differentially regulated in all cell types infected with Bb is still

to be determined.

Discussion

Transcriptome studies can provide valuable insights into the pathophysiological mechanisms

of disease. To date, few studies have examined global differential gene expression induced by Bb
in any cell type. In this work, we demonstrate for the first time an extensive dataset of the tran-

scriptional changes, including mRNAs, long non-coding RNAs, and microRNAs, induced by

Bb in primary human astrocytes. 275 genes were differentially regulated in astrocytes co-cul-

tured with Bb. Consistent with previous reports on Bb-induced gene expression, we observed

alterations in expression of immune response genes including the chemokine genes cxcl1, cxcl6,

and cxcl8, as well as il1β [16, 28, 31–33]. Other genes involved in inflammation and infection

control that have not previously been linked to Bb infection were observed as well, most notably

tumor necrosis factor superfamily member tnfsf18 and chi3l1. TNFSF18 (GITRL) modulates T

lymphocyte survival, and both TNFSF18 and its cognate receptor have been implicated in a

number of inflammatory and autoimmune diseases in both human patients and experimental

models of systemic lupus erythematosus, autoimmune encephalomyelitis, arthritis, and autoim-

mune diabetes [43–46].

Chitinase 3-like-1 (Chi3l1) is a secreted glycoprotein expressed by many cell types including

stromal cells, activated macrophages, neutrophils, activated microglia, and reactive astrocytes

[47–50]. Dysregulation of chi3l1 has been reported for a number of human diseases character-

ized by acute or chronic inflammation and tissue remodeling (reviewed in [47]). Notably,

Fig 4. Differential expression of microRNAs following exposure to Bb. MicroRNAs were isolated from

astrocytes treated with Bb for 24h (N = 3) and 48h (N = 3), using the microRNA-only procedure at the same time as

RNAs, as described in Figs 1 and 3. Heat map analysis (A) showing changes in a subset of microRNAs (B)

following 48h of Bb treatment. (C) Validation of microRNA changes were performed on 4 microRNAs (see text for

details), and revealed upregulation of miR143, miR146b-1, miR199a1 and miR376a2. T-test (* = p-value<0.05;

*** = p-value <0.0001).

doi:10.1371/journal.pone.0170961.g004
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chi3l1 overexpression has been reported specifically in astrocytes associated with reactive glio-

sis in different acute and chronic neuropathological conditions; particularly those associated

with neuroinflammation including multiple sclerosis, encephalitis, schizophrenia, Alzheimer’s,

ALS, and stroke models [50]. Additionally, it was shown that this overexpression is more

abundantly associated with astrocytes in regions of inflammatory cells. Interestingly, expres-

sion of CHI3L1 has been suggested to enhance bacterial adhesion and invasion into tissues via

binding to bacterial chitin-binding proteins (CBPs) in both inflammatory bowel disease and

burn models [51–53]. This is intriguing, as Bb is an arthropod-transmitted bacterium that is

suggested to encode CBPs [54], and has been well characterized to utilize host proteins to facil-

itate tissue binding and invasion [55, 56]. Notably, Chi3I1 promotes bacterial resistance and

host tolerance during pneumococcal pneumonia, and mice deficient in chi3I1 succumb more

Fig 5. MicroRNA differential expression pathway analysis. We identified pathways targeted by differentially expressed miRNAs using the

microT-CDS algorithm in DIANA-miRPath. Heat map of microRNAs vs Pathways, where microRNAs and pathways are clustered using Euclidean

distances and complete linkage of binary values (0 = non-significant p-value and 1 = significant p-value). Red squares signify a significant p-value

and light yellow signify a non-significant p-value.

doi:10.1371/journal.pone.0170961.g005

Table 4. Pairwise comparison of microRNA and RNA changes.

microRNAs upregulated # of DE targetsa

miR-1-3p (and other miRNAs w/seed GGAAUGU) 19

miR-132-3p (and other miRNAs w/seed AACAGUC) 11

miR-133a-3p (and other miRNAs w/seed UUGGUCC) 15

miR-135a-5p (and other miRNAs w/seed AUGGCUU) 14

miR-143-3p (and other miRNAs w/seed GAGAUGA) 13

miR-145-5p (and other miRNAs w/seed UCCAGUU) 11

miR-146a-5p (and other miRNAs w/seed GAGAACU) 17

miR-199a-5p (and other miRNAs w/seed CCAGUGU) 21

miR-216a-5p (miRNAs w/seed AAUCUCA) 9

miR-4797-3p (miRNAs w/seed CUCAGUA) 5

miR-545-3p (miRNAs w/seed CAGCAAA) 12

microRNAs downregulated # of DE targetsa

miR-122-5p (miRNAs w/seed GGAGUGU) 6

miR-302a-3p (and other miRNAs w/seed AAGUGCU) 17

miR-3200-5p (miRNAs w/seed AUCUGAG) 9

miR-326 (and other miRNAs w/seed CUCUGGG) 25

miR-33b-3p (and other miRNAs w/seed AGUGCCU) 15

miR-3619-3p (and other miRNAs w/seed CAGCAGG) 24

miR-3622a-5p (miRNAs w/seed AGGCACG) 7

miR-3679-5p (and other miRNAs w/seed GAGGAUA) 9

miR-3691-5p (miRNAs w/seed GUGGAUG) 9

miR-4762-5p (miRNAs w/seed CAAAUCU) 7

miR-4792 (miRNAs w/seed GGUGAGC) 12

miR-483-5p (miRNAs w/seed AGACGGG) 5

miR-532-3p (miRNAs w/seed CUCCCAC) 23

miR-548a-3p (and other miRNAs w/seed AAAACCA) 8

miR-942-5p (and other miRNAs w/seed CUUCUCU) 13

aNumber of differentialy expressed (DE) genes identified by RNA-seq that are predicted to serve as targets

of the corresponding DE microRNA as determined by IPA’s pairwise comparison tool.

doi:10.1371/journal.pone.0170961.t004
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quickly to Pseudomonas aeruginosa infection [57, 58]. The significance of CHI3L1 during Bb
infection is not known, and is currently the subject of further investigation.

We noted several genes involved in developmental processes were over-represented com-

pared to other biological pathways. As astrocytes are key responders to insults in the CNS, play

important roles in neurogenesis, and can be induced to form cancer-like stem cells, activation

of developmental pathways suggests the intriguing possibility of reprogramming of astrocytes

in response to infection [59, 60]. Of particular interest are the number of transcription factors,

especially the homeobox and forkhead proteins, induced by Bb. Because transcription factors

control expression of gene networks, changes in these factors might lead to significant down-

stream changes in cell states.

MicroRNAs have been implicated as important mediators of both Lyme arthritis [61] and

Lyme carditis [62], however little is known about the importance of microRNAs for the patho-

physiology of neuroborreliosis. We therefore profiled changes in the expression of microRNAs

in response to Bb in astrocytes. To our knowledge, this is the first report of genome-wide

changes in microRNA expression in response to Bb infection using a model of neuroborrelio-

sis. Recent work identified upregulation of miR-146a, a key regulator of NF-κB signaling in

the joints of Bb-infected mice [61]. This upregulation was limited to the joint and had no effect

on bacterial clearance or inflammation in other tissues, while miR-155 played a role in Lyme

carditis, but had little effect on joint inflammation [62]. While we did not find changes in

the expression of hsa-mir-146a or hsa-mir-155 in astrocytes, we did find 38 microRNAs with

altered expression. Altered microRNA expression has been implicated in a number of disease

processes, including inflammatory CNS disease [63–67]. MicroRNAs known to be implicated

in inflammation and cell function in another glial cell type, microglia, were observed, including

miR145 (IL4/STAT6 signaling) and miR146b (NF-κB and JAK-STAT signaling) [68]. Notably,

several differentially expressed microRNAs identified in this study have been identified in other

models of CNS disorders/disease. Bai et al. previously demonstrated that increased expression

of miR-143-3p led to decreased tight-junction protein expression and compromised blood-

brain-barrier integrity in response to methamphetamine treatment, and that silencing of this

microRNA using an antagomir was protective against these effects [69]. Elevated miR-143 has

also been identified in plasma microRNA isolated from chronic fatigue syndrome/ encephalo-

myelitis patients [41]. Additionally, dysregulated miR-135 has been associated with altered anxi-

ety and depression-like behavior, as well as altered responses to antidepressant treatments in

mice [70]. As there is substantial overlap between these conditions and the constellation of

symptoms often reported in patients with PTLDS or “chronic Lyme disease”, these microRNAs

may have utility as biomarkers for complex conditions where there is a disturbance of both

immune and nervous systems, and could serve as therapeutic targets where a causal link has

been established [71, 72].

It is important to note that current evidence suggests that the damage caused by Bb is driven

primarily by the host response to infection, not directly by toxins or other bacterial-produced

factors. Understanding the host response is therefore key, and transcriptome studies are a

small part of putting together the puzzle of Bb pathogenesis, host response, and potential long-

term sequelae.

Conclusions

We identified 275 RNAs and 38 microRNAs differentially expressed in human astrocytes in

response to the Lyme disease spirochete, Bb. The identified genes include both previously

characterized and novel gene expression changes associated with Bb infection. The expression

changes of these RNAs and microRNAs could in part provide an explanation for the
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persistence of Lyme disease symptoms. Understanding how these changes are maintained over

time will be of great importance in developing effective treatments to Lyme disease.

Materials and Methods

Bacteria

B. burgdorferi strain B31 MI-16 is an infectious clone of the sequenced type strain [73, 74]

which contains all parental plasmids [75]. Bacteria were grown at 34˚C to cell densities of

approximately 1 × 107 bacteria/ml in modified Barbour-Stoenner-Kelly (BSK-II) medium sup-

plemented with 6% rabbit serum [76]. Plasmid content was monitored by multiplex PCR as

described by Bunikis et al [77].

Primary cultures of human astrocytes

Primary cultures of human astrocytes were obtained from ScienCell Research Laboratories

(Carlsbad, CA; catalog #1800) and maintained on poly-L-lysine coated flasks (2 mg/cm2, T-75)

in astrocyte medium containing antibiotics penicillin (1,000 units/mL) and streptomycin

(1,000 μg/mL) (ScienCell, catalog # 1801). To stimulate the cells, astrocytes were used at pas-

sage 3 at approximately 85–90% confluence. Prior to Bb stimulation, cells were washed 3x with

sterile Dulbecco’s phosphate buffered saline (DPBS) and the medium was replaced with antibi-

otic-free astrocyte medium. Mean astrocyte density in one representative T75 was determined

using an automated cell counter (Invitrogen). Astrocytes were then stimulated with Bb at a

multiplicity of infection (MOI) of 10:1 for 24 or 48 hours. Non-treatment control flasks were

prepared in an identical fashion with the absence of Bb infection. Astrocyte viability and adhe-

sion were monitored by light microscopy; at the multiplicity of infection used, Bb had no

impact on astrocyte viability (data not shown).

MicroRNA and RNA isolation and cDNA synthesis

MicroRNAs and RNA were simultaneously isolated from the same dish of cells using the miR-

Neasy kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. Briefly, after

aspiration of media, cells were directly lysed by addition of QIAzol lysis reagent, detached

using cell lifters, homogenized and transferred to an RNase-DNase free Eppendorf tube. Cells

were treated with chloroform for 2–3 minutes and centrifuged at 12,000 x g for 15 minutes at

4˚C. The upper aqueous phase was mixed with 70% ethanol and spun through a Qiagen col-

umn. The flow-through was retained and processed for microRNAs, and the column (which

contained the RNA fraction) was processed separately, thus yielding both RNA and microRNA

from the same dish. Genomic DNA was removed by DNA digestion with RNase-Free DNase

Set (catalog # 79254, Qiagen). RNA quality and concentration was assessed using a spectro-

photometer (NanoDrop), and by electrophoresis on a 2% agarose gel. MicroRNA quality was

assessed using the NanoDrop and by electrophoresis on a 15% NuPAGE gel.

Library construction, microRNA- and RNA-sequencing

The total RNA isolated as described above was used for 50 bp single-end RNA-Sequencing at

the University of Minnesota Genomics Center (UMGC) on the Illumina HiSeq 2000. The

quality was assessed by the Agilent Bioanalyzer at their facility and samples with high RNA

integrity number (>8) were used for library construction following the manufacturer’s (Illu-

mina) instructions. In summary, 1 microgram of total RNA was oligo-dT purified using oligo-

dT coated magnetic beads, chemically fragmented and then reverse transcribed into cDNA.

The cDNA was fragmented, blunt-ended, and ligated to indexed (barcoded) adaptors and
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amplified using 15 cycles of PCR. Final library size distribution was validated using capillary

electrophoresis and quantified using fluorimetry (PicoGreen) and via Q-PCR. Indexed librar-

ies were normalized, pooled and then size selected to 320bp +/- 5% using Caliper’s XT instru-

ment. TruSeq libraries were hybridized to a single end flow cell and individual fragments

clonally amplified by bridge amplification on the Illumina cBot. Once clustering was complete,

the flow cell was loaded on the HiSeq 2000 and sequenced using Illumina’s SBS chemistry.

Three biological replicates for each time point of Bb treatment were sequenced, resulting in an

average of 50 million reads per sample. Base call (.bcl) files for each cycle of sequencing were

generated by Illumina Real Time Analysis (RTA) software. The base call files and run folders

were then exported to servers maintained at the Minnesota Supercomputing Institute. Primary

analysis and de-multiplexing were performed using Illumina’s CASAVA software 1.8.2. The

end result of the CASAVA workflow is de-multiplexed FASTQ files that were subject to subse-

quent analyses as described below.

For micro-RNA sequencing, libraries were prepared in-house and run on the MiSeq at the

UND Epigenomics core. Briefly, the TruSeq small RNA sample prep kit (Illumina) was used to

add the 3’ and 5’ adapters, reverse transcribe, and amplify the miRNAs from two biological

replicates per time point using barcodes as before for each sample. The libraries were purified

by excising the bands corresponding to the microRNA fraction (roughly between 145 and

160bp, using the custom RNA ladder from Illumina) on a 15% NuPAGE gel. Libraries were

then validated, pooled, and sequenced on the Illumina MiSeq using 50 bp single-end reads,

resulting in approximately 2 million reads per sample.

Data analysis

RNA data analysis. Preliminary quality control analysis of the FASTQ files was per-

formed using FastQC v0.11.2 [78]. Reads were aligned to the human genome (hg19) using

Tophat v2.0.13 [79]. Fragments were assigned to genes using HTSeq v0.6.1p1 [80]. Differential

expression analysis was performed using EdgeR [81], with the FDR controlled at 0.05. Cluster-

ing of significant genes was performed using log2(cpm) values. Network mapping and func-

tional analyses were generated through the use of both PANTHER and QIAGEN’s Ingenuity

Pathway Analysis (IPA1, QIAGEN Redwood City, www.qiagen.com/ingenuity). RNA fastq

files have been submitted to the NCBI Gene Expression Omnibus (GEO) database [82] with

experiment series accession number [GSE85143].

MicroRNA data analysis. Preliminary quality control analysis of the 9 FASTQ files was

carried out using FastQC v0.11.2 [78]. Reads were trimmed by removing the 5’ Small RNA

Sequencing Primer and the 3’ RNA adapter using Cutadapt v.1.6 (Martin, 2011). Reads which

were shorter than 18nt after trimming were removed. Trimmed reads were further filtered by

removing low quality reads with a Phred score <20. Finally, reads which were longer than

27nt were removed. Remaining reads were processed using the mirDeep v2.0.0.5 [83] software

package. The mapper module was used to map reads to the human genome (hg19) using Bow-

tie v.1.1.1 [84]. The quantifier module was used to map the reads to known miRBase v21[85]

precursors and determine expression of corresponding miRNAs. Novel and known miRNAs

were identified using the miRDeep2 module. The R/Bioconductor package edgeR v3.8.6 [81]

was used to identify differentially expressed miRNAs. MicroRNA pathway analysis was per-

formed using DIANA-miRPath v.2.0 [86] using the microT-CDS database for predicted

miRNA targets. MicroRNAs vs Pathways heat maps were generated using the “Pathways

Union” and “Targeted Pathways Clusters” options. Venn diagrams of differentially expressed

miRNAs, and associated pathways and genes were constructed using the R package VennDia-

gram [87]. miRNA fastq files have been submitted to the NCBI Gene Expression Omnibus
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(GEO) database [82] with experiment series accession number [GSE85142]. Data were ana-

lyzed through the use of QIAGEN’s Ingenuity1 Pathway Analysis (IPA1, QIAGEN Red-

wood City, www.qiagen.com/ingenuity). The networks, functional analyses, and comparison

to the RNA targets of miRNAs were generated through the use of QIAGEN’s Ingenuity Path-

way Analysis (IPA1, QIAGEN Redwood City, www.qiagen.com/ingenuity).

The datasets generated during and/or analyzed during the current study are available in the

GEO repository, with accession numbers GSE85143 (RNA-seq), and GSE85142 (miRNA-seq).

Any additional information and/or materials will be available from the corresponding authors

on reasonable request.

Validation of selected transcripts

Changes in individual genes were confirmed using individual PCR primer sets (Qiagen Quan-

titect primers). Briefly, each reaction contained 6 μl nuclease-free H2O, 2 μl primer mix at

10 μM, 10 μl BioRad SYBRGreen Supermix and +/- 2 μl template DNA or water (no template

control). The qPCR was performed in 40 cycles following an initial 2 min denaturation at

95˚C. Each cycle consisted of a 1 min annealing step performed at 60˚C, followed by a 15-sec

melting interval at 95˚C. Product melting curves were generated at the end of the reaction

using a stepped temperature gradient of 0.5˚C x 10 sec starting at 60˚C. Expression levels of all

transcripts were compared to housekeeping gene (GAPDH) and the relative changes in gene

expression were compared to those of untreated cells using the 2-ΔΔCT method where CT =

threshold cycle. This method was used on each individual example with the untreated sample

as the comparator (e.g., ΔΔCT = ΔCT (experimental)–ΔCT (control)) [29]. All samples were

analyzed in triplicate from three independent biological replicates per time point. Bb-infected

samples were compared to uninfected controls as determined by one-way ANOVA followed

by Holm-Sidak comparison to control group. Groups were considered significantly different

from control samples if p<0.05.

Enzyme-linked immunosorbent assays

Culture supernatants were removed after stimulation and stored at -80˚C. ELISA for

ANGPTL4, CXCL1, CXCL6, DKK1, SERPING1, STC1, TGFA, and THBD was performed

according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN). Briefly, all

reagents were brought to room temperature and prepared as instructed. Plates were coated

overnight with 100 μl of appropriate capture antibody. Following aspiration and wash, 100 μl

of appropriate chemokine standards, controls, or sample were added to each well. Plates were

incubated for 2 hours at room temperature. Following aspiration and wash, 100 μl of antibody

conjugate was added to each well, followed by a 2-hour incubation at room temperature. Fol-

lowing aspiration and washes, the chemokine of interest was detected by adding a chromo-

genic substrate followed by a stop solution. Plates were read at an optical density of 450 nm on

a BioTek Epoch plate reader. Samples were run in triplicate and data pooled from each treat-

ment group. Bb-infected samples were compared to uninfected controls as determined by Stu-

dent’s t-test. Groups were considered significantly different from control samples if p<0.05.

Supporting Information

S1 Fig. Multidimensional scaling (MDS) plot of RNA-seq data. MDS plots were created

using edgeR from the RNA-seq data from the untreated and Bb treatments for each day. The

plots indicated that the replicates clustered together by treatment groups with no outliers.

Untreated samples are seen in green, 24h treatments in black and 48h treatments in red.

(TIFF)
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S2 Fig. IPA canonical pathways. Genes that are significantly altered following Bb treatment

were uploaded to the Ingenuity Pathway Analysis website and were analyzed by their proprie-

tary software, which classified the genes into distinct pathways.

(PNG)

S1 File. Significant differential expression gene list (RNAs). Transcripts that were signifi-

cantly different (FDR of 0.05 or below, four-fold change) between the untreated and the Bb
treated groups are listed.

(XLSX)

S2 File. IPA core analysis. Ingenuity Pathway Analysis generated a core analysis using RNA

sequencing data that we uploaded to their website.

(PDF)

S3 File. IPA networks. The RNA-seq expression value changes (S1 File) were uploaded to the

Ingenuity Pathway Analysis website and were analyzed by their proprietary software. The IPA

Network Generation Algorithm created these networks. Top functions of the genes were

related to cellular assembly and organization, connective tissue development and function,

neurological disease. Node (gene) and edge (gene relationship) symbols are described in the

key on the last page after the network images. The intensity of the node color indicates the

degree of upregulation (red), downregulation (green) or uncolored (grey). Genes in uncolored

nodes were not identified as differentially expressed in our experiment, and were integrated

into the computationally generated networks on the basis of the evidence stored in the IPA

knowledge memory indicating a relevance to this network. The node shapes denote enzymes,

phosphatases, kinases, peptidases, G-protein coupled receptor, transmembrane receptor, cyto-

kines, growth factor, ion channel, transporter, translation factor, nuclear receptor, transcrip-

tion factor and other (key).

(PDF)

S4 File. Significant differential expression gene list (microRNAs). List of microRNAs that

were significantly different (p-value of 0.01 or below, four-fold change) between the untreated

and the Bb treated groups.

(XLSX)
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