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Abstract

Metabolomic approaches have been used to identify new diagnostic biomarkers for various

types of cancers, including breast cancer. In this study, we aimed to identify potential bio-

markers of breast cancer using plasma metabolic profiling. Furthermore, we analyzed

whether these biomarkers had relationships with clinicopathological characteristics of breast

cancer. Our study used two liquid chromatography-mass spectrometry sets: a discovery set

(40 breast cancer patients and 30 healthy controls) and a validation set (30 breast cancer

patients and 16 healthy controls). All breast cancer patients were randomly selected from

among stage I–III patients who underwent surgery between 2011 and 2016. First, metabo-

lites distinguishing cancer patients from healthy controls were identified in the discovery set.

Then, consistent and reproducible metabolites were evaluated in terms of their utility as pos-

sible biomarkers of breast cancer. Receiver operating characteristic (ROC) analysis was

applied to the discovery set, and ROC cut-off values for the identified metabolites derived

therein were applied to the validation set to determine their diagnostic performance. Ulti-

mately, four candidate biomarkers (L-octanoylcarnitine, 5-oxoproline, hypoxanthine, and

docosahexaenoic acid) were identified. L-octanoylcarnitine showed the best diagnostic per-

formance, with a 100.0% positive predictive value. Also, L-octanoylcarnitine levels differed

according to tumor size and hormone receptor expression. The plasma metabolites identi-

fied in this study show potential as biomarkers allowing early diagnosis of breast cancer.

However, the diagnostic performance of the metabolites needs to be confirmed in further

studies with larger sample sizes.

Introduction

Breast cancer is the most common cancer in females worldwide. In developed countries, one

out of eight women will develop invasive breast cancer during their lifetime [1]. Advanced

breast cancer has a poor prognosis, but early diagnosis and appropriate treatment can improve

the disease course; the long-term survival of patients with breast cancer depends on the disease

stage at the time of diagnosis [2]. Many studies have been conducted on the early detection of

breast cancer, which can dramatically increase the survival rate [3]. Several screening tools are
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available, including mammography and ultrasonography. Mammography is widely used for

early screening of breast cancer; however, it relatively insensitive, especially for dense breast

tissue, while ultrasonography is highly dependent on the ability of the practitioner and is not

suitable for primary screening test due to its high cost. Even using these imaging techniques,

approximately 2% of patients who undergo breast cancer screening have false-negative results

[4]. Plasma tumor markers are being researched extensively to aid diagnosis of breast cancer;

there is a need for a test with high sensitivity and specificity for early diagnosis.

Metabolomic approaches have been used to identify possible markers and key metabolic

pathways in various types of cancers. Proliferating cancer cells show different metabolic behav-

ior compared to normal differentiated cells [5]. Metabolomic analyses have been actively con-

ducted on urine, plasma, and tissue samples against this background. There are two widely

used techniques for identification of metabolites: mass spectrometry (MS) and nuclear mag-

netic resonance (NMR) spectroscopy [6]. Both techniques are used extensively in metabolomic

studies, and they each possess unique advantages and limitations. NMR spectroscopy allows

for quantitative analysis and does not require extra steps for sample preparation, such as sepa-

ration or derivatization [7]. Although the sensitivity of NMR spectroscopy has increased sig-

nificantly, MS remains more sensitive [8]. However, unlike NMR spectroscopy, MS requires

initial separation of metabolites using chromatography, and is therefore usually coupled with

gas chromatography (GC) or liquid chromatography (LC) [9]. MS is known to have both high

sensitivity and selectivity, and allows for simultaneous analysis of hundreds of metabolites in a

biological specimen [10]. LC-MS-based metabolomics is the optimal approach for discovering

biomarkers and exploring metabolites [11].

We conducted LC-MS experiments using two data sets: a discovery set and a validation set.

In the discovery set, we aimed to identify metabolites that distinguished cancer patients from

healthy controls. In the discovery set, consistent and reproducible metabolites that could ulti-

mately be used for screening breast cancer were evaluated. Furthermore, receiver operating

characteristic (ROC) analysis was performed on the discovery set metabolites, and ROC cut-

off values derived therein for the identified metabolites were applied to the validation set to

determine their diagnostic performance.

Material and methods

Selection of patients and collection of plasma samples

The study protocol was approved by the Institutional Review Board of Inje University Busan

Paik Hospital, Busan, Korea. Plasma samples were provided by the Inje Biobank of Inje Uni-

versity Busan Paik Hospital and the Biobank of Chungnam National University Hospital.

Discovery set

Forty breast cancer patients and thirty healthy controls were included in the discovery set.

Breast cancer patients were diagnosed and surgically treated at Inje University Busan Paik

Hospital from 2011 to 2016. Fifteen stage I–II patients were randomly selected, as well as ten

stage III patients. Patients who received neoadjuvant chemotherapy were excluded. Healthy

controls were recruited from among those without a history of other diseases, including

malignancies.

Validation set

Thirty breast cancer patients, including ten stage I–III patients, and sixteen healthy controls

(selected in the same manner as per the validation set) were included in the validation set.

Metabolic biomarkers for breast cancer diagnosis
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Blood samples were collected from the breast cancer patients on the day before surgery.

Fasting blood samples were collected in the morning from healthy controls who signed

informed consent forms. All blood samples were stored in K2-EDTA vacutainer tubes and

immediately cooled in a refrigerator (4˚C). Within 2 hours of collection, they were centrifuged

at 3,000 × g for 10 min at 4˚C. Then, the samples were transferred into new vials and immedi-

ately stored frozen (-80˚C) until preparation. Pathological analysis of surgically resected speci-

mens was performed.

Sample preparation

Three volumes of acetonitrile containing 5 μg/mL cholic acid-d5 (internal standard) were

added to each 50 μL plasma sample. The mixture was then vortexed and centrifuged at 13,200

rpm for 5 min at 4˚C. The supernatant was used for high-performance liquid chromatography

(HPLC) analysis. Cholic acid-d5 was purchased from Toronto Research Chemicals (Toronto,

Canada).

Chromatographic separation and mass analysis

Analyses were conducted using an Agilent 6530 quadrupole time-of-flight mass spectrometer

(Agilent Technologies, Santa Clara, CA, USA) coupled with an Agilent 1200 series HPLC sys-

tem. The separations were performed with a BEH C18 column (100 × 2.1 mm, 1.7 μm; Waters,

Milford, MA, USA) and a ZIC-HILIC column (100 × 2.1 mm, 3.5 μm; Merck, Darmstadt, Ger-

many). For the BEH C18 column, the mobile phase was 0.1% formic acid in water (A) and

0.1% formic acid in acetonitrile (B) at a flow rate of 0.4 mL/min. The gradient conditions were

as follows: 2% mobile phase B maintained for 1 min initially, and then increased to 20% at 3

min and 90% at 8 min, and finally maintained for 6 min. The temperature of the column and

autosampler was 35˚C and 4˚C, respectively, and the injection volume was 3 μL. For the

ZIC-HILIC column, the mobile phase was 10 mM ammonium acetate in 5/95 acetonitrile/

water (A) and 10 mM ammonium acetate in 95/5 in acetonitrile/water (B) at a flow rate of 0.5

mL/min. The gradient conditions were as follows: 1% mobile phase A maintained for 1 min

initially, and then increased to 50% at 15 min, and finally maintained for 2 min. The tempera-

ture of the column and autosampler was 40˚C and 4˚C, respectively, and the injection volume

was 5 μL. Electrospray ionization was performed in both positive ion and negative ion modes

for the BEH column, but only in negative ion mode for the ZIC-HILIC column. The sheath

gas flow rate was set to 11 L/min. The drying gas flow rate was set to 12 L/min at 350˚C. The

nebulizer temperature was maintained at 350˚C. The capillary voltage was set to 4,000 V in

positive mode and -4,000 V in negative mode, and the fragmentor was set to 110 V. All data

were acquired in a scan range of m/z = 50 to 1,000 in centroid mode. Reference compounds

(C18H18O6N3P3F24; [M + H]+ = 922.0098 and [M + formate]- = 966.0007) were used to adjust

the mass during analysis. Auto tandem mass spectrometry (MS/MS) analysis was conducted

for peak identification with a collision energy of 30 eV.

Data processing and analysis

Mass data acquisition and processing were conducted as described previously [12]. Integrated

mass spectrometric data were initially converted into mzXML format and processed using the

XCMS package in R software (ver. 3.1.0; R Development Core Team, Vienna, Austria) for

peak detection, alignment, and integration. The data were then subjected to multivariate analy-

sis using the SIMCA-P11.5 software package (Umetri AB, Umea, Sweden). For data normali-

zation, LOESS fitting was applied in the R environment using NOREVA (http://idrb.zju.edu.

cn/noreva/). All normalized peaks were subjected to multivariate analysis. Principle
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component analysis (PCA) was performed to visualize patterns and groupings, and partial

least squares-discriminant analysis (PLS-DA) was conducted to determine metabolites distin-

guishing the cancer patients from the control subjects, based on their variable importance in

projection (VIP) values, using the SIMCA-P11.5 software package (Umetris AB). Highly

ranked metabolites according to PCA and the PLS-DA VIP values were subjected to further

structural analysis. An in-house database, as well as the Human Metabolome Database

(HMDB; http://www.hmdb.ca), the Metlin database (metlin.scripps.edu), and the Kyoto Ency-

clopedia of Genes and Genomes database (KEGG; http://www.genome.jp/kegg/ or http://

www.kegg.jp/) were used to identify metabolites with potential as biomarkers of breast cancer.

Statistical analysis

All statistical analyses were performed using SPSS statistical software for Windows (version

23.0; IBM Corp., Armonk, NY, USA). The nonparametric Kruskal-Wallis and Mann-Whitney

U tests were used to analyze differences between the cancer and control groups. A p-value

of< 0.05 was considered statistically significant. To evaluate the sensitivity and specificity of

the potential biomarkers, ROC curves were plotted using MedCalc software (version 16.4.3;

MedCalc Software, Ostend, Belgium).

Results

Characteristics of patients and healthy controls

A total of 116 females (70 breast cancer patients and 46 healthy controls) were included in this

study. The 46 healthy controls were all women, with a mean age of 54.6 years (range: 45–59

years). The mean age of the breast cancer group was 59 years (range: 34–92 years). Among the

70 breast cancer patients, there were 25 stage I cases (35.7%), 25 stage II cases (35.7%), and 20

stage III cases (28.6%).

The subjects were divided into a discovery set of 70 subjects and a validation set of 46 sub-

jects based on the cancer stage distribution. Table 1 shows the clinicopathological characteris-

tics of the breast cancer patients and healthy controls in the discovery and validation sets.

PLS-DA was conducted on the discovery set. The PLS-DA model had one predictive com-

ponent and two orthogonal components (R2X = 0.077, R2Y = 0.923, and Q2Y = 0.809). Clear

separation between the cancer and control groups was observed, with all healthy controls

being distributed on the right side and most of the breast cancer patients being distributed on

the left side (Fig 1A). In the same manner, PLS-DA was performed on the validation set. Clear

separation between the groups was again observed, and there was one predictive component

and two orthogonal components (R2X = 0.163, R2Y = 0.836, and Q2Y = 0.608) (Fig 1B).

Selection of candidate metabolic biomarkers

In the discovery set, 70 plasma samples were analyzed and a total of 63 differential metabolites

were identified. Table 2 shows their fold-change and area under the curve (AUC) values.

Thirty-six metabolites showed significant fold-changes in the comparison between the cancer

and healthy groups (P< 0.05); however, most of these metabolites were influenced by other

physiological or metabolomical factors, which reduced their utility as biomarkers. After

excluding all such metabolites, four (L-octanoylcarnitine, 5-oxoproline, hypoxanthine, and

docosahexaenoic acid) were identified as candidate biomarkers of breast cancer. The AUCs

of those four metabolites were significantly greater than 0.80 in the discovery set (p< 0.05)

(Fig 2).
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External validation of biomarker candidates

To validate the diagnostic performance of the four selected metabolites (L-octanoylcarnitine,

5-oxoproline, hypoxanthine, and DHA), the cut-off values obtained in the ROC analysis of the

Table 1. Clinicopathological characteristics of breast cancer patients and healthy controls in the discovery and validation sets.

Discovery set Validation set

Cancer (n = 40) Healthy (n = 30) Cancer (n = 40) Healthy (n = 16)

Age (years), median 55.5 53.0 57 56.5

Histological grade

Low 6 (15.0%) 4 (13.3%)

Intermediate 12 (30.0%) 9 (30.0%)

High 22 (55.0%) 17 (56.7%)

Tumor size

� 2 cm 21 (52.5%) 13 (43.3%)

> 2 cm 19 (47.5%) 17 (56.7%)

LN metastasis

Negative 23 (57.5%) 16 (53.3%)

Positive 17 (42.5%) 14 (46.7%)

ER status

Negative 15 (37.5%) 10 (33.3%)

Positive 25 (62.5%) 20 (66.7%)

PR status

Negative 18 (45.0%) 13 (43.3%)

Positive 22 (55.0%) 17 (56.7%)

HER2 status

Negative 27 (67.5%) 22 (73.3%)

Positive 13 (32.5%) 8 (26.7%)

Ki-67

Low 6 (15.0%) 4 (13.3%)

Intermediate 11 (27.5%) 10 (33.3%)

High 23 (57.5%) 16 (53.3%)

TNM stage

I 15 (37.5%) 10 (33.3%)

II 15 (37.5%) 10 (33.3%)

III 10 (25.0%) 10 (33.3%)

LN; lymph node, ER; estrogen receptor, PR; progesterone receptor; TNM, tumor node metastasis.

Plasma metabolite profiles of the breast cancer patients

https://doi.org/10.1371/journal.pone.0225129.t001

Fig 1. Partial least squares-discriminant analysis score plots of healthy subjects (▲) and cancer patients (■) in the

discovery (A) and validation sets (B). Clear separation between the cancer and healthy groups was observed, with all

healthy controls being distributed on the right side and most of the breast cancer patients being distributed on the left

side in the discovery set. Clear separation was also observed between the two groups in the validation set.

https://doi.org/10.1371/journal.pone.0225129.g001
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discovery set were applied to the participants of the validation set. L-octanoylcarnitine showed the

highest positive predictive value (PPV), of 100.0%, while DHA showed a PPV of 91.3% (Table 3).

To determine the reproducibility of the four metabolites as biomarkers in the validation set, we

compared their mean ROC scores between the healthy and cancer groups: the scores for L-octa-

noylcarnitine and DHA were significantly lower in cancer patients compared to healthy controls,

and vice versa for 5-oxoproline and hypoxanthine (Fig 2). The AUC values of the four metabolites

were greater than 0.70 in the validation set (P< 0.05), indicating good reproducibility.

Differences in metabolite profiles according to the pathological

characteristic of tumors

We then investigated whether the four metabolites differed according to the pathological char-

acteristics of tumors in the discovery set. The octanoylcarnitine level was significantly lower in

T3 tumors compared to T1 and T2 tumors (Fig 3). The 5-oxoproline levels in N2 and N3

tumors were lower compared to those in N0 tumors (Fig 3). Furthermore, the levels of

Table 2. Fold-changes of 63 metabolites and their AUC values.

Metabolite Fold-

change

AUC Metabolite Fold-

change

AUC Metabolite Fold-

change

AUC

Amino acid Nucleotides L-palmitoylcarnitine 1 0.416

Creatinine 0.66��� 0.745 Hypoxanthine 7.62��� 0.859 Dodecanoylcarnitine 0.40��� 0.887

Sarcosine 1.32�� 0.716 Uric acid 0.93� 0.680 Oleamide 0.96 0.568

5-oxoproline (pyroglutamic

acid)

2.12��� 0.968 Uridine 0.91 0.599 Palmitic amide 0.98 0.544

L-Threonine 1.08 0.527 Organic compounds 13Z-docosenamide 0.86 0.572

Betaine 0.92 0.571 Acetylcholine 0.76�� 0.734 Suberic acid 1.02 0.62

Histidine 0.99 0.535 Phenylsulfate 2.12 0.510 Octanoic acid (caprylic

acid)

1.62��� 0.802

L-Lysine 0.94 0.543 Salicylaldehyde 1.13 0.595 Myristic acid 1.07 0.512

Homocysteinesulfinic acid 1.02 0.393 Trigonelline 3.14�� 0.713 Palmitic acid 0.87� 0.654

L-phenylalanine 1.30��� 0.838 Taurine 1.11 0.583 LysoPC(16:0) 1.25��� 0.833

Indoxyl sulphate 2.74 0.642 3-Methoxy-4-hydroxyphenylethyleneglycol

sulfate

1.33 0.597 LysoPC(16:1) 1.26� 0.683

L-Tryptophan 1.15 0.583 p-Cresol sulfate 0.47��� 0.746 LysoPC(18:0) 1.34�� 0.713

L-Isoleucine/Leucine 1.32�� 0.728 Pyrocatechol sulfate 1.08 0.487 LysoPC(18:1) 1.18��� 0.772

3-methyl-2-oxovaleric acid 0.91 0.579 Pyrogallol-2-O-sulphate 1.79 0.574 LysoPC(18:2) 1.42��� 0.848

Bile acid Bilirubin 0.22��� 0.943 LysoPC(20:1) 1.17� 0.653

Glycoursodeoxycholic acid 2.62��� 0.780 Oxoadipic acid 1.02 0.443 LysoPC(22:6) 1.47��� 0.808

Glycochenodeoxycholic acid 4.46��� 0.893 Lipid LysoPC(O-16:0) 1.30��� 0.761

Tauroursodeoxycholic acid 6.04��� 0.892 Docosahexaenoic acid 0.53��� 0.822 LysoPE(16:0) 1.15� 0.683

Vitamins and Cofactors Cis-5-tetradecenoylcarnitine 0.43��� 0.842 LysoPE(18:1) 1.97��� 0.833

1-methylnicotimanide 0.56��� 0.869 Linoleyl carnitine 1.35 0.593 LysoPE(18:2) 1.66��� 0.795

Carbohydrate L-octanoylcarnitine 0.41��� 0.858 LysoPE(20:4) 1.34�� 0.685

Glucose 1.29� 0.660 Vaccenyl carnitine 1.12 0.496 LysoPE(22:6) 1.1 0.577

Energy L-acetylcarnitine 0.66��� 0.784 Sphingosine-1-phosphate 1.65��� 0.801

Isocitric acid/citric acid 0.62 0.614 L-carnitine 0.83� 0.697

AUC; area under the curve

�p-value < 0.05

��p-value <0.01

���p-value <0.001.

https://doi.org/10.1371/journal.pone.0225129.t002
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octanoylcarnitine were significantly higher in estrogen receptor (ER)- and progesterone recep-

tor (PR)-expressing tumors, but no significant difference was observed according to HER-2

expression (Fig 4). The other metabolites (hypoxanthine and DHA) showed no difference in

expression according to tumor size, nodal status or hormone receptor expression.

Discussion

Metabolomics is a useful approach for identifying biomarkers and metabolic alterations in

cancer patients. Numerous studies have explored the possibility of metabolomic profiling for

early detection of breast cancer [13–15].

Sitter et al. [13] distinguished between patients with good and poor prognoses based on

analysis of a panel of metabolites in breast tumor tissues. Another study [16] analyzed blood

samples collected from 56 surgically treated breast cancer patients using a combination of

NMR and GC-MS; a panel of 11 markers predicted disease recurrence with a sensitivity of

86% and a specificity of 84%. Wei et al [17] reported that the serum metabolites threonine, iso-

leucine, glutamine and linolenic acid could be used as predictive markers of the response to

neoadjuvant chemotherapy in breast cancer patients. Jobard et al. [18] analyzed blood samples

collected from 197 early and 90 late-stage breast cancer patients using NMR, with the levels of

histamine, alanine, and betaine being higher in the serum of the early stage group. Moreover,

the early and late breast cancer patients could be distinguished with a sensitivity of 90% and

specificity of 79%. The metabolites could be derived from tumors, host, or the microbiome. In

breast cancer, metabolic changes in the host due to comorbidities such as obesity and diabetes

might increase the risk of breast cancer and play a role in its progression. In addition, some

Fig 2. Receiver operating characteristic curves of candidate biomarkers in the discovery and validation sets. A)

5-oxoproline, B) L-octanoylcarnitine, C) docosahexaenoic acid, D) hypoxanthine.

https://doi.org/10.1371/journal.pone.0225129.g002

Table 3. External validation results of four candidate biomarkers.

L-octanoylcarnitine Docosahexaenoic acid 5-oxoproline Hypoxanthine

Positive predictive value 100.0 91.3 86.4 76.0

Negative predictive value 47.1 60.9 54.2 47.6

https://doi.org/10.1371/journal.pone.0225129.t003
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metabolites derived from the gut microbiome could be involved in intracellular metabolism

and molecular events in breast cancer, and/or affect the treatment thereof [19].

In the present study, we evaluated the possible utility of plasma metabolites as biomarkers

for early diagnosis of breast cancer, via metabolomic analysis of plasma samples collected from

70 patients with breast cancer and 46 healthy subjects. We observed that the expression of sev-

eral metabolites differed between breast cancer patients and healthy controls. Based on our

analyses, four metabolites were selected as possible biomarkers of breast cancer. Among those

four metabolites, the plasma levels of L-octanoylcarnitine and DHA were significantly lower in

breast cancer patients. However, the levels of hypoxanthine and 5-oxoproline were signifi-

cantly higher in the breast cancer patients.

We found that plasma levels of L-octanoylcarnitine were significantly lower in patients with

breast cancer compared to the healthy controls, suggesting a high demand for carnitine for

breast tumor metabolism. Carnitine is an important nutrient in food, particularly meat and

dairy products. Carnitine has two principal functions in the organism: the first is to transport

long-chain fatty acids into the mitochondria, and the second is to balance the acyl coenzyme A

(CoA)-CoA ratio. This latter function is important because it allows removal of excessive (and

potentially toxic) short- and medium-chain fatty acids from the mitochondria [20]. Against

this background, our findings suggested that carnitine in cancer patients was involved in the

transfer of long-chain fatty acids to the mitochondria. This explained the higher level of fatty

acid beta-oxidation in breast cancer patients, consistent with recent studies reporting that

lipolysis and lipid oxidation were upregulated in cancer cells [21, 22]. Fatty acids can fuel can-

cer cells, because mitochondrial fatty acid oxidation produces considerably more ATP than

oxidation of other nutrients, such as glucose and amino acids [23]. These results also accorded

with a recent study suggesting that the carnitine system is pivotal in the metabolic flexibility of

cancer cells [24]. That report suggested that regulation of the carnitine system at both the

enzyme and gene levels plays an important role in modulating the metabolic flux of tumors,

which could be a promising target for new breast cancer therapies.

The omega-3 fatty acid DHA has anti-cancer effects. Several studies have indicated that

DHA inhibits breast cancer cell growth and increases apoptosis [25–27]. The main mechanism

Fig 3. Differences in metabolite profiles according to tumor size and nodal stage in the discovery set. A)

Octanoylcarnitine varied by tumor stage B) and 5-oxoproline varied by nodal stage.

https://doi.org/10.1371/journal.pone.0225129.g003

Fig 4. The octanoylcarnitine level was significantly higher in estrogen receptor (ER)- and progesterone receptor

(PR)-expressing tumors, but no significant difference was observed according to HER-2 expression.

https://doi.org/10.1371/journal.pone.0225129.g004
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underlying apoptosis induction via DHA is lipid peroxidation, which in turn increases reactive

oxygen species (ROS) levels and activates caspase to induce caspases; this leads to apoptosis

[28]. In the present study, DHA levels were significantly lower in patients with breast cancer

compared to healthy controls, such that anti-cancer activity was lower in the patients.

Xanthine oxidase is the final enzyme involved in the degradation of purines; it converts

hypoxanthine to xanthine and, subsequently, to uric acid, with ROS being generated as a

byproduct [29]. Purine nucleotides are made available for cells via two routes, i.e., de novo syn-

thesis or reuse of catabolized purine bases (mainly, hypoxanthine). The purine salvage pathway

is more efficient in terms of ATP equivalents than de novo purine synthesis [30] and drives the

growth of cancer cells by enabling more efficient production of ATP versus surrounding nor-

mal cells. In our study, high plasma levels of hypoxanthine in the breast cancer patients sug-

gested that the purine biosynthesis pathway could have been overridden by the salvage

pathway in breast cancer cells.

Pyroglutamic acid, also known as 5-oxoproline, is the cyclic lactam of glutamic acid. The

role of pyroglutamic acid in living cells has not been well studied. In several genetic disorders,

and in an acetaminophen-induced metabolic disorder, large amounts of pyroglutamic acid are

secreted in the urine (i.e., 5-oxoprolinuria). Free pyroglutamic acid may play a role as an ana-

logue or reservoir of glutamate [31]. Exogenous glutamine is an important source of energy

and a molecular building block for many tumors [32]. The relationship between breast cancer

and pyroglutamic acid has not yet been clarified, but the potential role of glutamine should be

further investigated.

To validate the predictive value of the four biomarkers identified in this study, the cut-off

values obtained from the ROC analysis of the discovery set were applied to the validation set.

The four selected metabolites, L-octanoylcarnitine, 5-oxoproline, hypoxanthine, and DHA,

showed potential as biomarkers for breast cancer, with PPVs greater than 75%. Taken

together, these results indicated that metabolic profiling may be a promising approach for the

identification of diagnostic biomarkers of breast cancer.

We also analyzed the relationship between these metabolites and hormone receptor status,

and found significant differences in the expression of octanoylcarnitine according to ER and

PR expression levels (Fig 4). One study reported that in breast cancer without ER expression,

beta-alanine, 2-hydroyglutarate, glutamate, and xanthine levels were increased, and that of glu-

tamine was decreased [33]. However, the relationship between octanoylcarnitine levels and

hormone receptor status has not yet been reported, so further research is needed. The progno-

sis for women with breast cancer depends not only on early diagnosis, but also on the tumor

size and lymph node metastasis status at the time of presentation [34]. Although several studies

have examined metabolic alterations according to tumor stage, there has been minimal

research on the relationship between tumor size and nodal metastasis [35, 36]. Importantly,

there has been no report on metabolites such as 5-oxoprolinuria and L-octanoylcarnitine,

which showed differences by tumor size and lymph node metastasis in this study. Based on

our results, it may be possible to predict the prognosis and likelihood of recurrence of breast

cancer via metabolomic analysis. The major limitation of this study was the relatively small

sample size. Therefore, the diagnostic performance of metabolites for breast cancer still needs

to be confirmed in further studies including larger sample sizes.

Conclusion

We showed that the concentrations of plasma metabolites, such as L-octanoylcarnitine, 5-oxo-

proline, hypoxanthine, and DHA, differed between breast cancer patients and healthy controls;

these metabolites showed high PPVs for breast cancer. Thus, the results suggested that plasma
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metabolites are promising candidates for early diagnosis of breast cancer. Furthermore, the

collection of blood samples alone might allow for early screening of breast cancer patients,

which points to the possibility of mass screening.
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