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For mitigating the COVID-19 pandemic, much emphasis is made on
implementing non-pharmaceutical interventions to keep the reproduction
number below one. However, using that objective ignores that some of these
interventions, like bans of public events or lockdowns, must be transitory and
as short as possible because of their significant economic and societal costs.
Here, we derive a simple and mathematically rigorous criterion for designing
optimal transitory non-pharmaceutical interventions for mitigating epidemic
outbreaks. We find that reducing the reproduction number below one is suffi-
cient but not necessary. Instead, our criterion prescribes the required reduction
in the reproductionnumberaccording to thedesiredmaximumofdiseasepreva-
lence and the maximum decrease of disease transmission that the interventions
can achieve. We study the implications of our theoretical results for designing
non-pharmaceutical interventions in 16 cities and regions during the COVID-
19 pandemic. In particular, we estimate the minimal reduction of each region’s
contact rate necessary to control the epidemic optimally. Our results contribute
to establishing a rigorous methodology to design optimal non-pharmaceutical
intervention policies for mitigating epidemic outbreaks.
1. Introduction
Since the seminal work of May & Anderson [1], the design of interventions to era-
dicate infectious diseases has the objective of achieving a basic (R0) or effective
reproduction number below one [2,3]. The underlying assumption here is that it
is possible tomaintain interventions for long periods, such as long-term vaccination
programmes. During the COVID-19 pandemic, this same objective is guiding the
design of non-pharmaceutical interventions (NPIs) [4]. However, maintaining
NPIs like bans of public events or lockdowns for long periods of time is infeasible
because of their substantial economic and societal costs [5,6]. Actually, instead of
aiming for eradication, NPIs aim tomitigate the economic and social costs of an epi-
demic outbreak [7]. Nevertheless, we still lack simple guidelines to design NPIs for
mitigating epidemic outbreaks, analogous to the R0 < 1 condition for eradication.

Here, we use the classic Susceptible–Infected–Removed (SIR) epidemiological
model to fully characterize the design of NPIs for mitigating epidemic outbreaks.
With this aim, we consider that NPIs should achieve an optimal tradeoff between
two objectives [8]. First, optimal NPIs must minimize the period in which they
need to be applied, consequently minimizing their associated economic and
societal costs. Second, optimal NPIs must guarantee that the disease prevalence
does not exceed a specified maximum level, which for example can represent
health services’ capacity for that particular disease outbreak [9]. We obtain a
full analytical characterization of such optimal NPIs for mitigating epidemic
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Figure 1. Optimal non-pharmaceutical interventions. (a) Susceptible–Infected–Removed (SIR) model with non-pharmaceutical interventions (NPIs) reducing disease trans-
mission. For the optimal NPI design problem, the objective is to design the intervention u*(t) with minimal effective duration such that u*(t)∈ [0, umax] and I(t)≤ Imax for all
t≥ 0. (b,c) The response of the SIR model for two interventions (parameters are β = 0.52, γ = 1/7, I0 = 8.855 × 10−7 and S0 = 1− I0). Both interventions 1 and 2 satisfy
u(t)≤ umax and guarantee that I(t)≤ Imax. Actually, intervention 2 is the optimal one derived using our analysis: it is the intervention with minimal effective duration satisfying
I(t)≤ Imax. (d ) The effective duration of an intervention measures the interval between the start of the outbreak and the last time that a non-zero intervention is applied. In this
example, the effective duration of intervention 1 is 120 days, while the effective duration of intervention 2 is 69 days.
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outbreaks, specifying the optimal intervention at each state that
the epidemic can be. This characterization yields the necessary
and sufficient criterion for the existence of optimal NPIs for miti-
gation, analogous to the R0 < 1 condition for eradication. We find
that reducing the reproductionnumber belowone is sufficient but
not necessary for their existence. Instead, for mitigation, we show
that the desired maximum disease prevalence determines the
necessary reduction in the reproduction number. The conse-
quence of not reducing the reproduction number below one is
that interventionsmust start before the disease prevalence reaches
the specified maximum level. We also demonstrate numerically
that the derived optimal NPIs for mitigation are robust to uncer-
tainties in the model parameters and unmodelled epidemic
dynamics (e.g. undetected infections). Finally, we explore the
implications of our theoretical result by analysing the response
of 16 cities and regions across the globe to the COVID-19 pan-
demic, finding that most regions achieved a larger-than-
necessary reduction in transmission. Our results contribute to
designing NPIs to optimally and robustly mitigate epidemic
outbreaks.
2. Characterizing optimal non-pharmaceutical
interventions

2.1. Optimal epidemic mitigation using
non-pharmaceutical interventions

Our objective is to characterize the reduction in the disease
transmission that is optimal for each state inwhich the epidemic
outbreak can be. For this, we leverage on the mathematical
tractability of the SIR model [10], where the state can be charac-
terized by the pair (S, I) [ [0, 1]2. Here, S is the proportion of
the population that is susceptible to the disease, and I is the dis-
ease prevalence (i.e. the proportion of the population that is
infected); see figure 1a.We discuss later othermore detailed epi-
demic models. The epidemic state changes with time t as the
disease is transmitted, producing the trajectory (S(t), I(t)) for
t≥ 0. For epidemicmitigation, we consider that the goal is keep-
ing the disease prevalence belowa specified level Imax∈ (0, 1]. A
main factor determining this constant is health services’
capacity in the sense that a prevalence above Imax causes
higher mortality due to hospital saturation [9]. In general, the
selection of Imax could dependon other social and economic fac-
tors of the specific population where the outbreak occurs. To
keep I(t)≤ Imax, we assume we can apply one or several NPIs
that reduce disease transmission by the factor (1− u), for some
u∈ [0, 1]; see figure 1a. The NPIs achieve no reduction when
u= 0, and they completely stop transmission when u= 1. Differ-
ent NPIs correspond to particular values of u. For instance, a
study of NPIs during the COVID-19 pandemic [11] found that
closing most non-essential business corresponds to u≈ 0.25, clos-
ing schools anduniversities to u≈ 0.37, and limiting gatherings to
at most 10 people to u≈ 0.42. In practice, it can be unfeasible to
fully stop the disease transmission (i.e. u< 1) because of inherent
challenges like asymptomatic transmission [12], or because of the
necessity of maintaining a working economy [13]. Therefore, we
upper-bound the reduction by umax∈ (0, 1). We say that u is
admissible if u∈ [0, umax].

Different admissible NPIs can keep the disease prevalence
below Imax. For instance, ‘intervention 1’ in the example of
figure 1b,c keeps this restriction and it has an ‘effective
duration’ of 120 days. Here, the effective duration of an interven-
tion is the time interval between the start of the outbreak and
the last time that a non-zero intervention is applied (figure
1d). ‘Intervention 2’ of figure 1b,c also keeps the restriction



Box 1. Optimal NPIs for the Susceptible–Infected–Removed (SIR) model.

The SIR model with interventions u(t)∈ [0, umax] reducing disease transmission takes the form

dS
dt

¼ �(1� u)b SI,
dI
dt

¼ (1� u)b SI � gI:

Here, S(t) and I(t) are the proportion of the population that is susceptible or infected at time t≥ 0, respectively. We denote by
(S0, I0) the initial state at t = 0. The parameters of the SIR model are the (effective) contact rate β≥ 0, and the mean residence time
of infected individuals γ≥ 0 (in units of day−1). By assuming S0≈ 1, these two parameters yield the basic reproduction number
R0 = β/γ.

We are interested in reaching the safe zone

S ¼ {(S, I) j I � FR0 (S)},
where

FRðSÞ ¼ Imax if S � R�1,
Imax þ R�1½logðRSÞ þ 1� RS� otherwise:

�
(2:1)

The safe zone is the largest set with the following property: if, for any given time t1, the state (S1, I1) belongs to S, we can set
u = 0 henceforth and still have I(t)≤ Imax for all t≥ t1. That is, when S is reached, we can terminate the intervention with the
assurance that a possible rebound in the disease prevalence will not exceed Imax.

Our goal is to steer an arbitrary initial state (S0, I0) to the safe zone S in minimal time without violating the constraint
I(t)≤ Imax. We say that an intervention achieving this goal is an optimal intervention.

In electronic supplementary material, note S1, we prove that the existence of an optimal intervention is characterized by
the separating curve FRc as follows:

1. An optimal intervention exists if and only if the initial state (S0, I0) lies below this separating curve (i.e. I0 � FRc (S0)).
Above, Rc : = (1− umax)R0 is the controlled reproduction number. Moreover:

2. If it exists, the optimal intervention u* at the state (S, I ) is

u�ðS,IÞ ¼
0 if ðS,IÞ [ S <W
1� 1

RcS
if I¼FRcðSÞ andS� < S < R�1

c

umax otherwise

8>><
>>:

(2:2)

with

W ¼ {(S, I) j I , FRc (S), S . (I)}:

Above, the curve S ¼ C(I) is defined in electronic supplementary material, note S1, while S* denotes the intersection of
S ¼ C(I) and I ¼ FRc (S).

Code to calculate the optimal interventions is provided as electronic supplementary material.
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I(t)≤ Imax, but its effective duration is only 69 days. To design
the optimal NPI for mitigating epidemic outbreaks, we ask for
the intervention with minimal effective duration. Specifically,
we ask for the admissible intervention u*(S(t), I(t)) required
now (i.e. at the current state) such that: (1) itminimizes the effec-
tive duration of the intervention and (2) it ensures that the
prevalence can be maintained below Imax for all future time
by using some admissible intervention. If the optimal NPI pro-
blem has a solution u*, then u*(S, I) characterizes the optimal
reduction in the disease transmission that the NPIs should
achieve if the epidemic state is (S, I ). In particular, u* gives
the optimal way to start and stop the NPIs.
2.2. Optimal non-pharmaceutical interventions for
mitigation exist without reducing the reproduction
number below one

Our first main result is a complete analytical characterization
of the optimal NPIs for outbreak mitigation in the SIR model
(see box 1 for a summary and electronic supplementary
material, note S1, for details). To understand how these opti-
mal NPIs work, note that the SIR model predicts a safe zone
of states (S, I) where,without any further interventions, the dis-
ease prevalence will not exceed Imax (blue zone in figure 2a–c).
The safe zone is characterized by the inequality I � FR0 (S),
where R0 is the basic reproduction number of the outbreak in
the population, and the function FR is defined in equation
(2.1) of box 1. The goal of the optimal NPIs is thus to reach
this safe zone as fast as possible without violating the restric-
tion I(t)≤ Imax. The ability to achieve this goal depends on
the epidemic state. That is, we can partition the plane (S, I ) in
two regions: those states from which it is possible to reach
the safe zone without exceeding Imax ( feasible states), and
those where it is impossible (unfeasible states). We find these
two regions are characterized by the separating curve FRc (S),
where we call Rc := (1− umax)R0 the controlled reproduction
number (figure 2a–c). Note that Rc describes the maximum
reduction in the basic reproduction number that (constant)
admissible interventions can achieve. Therefore, Rc < 1 is the
necessary and sufficient condition that a constant and perma-
nent admissible intervention (i.e. u(t)≡ const. for all t≥ 0)
needs to satisfy to eradicate a disease outbreak in the SIR
model. However, for outbreak mitigation, our analysis shows
that feasible states exists without achieving disease eradication
(white regions in figure 2b,c). This result is important because it
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Figure 2. Existence of non-pharmaceutical interventions in the Susceptible–Infected–Removed model. Parameters are γ = 1/7, β = 0.52 (i.e. R0 = 3.64) and
Imax = 0.1. The safe zone (in blue) consists of all states that do not exceed Imax without interventions. This zone is characterized by the inequality
I � FR0 (S). The plane is further divided into feasible states that can reach the safe zone without exceeding Imax (white), and unfeasible states that cannot
(grey). Feasible and unfeasible states are separated by the separating curve FRc (S) (black line). (a) For ‘strong’ interventions with umax = 0.8, the controlled repro-
duction number is Rc = (1− umax)R0 = 0.728 < 1. Here, the separating curve is the straight line Imax, implying that all states below Imax are feasible. Note this case
corresponds to eradication. (b) For ‘intermediate’ interventions with umax = 0.6, the controlled reproduction number is Rc = (1− umax)R0 = 1.456 > 1. Here, the
separating curve FRc (S) is nonlinear, and some states below Imax are unfeasible. (c) For ‘weak’ interventions with umax = 0.4 we obtain Rc = 2.184 > 1. In this case,
states with S(0)≈ 1 are unfeasible. (d ) For S(0)→ 1, our design criterion for NPIs prescribes the values of Rc that a given Imax can manage.
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proves that optimal NPIs for epidemic mitigation do not
require reducing the basic reproduction number below one
(i.e. without achieving Rc < 1).
2.3. A design criterion for optimal non-pharmaceutical
interventions

We demonstrated above that optimal NPIs for outbreak miti-
gation exist even when Rc > 1. However, how large can Rc be
before NPIs keeping I(t)≤ Imax do not exist? When S(0)→ 1,
our characterization shows that such NPIs exists if and only if

Rc � 1, or Imax þ 1
Rc

lnRc � 1� 1
Rc

� �
� 0: (2:3)

The above inequality is our second main result, connecting
the specified maximum disease prevalence Imax with the
outbreak’s controlled reproduction number Rc = (1− umax)R0

(electronic supplementary material, note S2). The inequality
(2.3) governs the existence of NPIs for mitigating epidemic
outbreaks, in analogy to how the condition Rc < 1 works for
disease eradication. Note that Rc < 1 is a sufficient condition
for the existence for NPIs, but the inequality (2.3) shows
that this condition is far from necessary. If Imax > 0, there
exists Rc > 1 for which NPIs exist (figure 2d ). Note also that
the maximum feasible Rc increases with Imax.

We can use (2.3) to design NPIs for outbreak mitigation as
follows. Consider an infectious disease outbreak with a given
R0 and that the specified maximum prevalence is Imax. Then,
the inequality (2.3) gives the criterion to design NPIs by pro-
viding the range of disease transmission reduction umax that
the NPIs should attain. In particular, it provides the minimal
reduction u�max in the disease transmission required for the
existence of NPIs. For example, if Imax = 0.1 then R�

c ¼ 1:71
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is the maximum admissible controlled reproduction number
(orange point in figure 2d ). Therefore, if an outbreak in the
population has R0 = 3, then the minimal required reduction
is u�max ¼ 0:43 because (1� u�max)R0 ¼ R�

c .

2.4. Optimal non-pharmaceutical interventions for
outbreak mitigation are simple

For any epidemic state, the optimal transmission reduction
takes a simple form which can be described by colouring the
(S, I) plane; see top row of figure 3. Here, for all states in the
white region the optimal intervention is no intervention;
for all states in the yellow region the optimal intervention is
u*(S, I ) = umax. There are regions (specifically lines) where the
optimal intervention switches frequently between u* = 0 and
u* = umax producing a so-called ‘singular arc’ that slides
along the two regions, leading to an ‘average’ intervention
u*∈ [0, umax]. In general, we find that the optimal NPIs have
four phases: a first one where no intervention is needed, a
second phase where interventions start with maximum
strength, a third phase of gradual decrease of interventions,
and a ‘final push’ where the maximum interventions are
re-applied for a short period to reach the safe zone faster.

We illustrate the above behaviour in three qualitatively
different cases. The first case is when the optimal intervention
starts just when the disease prevalence reaches Imax (figure 3a).
This case occurs when the interventions are strong enough to
stop the rise in prevalence at Imax regardless of the remaining
fraction the population that is still susceptible to the disease.
Our analysis shows that this case occurs if and only if umax

is large enough to render Rc = (1− umax)R0≤ 1. When the
initial susceptible population is close to 1 (pink trajectory in
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figure 3a), the optimal intervention first waits until the disease
prevalence reaches Imax. At that time, the optimal NPI stops the
disease prevalence exactly at Imax, and then it gradually
decreases its magnitude to ensure that the disease prevalence
slides along Imax as the susceptible population decreases.
When the susceptible population reaches the threshold S*,
the optimal intervention is again the maximum one
(figure 3a). This ‘final push’ allows reaching the safe zone
faster, releasing the interventions sooner. The middle and
bottom panels of figure 3a show the resulting disease
prevalence and optimal interventions as a function of time.
Note that a smaller initial susceptible population yields other
trajectories (green and purple in figure 3a).

The second case is when an ‘early’ intervention is necessary
before the disease prevalence reaches Imax (figure 3b). This case
happens when the admissible reduction in the contact rate
cannot immediately stop the disease prevalence at Imax if the sus-
ceptiblepopulation is largeat that time.We find this caseoccurs if
and only if umax is small in the sense that Rc= (1− umax)R0 > 1.
Here, a trajectory may hit the yellow region before reaching
Imax (pink trajectory in figure 3b). When that happens, the opti-
mal intervention starts with the maximum reduction u* = umax.
Then it maintains this maximum reduction to ‘slide’ the trajec-
tory between the yellow and white regions. Once the trajectory
reaches Imax, themagnitudeof theoptimal interventiondecreases
to slide the trajectory along Imax. Again, the final push occurs
when the susceptible population reaches the point S*.

The third case is when the initial state (S0, I0) lies in
the unfeasible region (figure 3c). This case occurs when umax is
so small that, even if the maximum admissible intervention
u = umax is applied from the start of the outbreak, the disease
prevalence will exceed Imax (pink trajectory in figure 3c). In
this case, the optimal interventionproblem isunfeasiblebecause
it is impossible to achieve I(t)≤ Imax. However, note that using
u* = umax yields the smallest prevalence peak. Other trajectories
that start with a smaller proportion of susceptible individuals
remain feasible (green and purple in figure 3c). In particular,
note that the threshold S* decreases as Rc increases.

2.5. Optimal non-pharmaceutical interventions for
outbreak mitigation are robust

To evaluate the optimal NPIs for outbreak mitigation in more
realistic scenarios, we numerically analysed their perform-
ance in three epidemic models with uncertain epidemic
parameters and more detailed epidemic dynamics (see details
in electronic supplementary material, note S3). In all cases,
we consider that the basic reproduction number has been
estimated as R̂0 using an SIR model, and that the optimal
NPIs for mitigation are designed using this estimate. Then,
these optimal NPIs are applied to an outbreak with possibly
different epidemic dynamics and possibly different R0. Note
that estimation errors in R0 will affect the correct start of
the NPIs and the ‘final push’ for reaching the safe zone.

In the first scenario, we consider an outbreak with SIR
dynamics where the strength of the NPIs is uncertain. We
model this uncertainty replacingu by ku in themodel equations,
where k∈ (0, 1). Then, for example, k = 0.9 (resp. k = 1.1) rep-
resents a 10% underestimation (resp. overestimation) of the
NPI strength. Across outbreaks with different R0’s and an
uncertainty of 10% in the intervention’s strength, we find that
the disease prevalence is maintained below Imax as long as R0

is not underestimated (figure 4a). In the second scenario, we
consider an SEIR outbreak with an incubation period for the
disease. For an incubation period of 7 days, as typical for a
COVID-19 infection, the optimal NPIs maintain the disease
prevalence below Imax if R0 < 2.5 and its value is estimated
with an error of below 30% (solid yellow and orange in
figure 4b). For larger R0 or a larger incubation period, the
disease prevalence may exceed Imax (red in figure 4b).

For the final scenario, we consider an SEIIR model with an
incubation period of 7 days and with a fraction p∈ [0, 1] of
infected individuals that are asymptomatic and thus remain
hidden to the epidemic surveillance system. The goal is to
maintain the prevalence of symptomatic individuals below
Imax, without knowing the fraction of asymptomatic individ-
uals. This situation occurs during the COVID-19 pandemic,
where between p = 0.55 and p = 0.8 of infections are asympto-
matic [14]. For p < 0.7 and R0 < 3.64, the optimal NPIs
maintain the disease prevalence of symptomatic individuals
below or very close to Imax if the estimation error for R0 is
below 30% (dotted and solid lines in figure 4c). An outbreak
with lowR0 produces amaximumdisease prevalence of symp-
tomatic individuals below Imax, which may result in a larger
effective duration of the interventions. Overall, these numerical
results show that the optimal NPIs are robust against a wide
range of parameter uncertainty and unmodelled dynamics,
provided that the estimation error in the outbreak’s basic
reproduction number does not exceed 30%.
3. Designing optimal non-pharmaceutical
interventions for mitigating the COVID-19
pandemic

To explore the implications of our simple criterion for design-
ing NPIs for outbreak mitigation, we analysed how 16 cities
and regions implemented NPIs during the COVID-19 pan-
demic. For each region or city, we constructed Imax using the
number of available intensive care beds during the first
months of the pandemic, considering that a fraction of the
infected individuals will require them (electronic supplemen-
tary material, note S4). The values for Imax that we obtain
range from 2.87 × 10−3 for Lima (Peru) to 109.78 × 10−3 for
Boston (USA), reflecting the large heterogeneityof the available
health services across the globe (figure 5a). With this infor-
mation, we calculated the maximum feasible R�

c for each
region using our design criterion of inequality (2.3). Since R�

c
is a monotone function of Imax, we find that R�

c follows the
same trend as Imax (figure 5b). The smallest R�

c ¼ 1:08 occurs
for Lima and the largest R�

c ¼ 1:75 for Boston. Note that in
both cases R�

c . 1. This result implies that, for the R0 of a
region’s disease outbreak, a successful mitigation of the out-
break requires NPI policies that achieve at least a reduction
u�max such that (1� u�max)R0 � R�

c .
Next, we investigated the minimal reduction u�max in trans-

mission required to achieve those upper bounds for the
COVID-19 pandemic. For this, we first collected information
for the R0 in each region calculated at the start of the pan-
demic and when the NPIs were inactive (electronic
supplementary material, note S3). We find a median nominal
R0 of 2.2, with Tokyo having the smallest one (R0 = 1.3) and
Madrid having the largest one (R0 = 3.11); see figure 5c.
From these values of R0, we calculated the minimal required
reduction u�max per region or city (blue in figure 5d ). For the
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Figure 4. Optimal non-pharmaceutical interventions are robust. For all panels, the estimated parameters used for constructing the optimal NPIs are ĝ ¼ 1=7,
b̂ ¼ 0:52, Imax = 0.1, umax = 0.6. We consider a population of N = 8.855 × 106 as in Mexico City, and the initial conditions I(0) = 1/N and S(0) = 1− 1/N. If the
models contain other state variables, they were initialized at zero. The optimal NPIs are constructed assuming R̂0 ¼ b̂=ĝ , while the actual epidemic dynamics has
a possibly different R0 = β/γ. Panels show results for outbreaks with three values of R0: low (yellow), medium (orange) and large (red). (a) SIR model where the
reduction in the disease transmission by the NPIs is uncertain. We model this case replacing u by ku in the model equations. Panel shows the results for k = 1.1
(dotted), k = 1 (solid) and k = 0.9 (dashed). (b) SEIR model where exposed individuals do not transmit the infection, with λ > 0 the incubation period. Panel shows
the results for λ = 1/5 (dotted), λ = 1/7 (solid) and λ = 1/11 (dashed). (c) SEIIR model with λ = 1/7 and two classes of infected individuals (symptomatic and
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symptomatic individuals. The panel shows the results for p = 0.55 (dotted), p = 0.7 (solid) and p = 0.8 (dashed).
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nominal R0’s per region or city, we find that a median
reduction of u�max of 0.42 is necessary. However, this minimal
necessary reduction is heterogeneous across regions. For
example, Tokyo just requires u�max ¼ 0:15 while Madrid
requires u�max ¼ 0:61. These two cities have the smallest and
largest R0, respectively. If two cities have similar R0, then
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Figure 5. Minimum necessary reduction in disease transmission for NPIs in the COVID-19 pandemic. (a) Calculated Imax according to the proportion of available
intensive care beds in each region or city and the estimated fraction of infected individuals requiring intensive care. (b) Maximum controlled reproduction number Rc
that each region or city can handle according to its Imax. Larger Imax allows a larger Rc. (c) Basic reproduction number R0 per region or city before interventions
started. Median (blue big dot), and 95% confidence interval (smaller dots) are shown. (d ) Minimum umax necessary for feasibility for each region or city (blue)
according to the R0 of (c). Grey bars denote the reported average mobility reduction in each region between 19 March and 30 April 2020.
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the city with large Imax ends up requiring a smaller u�max (e.g.
Boston with u�max ¼ 0:26 and Lima with u�max ¼ 0:50).

To evaluate the feasibility of achieving the minimal
reduction predicted by our analysis, we collected data for
the average mobility reduction in each region during the
NPIs (grey in figure 5d; electronic supplementary material,
note S4). Considering this average mobility reduction as a
proxy for the reduction in disease transmission, we find
that all regions achieved a greater than necessary reduction.
For example, Delhi attained a mobility reduction of 0.84,
while the minimal necessary reduction in transmission
according to our analysis is u�max ¼ 0:42. Other regions are
in the boundary. For example, New South Wales attained a
mobility reduction of 0.48, while the minimal necessary
reduction in transmission was u�max ¼ 0:44. Overall, across
regions, we find a median excess of 0.22 in the reduction of
mobility compared to the minimal reduction in transmission
u�max predicted by our analysis.
4. Discussion
Our results provide a complete analytical characterization of
the optimal NPIs for mitigating epidemic outbreaks in the
SIR model. We also show that these optimal NPIs are robust
as they can ‘work’ in epidemic models with more complicated
dynamics. The SIR model is a minimal strategic model of the
general population dynamics of a disease. Although this
model ignores critical epidemiological phenomena, using the
SIRmodel allows us to leverage on itsmathematical tractability
to obtain a complete characterization of the optimal NPIs for
outbreak mitigation. The feedback form u*(S, I) of the optimal
intervention reflects such complete characterization, prescrib-
ing the optimal action to perform if the epidemic is at any
state (S, I). This feedback strategy should be contrasted to
most other studies applying optimal control to epidemic out-
breaks, where the derived optimal intervention u*(t, S0, I0) is
an open-loop function of time [15–18]. The open-loop interven-
tion gives the optimal action at any time given a particular
initial state (S0, I0). However, it does not tell us the optimal
action if the epidemic is not in the exact state predicted by
the model.

Understanding the optimal action to perform at any state
has the crucial advantage of allowing us to apply this know-
ledge to any model, and to reality. Feedback can give control
strategies the required robustness to work on real systems
despite large uncertainties and unknown dynamics [19,20],
and we numerically confirmed that our optimal NPIs for out-
break mitigation have such robustness. Indeed, other works
have also found that interventions derived from the SIR
model can work in detailed agent-based models of epidemic
outbreaks [21]. Future work could analyse the robustness
of optimal interventions when the epidemic state is not
entirely known. This situation may happen when significant
delays exist in reporting new infections, or when tests for
identifying infected individuals are limited. For example, con-
trol-theoretical techniques like the construction of observers
and predictors allow applying our optimal interventions when
the only available information is the disease prevalence, and
when this information is obtained with a significant delay [22].

Our framework could also guide the complete characteriz-
ation of optimal NPIs for mitigating epidemic outbreaks using
more detailedmodels ormore detailed optimization objectives,
but this is likely very challenging. Indeed, deriving such com-
plete characterization for very detailed models can be
unreasonable, considering the tradeoff between how detailed
is a model and how much we can trust its predictions [23].
Note also that our approach could be applied to calculate the
optimal NPIs in the presence of a constant vaccination rate
by modifying the SIR model accordingly (e.g. [24]).
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The optimal intervention resulting from our analysis can
take a continuumof values thatmay be infeasible to implement
in practice. We can use an averaging approach to circumvent
this problem. Namely, consider a time window of T days (e.g.
a week). Suppose that the average reduction prescribed by
the optimal intervention over a certain window is �u�. We can
realize this reduction on average by combining d ¼ T�u�=umax

days of maximum reduction with (T− d) days without inter-
vention. This approach yields an intervention similar to
Karin et al. [25], with the difference that the periods of interven-
tion and activity are optimally balanced. Quantifying the errors
produced by such approximations, in particular over the
singular arc [26], deserves further study.

Our criterion to design optimal NPIs for mitigating epi-
demic outbreaks is obtained by characterizing the necessary
and sufficient conditions for the existence of solutions to an
optimal control problem. Specifically, the low dimensionality
of the SIR model allowed us to apply Green’s theorem to com-
pare the cost of any two interventions analytically (electronic
supplementary material, note S1.4). In this sense, the method
we use to derive the optimal NPIs is closer to our previous
work on optimal control for bioreactors [27]. In general, deriv-
ing such complete characterization of optimal control problems
is challenging because it involves solving an infinite-dimen-
sional optimization [28]. Indeed, computational methods
cannot produce such a characterization [29], and established
analytical methods like Pontryagin’s maximum principle
only yield necessary conditions for optimality [28]. Several
works have applied these and other optimal control methods
to the SIR model (e.g. [30,31]). The COVID-19 pandemic has
produced a surge in the development of numerical and analyti-
cal methods to design optimal NPIs minimizing diverse
criteria, including the infection peak [32], number of infections
[33,34] and economic costs [35,36].

We will inevitably face new epidemics where NPIs are the
only option to control the outbreaks. Rather counterintui-
tively, we find that for ‘ending’ an epidemic outbreak as
fast as possible using NPIs, it is not always optimal to
apply the maximum intervention. This observation illustrates
the need for developing a better scientific understanding that
informs the design of optimal NPIs and planning the
required health services capacity.
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