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eÓptica y Electrónica, Instituto Nacional de Astrofı́sica, Puebla 72840, Mexico; fPerimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada;
and gJoint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742

Contributed by Christopher Monroe, July 29, 2020 (sent for review April 7, 2020; reviewed by David Hayes and Monika Schleier-Smith)

Finite-temperature phases of many-body quantum systems are
fundamental to phenomena ranging from condensed-matter
physics to cosmology, yet they are generally difficult to simulate.
Using an ion trap quantum computer and protocols motivated
by the quantum approximate optimization algorithm (QAOA), we
generate nontrivial thermal quantum states of the transverse-
field Ising model (TFIM) by preparing thermofield double states
at a variety of temperatures. We also prepare the critical state of
the TFIM at zero temperature using quantum–classical hybrid opti-
mization. The entanglement structure of thermofield double and
critical states plays a key role in the study of black holes, and our
work simulates such nontrivial structures on a quantum computer.
Moreover, we find that the variational quantum circuits exhibit
noise thresholds above which the lowest-depth QAOA circuits
provide the best results.

quantum simulation | quantum computing | thermofield double state |
Ising model | trapped ions

Progress in the control of synthetic quantum systems such as
superconducting qubits (1) and trapped ions (2) has enabled

continual advances in the depth of quantum computer circuits
and the complexity of quantum simulations. As the number of
qubits and their coherence times increase, such systems have
the potential to simulate highly nontrivial macroscopic quantum
phenomena. While there has been progress in the preparation
of entangled quantum states such as squeezed or “cat” states
(3, 4), much less attention has been paid to generating thermal
(Gibbs) states of a many-body Hamiltonian, even though these
states underpin phenomena ranging from high-temperature
superconductivity (5) to quark confinement in quantum
chromodynamics (6).

The simulation of many-body thermal states challenges cur-
rently available quantum platforms, owing to the required level
of control over both the many-body interactions and the effec-
tive coupling to the thermal bath. Proposed schemes (7–9)
to generate many-body thermal states involve subroutines like
quantum-phase estimation, which are difficult to implement on
near-term devices, or require engineered dissipative couplings
(10). Experimental platforms such as optical lattices of ultracold
atoms have enabled finite-temperature simulation (11, 12), but
these are specific to particular (Hubbard) models, and cooling to
low effective temperatures remains a major obstacle.

Here, we use an ion trap quantum computer to generate var-
ious nontrivial quantum states in the context of the many-body
transverse-field Ising model (TFIM). We generate thermofield
double (TFD) states (13), which are pure quantum states entan-
gled between two systems, with the property that when either
system is considered independently by tracing over the other,
the TFD reduces to a thermal mixed state at a specified tem-
perature. TFD states are purifications of thermal Gibbs states
and have played a key role in the holographic correspondence
relating a quantum-field theory to a gravitational theory in one
higher dimension. In this correspondence, TFD states are dual

to wormholes on the gravity side (14, 15) and enable teleporta-
tion (“traversable wormholes”) (16, 17). The simulation of these
concepts has motivated several approaches for preparing TFD
states (18–21).

In this work, we use protocols (18) inspired by the alternation
of unitary operators that forms the basis of the quantum approx-
imate optimization algorithm (QAOA) (22). This scheme allows
us to use unitary operations to control the effective temperature
of a subsystem, thus foregoing the need of an external heat bath.
We prepare TFD states of the quantum critical TFIM in a ring
geometry composed of three trapped ion effective spins, at vari-
ous target temperatures, as shown in Fig. 1. We also use a related
approach (23) to directly prepare the zero-temperature ground
state of the quantum critical TFIM with seven trapped ion spins
using quantum–classical feedback.

TFD States
We briefly review the definition and preparation scheme of the
TFD state. Consider two identical Hilbert spaces A and B con-
sisting of qubits labeled by an index j . The Pauli spin operators
on qubit j are labeled Xj , Yj , and Zj (24). Let HA be a Hamil-
tonian with eigenstates |n〉A and corresponding energies En . A
TFD state corresponding to inverse temperature β is defined on
the joint systems A and B as

|TFD(β)〉= 1√
Z (β)

∑
n

e−βEn/2 |n〉A
∣∣n ′〉

B
, [1]
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Our experiment prepares two types of nontrivial quantum
states on a trapped ion quantum computer: the thermofield
double state of the transverse-field Ising model at arbitrary
temperature and the quantum critical state of the zero-
temperature model. We use techniques motivated by the
quantum approximate optimization algorithm, and we imple-
ment a hybrid quantum–classical optimization loop to prepare
the quantum critical state. Our results pave the way for
exploring strongly correlated models at finite temperature
and teleportation protocols inspired by black hole physics.
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Fig. 1. Hybrid quantum–classical optimization circuit with trapped ion qubits to prepare thermal states. The initial Bell pairs (labeled init) denoted by
ribbons connecting qubits 1 to 4, 2 to 5, and 3 to 6 (labeled 1 to 6 from top to bottom) correspond to the TFD state at infinite temperature. Layers of
unitaries with independent control parameters are then applied sequentially to cool to the target temperature. The subsystem consisting of the first three
qubits is effectively in the thermal (Gibbs) state. The result can be fed into a classical computer, which updates the parameters based on a cost function in a
closed loop (Full Hybrid Optimization: Preparation of Ground State of TFIM has details).

where Z (β) is a normalization factor. In general, the set {|n ′〉B}
can be any orthonormal basis spanning B , and we will make the
choice |n ′〉=U |n〉 where U =⊗jYj . This choice is consistent
with the infinite-temperature TFD defined below. Tracing out
the auxiliary system B results in the thermal (Gibbs) state of sys-
tem A ρA = e−βHA/Z (β); in this sense, realizing the TFD allows
one to simulate the thermal Gibbs state in a subsystem A with
the effective bath B .

The protocol (18) starts with an initial state |ψ0〉 that is a
product of Bell-pair singlets 1√

2
(|0〉A |1〉B − |1〉A |0〉B ) between

pairs of A and B qubits. This is an infinite-temperature TFD
since ρA is maximally mixed. Note that the two components of
a Bell-pair singlet are related up to a phase by Y |0〉= |1〉 and
Y |1〉=− |0〉, which justifies our choice of basis above. One then
alternates between time evolution with the intersystem coupling
HAB =

∑
i Xi,AXi,B +Zi,AZi,B and the intrasystem Hamiltoni-

ans HA +HB , where HB is the rotated version of HA (UHAU
†)

acting on the B qubits. HAB is chosen based on the fact that
its ground state is |ψ0〉, allowing for an adiabatic limit of our
protocol described below. As in QAOA, each time step is a vari-
ational parameter, and after p layers of alternation, the resulting
variational wave function is

|ψ(~α,~γ)〉p =

p∏
j=1

e iαjHAB e iγj (HA+HB )/2 |ψ0〉 . [2]

The variational parameters ~α,~γ are chosen to maxi-
mize the fidelity with the target TFD state: Fp(~α,~γ)≡
|〈TFD(β) |ψ(~α,~γ)〉p |

2. As detailed in ref. 18, this protocol is
guaranteed to target the zero-temperature TFD in the limit of
large p because in that limit, it subsumes the adiabatic algo-
rithm; the intuition, verified through several examples (18), is
that the finite-temperature TFD is easier to prepare than zero-
temperature ground state because the thermal correlation length
is generally finite.

In the holographic correspondence, TFDs of conformal-field
theories describing gapless quantum matter are particularly
interesting because they correspond to wormholes on the grav-
ity side. Their preparation is also useful to condensed matter
physics because they enable investigation of finite-temperature
properties of systems near a critical point by tracing over one of
the systems in the double. Hence, our first objective is to prepare
TFD states of the TFIM at its quantum critical point. Defined on
a one-dimensional ring of L qubits, the TFIM Hamiltonian is

HTFIM =

L∑
i=1

XiXi+1 + g

L∑
i=1

Zi ≡HXX + gHZ . [3]

Here, g is the strength of the transverse field. When g = 1,
the ground state is a critical point between antiferromagnetic
and paramagnetic quantum phases and has several interesting
properties, including correlations between two spins decaying as
a power of their separation and entanglement entropy scaling
logarithmically with the size of the subsystem.

To prepare the TFD of the quantum critical TFIM, we tai-
lor the general protocol above (Eq. 2) to the capabilities of an
experimental system with six trapped ions. The initial state is
the product state of three spin-singlet Bell pairs formed between
pairs of A and B spins. Ideally following the general protocol,
we would like to evolve sequentially with HA =HXX +HZ (in
addition to HB ), followed by

HAB =
∑
i

Zi,AZi,B +
∑
i

Xi,AXi,B ≡HABZ +HABX . [4]

Since HABZ and HABX commute, this step can be simply decom-
posed into evolution with each piece separately. However, time
evolution with HA in general requires a Trotter decomposi-
tion, which could require many steps beyond the capabilities
of current experimental systems. Moreover, here HB introduces
additional gates, which we find are not essential for achieving
high fidelity. In particular, in the p = 1 ansatz, HA and HB act
directly on the maximally entangled state |ψ0〉, which has the
property that HA |ψ0〉=HB |ψ0〉; thus, HB is redundant in this
case. Hence, we instead use a minimal variational ansatz for the
TFD consisting of four pieces:

|ψ(α1,α2, γ1, γ2)〉= exp(iHABZα2) exp(iHABXα1)

× exp(iHXX γ2) exp(iHZγ1) |ψ0〉 . [5]

The first two operations represent a minimal Trotterization
of time evolution with HA. The optimal parameters are deter-
mined (on a classical computer) by maximizing the fidelity
with the target TFD. In this case, the optimal fidelities are
extremely good, ranging from 0.93 for the zero-temperature
TFD to 1 for the infinite-temperature TFD. These can be fur-
ther improved by adding additional iterations of this sequence
of unitaries in the protocol. The single-body observables and
two-point correlation functions of the optimized ansatz com-
pare well with those of the target TFD, as evident in Fig. 2.
We note that the general protocol preparing the TFD of
the classical (g = 0) Ising model achieves perfect fidelity for
p =L/2 layers (18).

We experimentally run the optimized state-generation pro-
tocol on an ion trap quantum computer (SI Appendix has
experimental details). To confirm the preparation of the TFD
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Fig. 2. Preparation of TFD states of the quantum critical TFIM using two
3-qubit systems. (Upper) Comparison between observables of the simu-
lated optimized ansatz circuit and target TFD states (solid lines) for various
target temperatures. (Lower) Comparison between observables of experi-
mentally prepared and target TFD states. Results for all three ion pairs are
given at each temperature. The measured correlation functions for differ-
ent target temperatures are plotted against the theoretical expectations
(solid lines) for type (A) Pauli-X, (B) Pauli-Y, and (C) Pauli-Z. Intrasystem
correlators in subsystem A are 〈σ1,Aσ2,A〉, 〈σ1,Aσ3,A〉, and 〈σ2,Aσ3,A〉. Cross-
system correlators are 〈σ1,Aσ1,B〉, 〈σ2,Aσ2,B〉, and 〈σ3,Aσ3,B〉. Note that the
experimental data points in the figure have error bars accounting for sta-
tistical errors. Statistical error bars are similar in size or smaller than the
symbols used. A symmetry-based error mitigation technique is used to post-
process the experimental result in C. The mitigation notably improved
the agreement between experiment and theory. Details are given in
SI Appendix, Fig. S2.

state, we measure both intrasystem observables (single- and two-
body correlation functions within system A) and intersystem
correlators between corresponding sites from the A and B sys-
tems. The purpose of the intrasystem measurements is to verify
physical properties of the thermal Gibbs state. In the phase dia-
gram parameterized by temperature T and transverse field g ,
there is a regime |g − 1|<<T << 1 called the quantum crit-
ical fan (25), whose properties are dictated by the continuum
theory of the critical point. For instance, this regime exhibits
exponentially decaying correlations with correlation length pro-
portional to inverse temperature in this case. Our intrasystem
measurements could verify this phenomena and other features
of the quantum critical fan for larger system sizes. The purpose
of the intersystem measurements is to observe how correla-
tions and entanglement between the two systems decrease as
one lowers the target temperature and thereby, the thermal
entropy (which in the TFD is the entanglement entropy between
the systems).

As shown in Fig. 2, the results agree well with those expected
from the TFD states, with some reduction in correlations caused
by imperfect entangling operations. We note that at high temper-
ature, there is a slight increase in error arising from an artifact of
there being many sets of parameters that yield very good fideli-
ties, and the optimal angles found are large enough to cause
the observed errors (SI Appendix, Fig. S2). In fact, for such high
temperatures, the initial set of Bell pairs is already a very good
approximation to the target TFD, and it would be better to avoid
using any gates.

Quantum Critical State at T = 0
To prepare the zero-temperature critical TFIM (pure) state,
one does not require a purifying auxiliary system, and thus, a

larger system A can be accessed experimentally. However, the
long-range correlations and relatively high entanglement of the
critical state pose challenges for preparation. Because a finite-
depth circuit consisting of local gates can only produce a state
with finite correlation length, to generate critical states one needs
a quantum circuit (of local gates) with depth scaling with sys-
tem size. With nonlocal gates, long-range correlated states can
be prepared with fewer steps (26); however, tailoring the effec-
tive power law decaying interactions in trapped ion systems to
target an arbitrary critical state is in general a difficult problem.
One method for generating such critical states is the adiabatic
algorithm, which requires tuning g adiabatically. On a digital
quantum platform, this would require a compilation such as
Trotterization into discrete gates, and the resulting deep circuit
would be very susceptible to errors.

An alternative is the QAOA-motivated variational approach
detailed in ref. 23. One begins with the product ground state of
HZ , which we denote |0〉, and then evolves with HXX ,HZ in an
alternating fashion:

|ψ(~α,~γ)〉p = e−iαpHZ e−iγpHXX · · · e−iα1HZ e−iγ1HXX |0〉 . [6]

Again, p denotes how many pairs of iterations are used, and
in the hybrid quantum–classical optimization, (~γ, ~β) are varia-
tional parameters to be optimized to achieve the ground state of
−HXX −HZ ; in this section, we target the critical ground state
of the ferromagnetic TFIM.

Trotterizing the adiabatic approach for preparing the critical
state would lead to a unitary sequence of the above form, with
(~γ, ~β) infinitesimal; this implies that for sufficiently large num-
bers of layers p, there is guaranteed to exist a set of parameters
(~γ, ~β) for which the ansatz converges to the target state. How-
ever, the key question is how well the above ansatz performs for
finite p. Remarkably, it has been observed that for a system size
L, the above protocol can prepare the target critical state (and
any state in the TFIM phase diagram) with perfect fidelity given
p =L/2 layers (23).

For a trapped ion system of 7 qubits, a p = 3 protocol can
generate the desired ground state with perfect fidelity, and we
find the optimal angles (~α,~γ) on a classical computer to maxi-
mize the many-body overlap |〈ψt |ψp〉|2 of the ansatz |ψp〉 and
the target state |ψt〉. While p = 3 layers exactly prepare the crit-
ical state, p = 1, 2 yield theoretical fidelities of 0.76 and 0.88,
respectively.

For each number of layers p, we run the protocol with optimal
angles on the trapped ion system and again measure two body
correlation functions for Pauli-Z and Pauli-X operators (Fig. 3
A and B). The theoretical and experimental values agree well for
the p = 1 protocol but deviate for p = 2, 3, as errors accumulate
in the deeper circuit. The data show that larger p protocols are
more effective at generating long-range correlation along the x
direction but have more error in the Pauli-Z observable, resulting
in less accurate energy. In particular, in the experiment the p =
3,2,1 protocols attain energies −5.46±−0.097,−7.74± 0.095,
and −8.02± 0.043, respectively. In the simulation, the corre-
sponding numbers are −8.98 for p = 3, −8.62 for p = 2, and
−8.44 for p = 1. Fig. 4A provides a visual comparison. We find
that the QAOA protocol with the least number of steps pro-
duces the state with the lowest energy, although theoretically,
it should be the worst. This reflects the level of noise in the
experimental system, which we discuss in the final section of
this paper.

Full Hybrid Optimization: Preparation of Ground State of TFIM.
Determining the optimal angles using classical simulation is fea-
sible for current system sizes. For larger systems and higher p,
however, one would need extrapolation based on patterns in the
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Fig. 3. Critical TFIM ground state on a 7-qubit system. (A and B) Two-point
correlations for (A) Pauli-X and (B) Pauli-Z operators as a function of their
separation. For a ring of seven spins, there are only three different pairs
of ions, which are distinguishable by distance. The three different colors
correspond to QAOA protocols with different depth p. The lines denote
the theoretical expectations. (C and D) Energies achieved using full hybrid
quantum–classical feedback with increasing gradient descent iteration num-
ber for (C) p = 1, initialized with random parameter set, and (D) p = 2,
initialized with theoretically optimal parameters. The lines correspond to
the measured energy at each iteration, and the dots correspond to samples
taken to evaluate the gradients. Ideally, the lowest energy a P = 1 protocol
can reach is −8.44. The lowest energy a P = 2 protocol can reach is −8.62.
The true ground-state energy is −8.98, and the size of the gap is 0.23. The
gap decreases linearly with system size. Statistical error bars in the figures
are of the same size or smaller than the symbols used.

control parameters of QAOA protocols (27, 28). Therefore, a
hybrid approach that involves a feedback loop between a quan-
tum simulator and a classical computer has to be employed.
As depicted in Fig. 1, one first carries out the unitary cir-
cuit for a given set of parameters and measures the energy
cost function Ep(~α,~γ)=p〈ψ(~α,~γ)| −HXX −HZ |ψ(~α,~γ)〉p . The
lower the energy, the better this ansatz can approximate the
critical ground state of −HXX −HZ . One then uses classical
optimization to vary the parameters to lower the cost func-
tion until convergence is reached. One benefit of this hybrid
scheme is that systematic errors from the quantum device
are reduced.

We implement the full QAOA hybrid algorithm using stan-
dard gradient descent as the classical optimization strategy. To
obtain an estimate of the partial derivatives, we change each
parameter separately by a small amount and measure the corre-
sponding energy difference. We then take a small (proportional
to the gradient, with coefficient adjusted according to simulation)
step along the gradient with all parameters. We target the critical
TFIM ground state for p = 1 starting from a random set of ini-
tial parameters. Results are shown in Fig. 3C. The optimization
converges to a set of parameters that is different from the sim-

ulated result, but the measured energy matches the theoretical
prediction for p = 1.

To examine whether significant systematic errors play a role
for deeper circuits in our experiment, we implement the hybrid
optimization for p = 2. This time, we initialize the process with
the optimum values obtained from numerical simulation. A drop
in the cost function would indicate that systematic errors shift the
system away from the optimal state. The results in Fig. 3D show
that this is not the case in our system.

Error Simulation. We simulate the QAOA protocol in the pres-
ence of noise for different numbers of layers p, analyzing the
trade-off between theoretical and experimental errors. The 2-
qubit XX gates are the main source of error in the experiment,
likely limited by laser beam intensity fluctuation δI on the
trapped ion qubits. Because the angle of the XX gate evolu-
tion depends on the square of the laser intensity I , the fractional
error in the XX gate angle is Γ = 2δI /I . We model this error
with a Monte Carlo simulation by setting the angle of the 2-qubit
gate to be θ= θ0(1 + Γr), where θ0 is the nominal gate angle
and r is a Gaussian-distributed random number with mean 0
and SD 1, and we average over 1,000 samples. Fig. 4A shows the
results for the variation of the measured energy vs. Γ. The three
points marked in the figure indicate the experimentally mea-
sured values for the p = 1, 2, 3 protocols. The value of the noise
parameter Γ inferred from this error model is consistent between
p = 2 and p = 3.

As seen in Fig. 4A, for Γ. 0.13, the higher-depth circuit
produces a better outcome, and for higher levels of Γ, the
lower-depth circuit is preferable. This implies a type of thresh-
old noise behavior, where the optimization protocol converges
to near-optimal solutions as long as the noise is below a criti-
cal value. The threshold can be explained by observing that the
accuracy of QAOA for preparing ground states of Hamiltonians
with unweighted terms is likely to increase exponentially with
p (27), while the experimental accuracy on average decreases
exponentially with p.

Generically, we also expect the 2-qubit gates to include some
depolarizing error on the qubits involved in the gate. This error
channel can be simulated by averaging over rotations φ around
a random axis before every XX gate (SI Appendix has details).
We parameterize the rotations by letting φ be a random variable
with distribution P(φ) that is Gaussian with mean zero and SD λ.
The variance in Γ is calculated for several values of λ between 0.1
and 0.3. Fig. 4 B and C shows results for different values of λ, with
λ= 0.22 being the point at which we can minimize the variance of
the predicted Γ. This value corresponds to a 2-qubit depolarizing
error of 2.37%. This agrees well with the typical experimentally

ygren
E

A B C

Fig. 4. Simulation results with noise for the p = 1, 2, 3 QAOA protocols for
preparation of the critical ground state of the TFIM. (A) λ= 0 (no depolar-
izing noise), (B) λ= 0.1, and (C) λ= 0.22. Each curve is averaged over 1,000
samples. The circles in the figure show what Γ value an experimental result
(shown in Fig. 3) predicts for a given set of p and λ. λ= 0.22 is the point at
which we can minimize the variance of the predicted Γ. Note that A shows
a threshold at Γ = 0.13, below which higher p gives better results.
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measured error rate of 1.5∼ 2.5%, as described in SI Appendix.
Note that the threshold for Γ described above appears for λ<
0.1, corresponding to a depolarizing error rate < 0.5%.

Outlook
Our protocols for generating thermal states of qubits lever-
age the recent advent of variational approaches, in particular
QAOA, and serve as the first step of several interesting direc-
tions. Even without the full hybrid quantum–classical scheme,
our theoretical and experimental methods enable the exploration
of very interesting physics. On one hand, the duality between a
wormhole and a critical TFD can be taken one major step far-
ther: the traversal of the wormhole corresponds to performing
simple operations on the TFD state (16, 17). In experiment, this
traversal could be confirmed by verifying teleportation between
the two sides of the TFD. In a different vein, our critical TFIM
ground-state preparation paves the way for extracting univer-
sal aspects of quantum criticality, such as the central charge of
a conformal-field theory, from experiments. Additionally, one
could use the TFD protocol to probe the quantum critical fan
at finite temperature (25).

Our hybrid approach for creating pure (T = 0) states of
the TFIM system also applies to thermal-state preparation.
In that case, the cost function to be measured is the free
energy on system A: FA =EA−TSA, where EA = Tr(ρAHA) and
SA =−Tr(ρA log ρA) are the energy and entanglement entropy
between A and B , respectively. Estimating the latter would
involve extrapolating from several Renyi entropy measurements,

which requires either several copies of the system (29, 30) or ran-
domized measurements on one copy (31). In the longer term, the
hybrid approach for both quantum pure and thermal-state prepa-
ration may enable one to probe many-body physics on system
sizes beyond the reach of classical computers and thus, shed light
on the full (finite-temperature) phase diagram of intractable
models.

On a practical level, our hybrid quantum–classical experiment
and noise analysis suggest an error threshold that near-term
devices must overcome to unlock the full potential of variational
approaches.

Data Availability. All study data are included in the article and SI Appendix.
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