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Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that

biogenesis from endosomes. Besides, exosomes contain a variety of

molecular cargoes including proteins, lipids and nucleic acids, which play a

key role in the mechanism of exosome formation. Meanwhile, exosomes are

involved with physiological and pathological conditions. The molecular profile

of exosomes reflects the type and pathophysiological status of the originating

cells so could potentially be exploited for diagnostic of cancer. This review aims

to describe important molecular cargoes involved in exosome biogenesis. In

addition, we highlight exogenous factors, especially autophagy, hypoxia and

pharmacology, that regulate the release of exosomes and their corresponding

cargoes. Particularly, we also emphasize exosome molecular cargoes as

potential biomarkers in liquid biopsy for diagnosis of cancer.

KEYWORDS

exosomes, extracellular vesicles (EVs), biogenesis, exogenous factors, release,
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Introduction

Extracellular vesicles (EVs) are secreted from almost all cell types (1), and widely

distributed in various body fluids, such as urine (2), blood (3), milk (4), saliva (5),

cerebrospinal fluid (6), amniotic fluid (7) and semen (8), can transmit information

between cells and participate in many physiological and pathological processes. It is

known that the extraction and isolation of exosomes from different body fluids are

mainly achieved by ultracentrifugation, ultrafiltration, sedimentation, density gradient

centrifugation, immune-capture, precipitation and commercial reagents(Table 1).

Exosomes are bi-layered lipid vesicles produced by the endosomal pathway, a subset of

EVs with a diameter of 30-150nm (36, 37). However, due to the limitations of the

isolation method, we usually define the particles less than 200nm in diameter are
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exosomes. Therefore, the International Society of Extracellular

Vesicle (ISEV) statement in the Minimum Information on

Extrace l lu lar Vesic le Research 2018 (MISEV2018)

recommends the use of “EVs” as a general term (36). In this

r e v i ew , EVs ma in l y r e f e r t o e xo somes w i t hou t

special instructions.

Exosomes are present in biological fluids as a form of

intercellular communication to transport proteins, lipids,

nucleic acids, and metabolites to the pericellular environment

(38, 39). Exosome biogenesis are tightly regulated, possibly by

interactions with different effectors (40, 41), which mainly

involved with ESCRT-dependent and ESCRT-independent
Frontiers in Oncology 02
mechanisms (42). Exosome biogenesis begins in the endocytic

pathway, where the plasma membrane invagination packages

cell membrane proteins and some extracellular components

together to form the early endosomes (EEs) (43, 44). After

that, EEs exchange substances with other organelles, or further

mature into late endosomes (LEs), and the late endosomal

membrane invaginate to form multiple vesicles (MVBs)

containing luminal vesicles (ILVs). Next, MVBs bind to

lysosomes or autophagosomes for degradation, or they are

transported to the plasma membrane through the cytoskeleton

and microtubule network, which then efflux to form exosomes

(Figure 1A) (45–47). Interestingly, exosomal cargo molecules
BA

FIGURE 1

Exosome biogenesis. (A): Schematic diagram of the molecular mechanisms of exosome biogenesis. Extracellular components, such as proteins,
lipids, nucleic acids and small molecules, can enter cells with cell surface proteins through endocytosis and plasma membrane invagination.
Under endocytosis, it leads to the formation of early endosomes and late endosomes, which bud out into multiple vesicles (MVBs) containing
luminal vesicles (ILVs). Some molecules, such as ESCRT proteins (ALIX, TSG101, etc.), lipids and tetraspanin proteins mediate this process.
Subsequently, MVBs will fuse to lysosomes or autophagosomes to accelerate their degradation to inhibit exosome release, or MVBs transported
along the cytoskeleton and microtubule network to the plasma membrane after maturation, where it can fuse with the plasma membrane and
release exosomes into extracellular space. Among these, Rabs, Actin and SNARE proteins are involved in exosome release.(B): Exosome
biomarkers. Exosomal luminal cargoes are mainly composed of proteins, lipids, nucleic acids, and other metabolites that can function in the
recipient cells. Among these, CD9, CD63, CD81, flotillin, and Annexin can be used as exosome biomarkers.
TABLE 1 Methods for isolation of exosomes from different biological sample types.

Sample types Isolation methods Types of cargo References

Urine UC,UF,DGC,SEC,PC,PEG,IC,MF,CRG Proteins, MiRNAs, Lipids (9–12)

Blood UC,UF,DGC,SEC,PC,PEG,IC,MF,CRG Proteins, MiRNAs, Lipids (13–17)

Milk UC,UF, DGC,SEC,PC,CRG Proteins,RNAs,MiRNAs,Lipids (18–21)

Saliva UC, UF, DGC,SEC,PC,CRG Proteins, MiRNAs (22–25)

Cerebrospinal fluid UC,UF,SEC, PC,CRG Proteins, MiRNAs (26–30)

Amniotic fluid UC,UF,CRG Proteins, MiRNAs, (31, 32)

Semen UC, UF,PC,PEG,CRG Proteins, MiRNAs (33–35)
fr
UC, ultracentrifugation; UF, ultrafiltration; DGC, density gradient centrifugation; PC, precipitation PEG, polyethylene glycol precipitation; IC, immuno-capture; MF, microfluidics; SEC,
size-exclusion chromatography; CRG, Commercial reagents.
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(Figure 1B) (proteins, lipids, and nucleic acids) regulate the

whole process (42, 45, 48, 49). For example, tetraspanin proteins

(e. g.: CD9, CD63, CD81, CD82), major histocompatibility

complex (MHC) molecules, heat shock proteins (HSPs),

endosomal sorting complex (ESCRT) proteins (e. g. Alix,

TSG101), Rab proteins, actin, soluble N-acetamide sensitive

factor attachment proteins (SNAREs) are the major

participating proteins (50–53). Similarly, lipid components

such as ceramide , choles tero l , phosphat id ic ac id ,

phosphatidylinositol 3-phosphate, phosphatidylinositol-3, 5-

diphosphate, and sphingosine 1-phosphate are also involved in

the process (54–57). A summary of the molecular cargoes

associated with exosome biogenesis process is presented

in Table 2.

Initial studies suggested that exosomes were some waste

materials excreted by cells in order to maintain homeostasis

(138). Recent reports suggest that exosomes are capable of

material transport and information transfer between cells,

thereby mediating many physiological and pathological

processes (51, 72, 139, 140). Furthermore, these small vesicles

are involved in immunomodulation and intercellular
Frontiers in Oncology 03
communication (141), and mediate the disease progression of

cancer (142), cardiovascular disease (143–145), metabolic

disease (146), degenerative change (147) and autoimmunity

(148). It is currently believed that the key to exosomes

biological functions lies in their molecular cargoes, including

prote ins , l ip ids , and nuc le ic ac ids . For example ,

phosphatidylinositol glycan-1 (GPC1) is a cell surface

proteoglycan rich in cancer cell-derived exosomes, and Melo

et al. (120) identified that GPC1 has the potential for early

detection of pancreatic cancer lesions to promote the possibility

of curative surgical treatment (120) found that CRC cell-derived

exosomal HSPC111 protein promotes pre-metastatic niche

format ion and CRC liver metastases (CRLM) via

reprogramming lipid metabolism in cancer-associated

fibroblasts (CAFs), which implicate HSPC111 may be a

potential therapeutic target for preventing CRLM (149). In

addition, phosphatidylserine, cholesterol and ceramide are also

play key roles in exosome formation, which affect cargo sorting,

signaling and exosomes structure (150, 151). MicroRNAs

(miRNAs) are one of the most abundant RNA species in

exosomes, and miRNAs play roles in various biological
TABLE 2 The Role of Related Molecular Cargoes in Exosome Formation.

Molecular Cargo Types Process Involved The Role Played in Exosome Formation References

Proteins

Tetraspanin proteins (e. g., CD9, CD63,
CD81, CD82)

Exosome biogenesis, the
targeting and release of
exosomes cargo

Mediating the budding of ILVs and interacting with cholesterol to
induce membrane curvature and the fusion of MVBs with the plasma
membrane

(58–61)

Major histocompatibility composite (MHC)
molecules (e. g., class MHC I and class MHC
II)

Exosome biogenesis and
antigen presentation

Mediating the budding of the ILVs (62, 63)

Heat shock proteins (Hsps) (e. g. HSP90 and
HSP70)

Exosome release and signaling Induced membrane deformation and the fusion of MVBs with the
plasma membrane

(64, 65)

ESCRT proteins (e. g., Alix, TSG101) Exosome biogenesis Interaction with the s yndecans-syntenin-Alix complex promotes the
budding of ILVs

(66–68)

Rab proteins (e. g., Rab11, Rab35, Rab27A,
and Rab27B)

Exosome biogenesis and release Involved in vesicle budding, transport, and fusion (69–71)

actin Exosome release Participating in the transport process of MVBs (72, 73)

SNARE proteins Exosome release Induced fusion of MVBs with the plasma membrane (74, 75)

Lipids

ceramide Exosome biogenesis and cargo
sorting

Negative curvature of the induced membrane (76, 77)

cholesterol Exosome biogenesis, transport,
and release

MVBs are induced to fuse with the plasma membrane, interact with
ORP1L and control endosome movement along microtubules

(78–80)

sphingomyelin Exosome biogenesis and
signaling

Negative curvature of the induced membrane (77, 81)

PA Exosome biogenesis Induced the negative curvature of the membrane, interacting with
syntenin to recruit syndecan, CD63, and ALIX at the budding site

(82, 83)

Phosphatidylinositol 3-phosphate Cargo sorting Interaction with HRS proteins sorted cargo into endosomes and binding
with ESCRT-0 in the membrane to recruit ESCRT-I, -II and-III

(84, 85)

Phosphatidylinositol-3,
5-diphosphate

Exosome release Fusion with lysosomes regulates MVBs with lysosomal degradation (86)

1-Sphingosine phosphate Cargo sorting Interactions with the inhibitory G protein-coupled S1P receptors in the
MVBs membrane

(87)
fr
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processes such as exocytosis and exosome-mediated cellular

communication (73, 152). For example, Fu et al. (153) found

that exosomes content miR-98-5p inhibits the progression of

pancreatic ductal adenocarcinoma(PDAC) by targeting MAPK

signaling (153). In addition, microarray profiles identified that

miR-106a-5p and miR-19b-3p were remarkably overexpressed

in the serum exosomes of patients with gastric cancer(GC).

Notably, integrating the two miRNAs could identify GC patients

among healthy volunteers with a 0.814 area under the curve

(AUC) value, which was higher than that obtained using CEA or

AFP (154). Of note, the parental information of these exosomes

may differ significantly between healthy people and patients,

making some molecular cargoes in exosomes potentially as

specific biomarkers of cancer. Importantly, the ability to

selectively control the release of exosomes in pathological

situations without compromising their role as essential

components in physiological situations would make exosomes

have promising clinical applications in disease diagnosis,

treatment and prognosis. In this review, we conclude the role

of exosomes molecular cargoes in their biogenesis. We also

underline the potential mechanisms by which autophagy,

hypoxia and pharmacology exogenous factors affect exosome

release. And summarize the key roles of exosome molecular

cargoes play in cancer diagnosis. Furthermore, we discuss the

challenges and potential applications of exosomes research.
Exogenous factors modulate
exosome release

The biogenesis of exosomes is influenced by a variety of

extrinsic factors in addition to the molecular correlation of the

above-mentioned cargoes. A greater understanding of the

underlying mechanisms that influence exosome release factors

could provide new targets for disease diagnosis and treatment.

The potential mechanisms by which autophagy, hypoxia, and

pharmacological factors affect exosome release are

presented below.
Autophagy modulates exosome release

Autophagy is a process that causes the degradation of

cellular material at the lysosome. Autophagosomes can fuse

with MVBs or directly with lysosomes to degrade cargoes

(155). It was found that autophagy-related proteins, such as

ATG5 and ATG16L1, affects exosome release process. For

example, Abdulrahma et al. reported that when the autophagy

protein ATG5 was knocked down, it greatly promoted the

release of prion protein (PRNP) exosomes (156). Recently,
Frontiers in Oncology 04
Zheng et al. demonstrated that sulforaphane inhibits

autophagy and induces exosome release via regulating mTOR/

TEF3 (157). In addition, Guo et al. showed that ATG16L1 and

ATG5 autophagy proteins protected MVBs from lysosomal

degradation and thus facilitated the fusion of MVBs with the

plasma membrane to facilitate exosome release. Conversely,

silencing of ATG16L1 and ATG5 decreased exosome release,

probably due to the ability of ATG5 to separate ATP6V1E1 from

V1V0-ATPase, thereby inhibiting MVBs acidification and

facilitating exosome release (158). Crucially, Keller et al.

identified that ATG proteins promoted exosome release

through a lysosomal non-dependent pathway, i.e. secretory

autophagy, which in turn excreted bacterial toxin receptors

from the membrane surface in the form of exosomes, assisting

host cells to resist toxin damage and enhancing the antimicrobial

response of the organism (159). These studies all suggest that

autophagy may play a specific role to affect exosome release.
Hypoxia modulates exosome release

Hypoxia may affect exosome release through hypoxia-

inducible factors (HIF), Rab-GTPases, NF-kB and four

transmembrane protein signaling pathways, but the specific

mechanisms involved remains unclear (160). Hypoxia-

inducible factor (HIF) is a major component of the hypoxia-

related signaling pathway that directly or indirectly regulates the

process of exosome release. Recently, it has been reported that

HIF mediates endocytosis mainly by increasing the expression of

glucose transporter protein (GLUT-1), transferrin receptor and

epidermal growth factor receptor (EGFR), which in turn induces

exosome release (161). It was found that the increased release of

exosomes from rat proximal renal tubular cells (RPTC) (162)

and breast cancer cells (163) in hypoxic environment was mainly

mediated by HIF-1a. In particular, hypoxia can cause glycolysis

and lactate accumulation. Ban et al. demonstrated that exosome

markers such as CD9, CD63, and HSP70 expression increased

under acidic conditions and were more conducive to exosome

release, whereas exosomal proteins and exosomal RNA were not

detected in alkaline environments and exosome release was

reduced (164). Wang et al. demonstrated that hypoxia

increased the number of exosomes released from colorectal

cancer cells compared to hyperoxic conditions (165). On the

other hand, hypoxia not only alters exosome size, sorting

mechanisms and exosome uptake and binding capacity in the

tumor microenvironment, but also impacts exosome-mediated

tumor biological functions (166). Interestingly, different hypoxic

conditions, such as duration and severity of hypoxia, can have

dramatically variable impacts on the amount and content of

exosomes released by different cell types (167)
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Pharmacology modulates
exosome release

Nowadays, utilizing exosome as nanomaterials for drug

delivery is of great interest to researchers. Notably, drugs may

have a dramatic impact on drug repositioning and as potential

novel anticancer agents by affecting certain molecules in the

exosome release process. However, there are no drugs available

to control the production of harmful exosomes in tumor cells

(168). PH and Ca2+ are required for exosome release. Amiloride

is a drug that inhibits Na +/H + exchange pump and Na +/Ca 2+

channels, and Savina et al. demonstrated that it reduced exosome

release (169). Importantly, amiloride inhibits ceramide formation

by indirectly inhibiting acid sphingomyelinase (aSMase), which in

turn inhibits exosome release (170). Similarly, promethazine, a

tricyclic antidepressant, has been found to reduce exosome release

through inhibition of aSMase activity in the prostate cancer cell

line PC3 by Kosgodage et al. (171). Metformin is the first-line drug

for the treatment of type 2 diabetes, which increases insulin

sensitivity and reduces fat synthesis (172). Recently, Liao et al.

have demonstrated that metformin promotes the fusion of MVBs

with the plasmamembrane through autophagy and thus increased

exosome release from mesenchymal stem cells (MSCs), which

improved their therapeutic effect on senescent cells (173). In

addition, metformin may promote exosome release to regulate

stress by increasing the production of reactive oxygen species in

tumor cells (174). Gao al.demonstrated that all-trans retinoic acid

suppressed GES-1 cell proliferation induced by exosomes from

patients with precancerous lesions by arresting the cell cycle in S-

phase (175). Therefore, these drugs may act by acting on certain

molecules released from exosomes, promoting exosome release

may be a protective method against drug stress conditions to

eliminate cellular damage.

Ticagrelor is a purinergic drug, it has been widely used in

patients with acute coronary syndrome (ACS) and myocardial

infarction (176). Existing studies have reported that ticagrelor

enhanced the release of cell-derived exosomes from the anti-

hypoxic cardiac group by increasing cell proliferation in vitro

(177). In addition, extracellular vesicles derived from

cardiomyocytes pretreated with ticagrelor have a protective

effect on hyperglycemic cardiomyocytes by attenuating

oxidative and endoplasmic reticulum stress (178). Recently,

Kulshreshtha et al. confirmed that simvastatin, a HMG CoA

inhibitor, mediates exosome release by altering MVBs transport

and that its mediated reduction in monocyte-derived exosome

secretion is protective in vitro model of atherosclerosis (179).

Likewise, exosomes derived from mesenchymal stem cells

(MSCs) pretreated with atorvastatin (ATV) dramatically

enhanced the efficacy of treatment of acute myocardial

infarction (AMI), possibly by enhancing endothelial cell

function through paracrine mechanisms (180). It was also

found that extracellular vesicles of cannabis with high
Frontiers in Oncology 05
cannabidiol (CBD) content induce anticancer signaling in

human hepatocellular carcinoma (181).

Notably, Zhang et al. reported that neutral sphingomyelinase

inhibitor (Manumycin A) and ketoconazole had no effect on

exosomes released from normal cells, but affected exosomes

released from tumor cells, which is crucial for disease treatment

(182). It remains to be further investigated whether this can be

mediated by the influence of proto-oncogenes and/or oncogenes

in the tumor cells or by other factors. Considering that most of

the experiments were performed on tumors, it remains to be

further explored how these drugs affect the cancer phenotype by

influencing the exosome release process and thus the cancer

phenotype. Furthermore, we need to be aware that drugs have

certain side effects. In the future, there is also need to focus on

what doses of these drugs should be used to reach specific sites of

cancer in a particular way to inhibit or promote exosome release

as a form of cancer treatment.

In addition, other factors such as food compounds (183,

184), temperature (185, 186), radiotherapy (187) and

chemotherapy (188, 189)affect intercellular communication

mechanisms by mediating exosome release process, which

allows exosomes to perform different functions and then

contributes to the diagnosis and treatment of diseases.
Exosome molecular cargoes
are used as disease
diagnostic biomarkers

Exosome components indicate the biological state of the

initiating cells and reflect the health status of the organs.

Recently, more and more studies have shown that EVs

contents can be applied in the diagnosis of various diseases

(13, 190–193). This section summarizes the biomarkers that may

become clinically common diseases in several major classes of

molecular cargoes.
Exosomal nucleic acids

Exosomal mRNAs
Messenger RNA (mRNA) is a single-stranded ribonucleic

acid that carries genetic information and can guide protein

synthesis. mRNA is not only an important exosome cargo, but

also acts as a functional modulator in cancer cell-derived

exosome processes (194). In order to study the diagnostic

performance of circulating exosomal messenger RNA

(emRNA) and tissue mRNA in prostate cancer (PCa) patients,

Ji et al. (195) demonstrated circulating emRNA is more

advantageous as a diagnostic biomarker in PCa patients.

Recipient operating characteristic curve (ROC) analysis

indicated that the AUC value of circulating emRNA in PCa
frontiersin.org
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screening and diagnosis was 0.948 and 0.851 respectively.

Furthermore, the six molecules in emRNA including CDC42,

IL32, MAX, NCF2, PDGFA and SRSF2 were upregulated in the

screening and diagnosis of PCa patients compared to healthy

controls (195). Similarly, Shephard et al. (88) said that serum-

derived EV-mRNA has great potential for the differential

diagnosis of prostate cancer. Among these, increased serum-

derived EV-mRNA CTGF molecule or decreased EV-mRNA

CAV1 molecule were closely associated with the rate of disease

progression, and the AUC values of CTGF and CAV1 were

0.8600 and 0.8100 respectively. However, serum PSA could not

predict disease progression, suggesting that EV-mRNA CTGF

and CAV1 are superior to PSA in predicting disease progression

(88). Another study proved that mRNA index of membrane

matrix type 1 metalloproteinase (MT1-MMP) was significantly

up-regulated in gastric cancer (GC) patients, with an AUC of

0.788, sensitivity of 63.9% and specificity of 87.1%, while the

AUC value of serum CEA was only 0.655. Meanwhile, the

combined exosomes diagnosis of mRNA(MT1-MMP) and

CEA (AUC=0.821) was significantly better than the detection

of mRNA (MT1-MMP) or CEA separately in identifying GC

patients. In addition, it has been shown that exosomal epithelial

growth factor receptor (EGFR) mRNA may be a potential

predictor of glioblastoma (196). Serum exosome mRNA(MT1-

MMP) was significantly associated with tumor differentiation,

depth of invasion, lymphatic metastasis, distal metastasis and

TNM stage (89). In brief, these studies show that exosomal

mRNAs may have the potential to act as cancer biomarkers, but

their specificity for the disease should be further investigated.

Exosomal miRNAs
MiRNA is a class of small endogenous noncoding RNA

composed of 18-24 nucleotides, and the miRNA that delivered to

the recipient cells can regulate various gene expression by

preventing translation and inducing mRNA degradation (197).

In addition, Exosomal miRNAs are more stable than free

miRNAs as they are protected from degradation owing to

RNase activity in biofluids (198). Recent studies have revealed

that exosomal miRNAs may serve as potential biomarkers in

certain cancers. For example, Yang et al. (104) found that

exosomal miR-423-5p level was highly expressed in gastric

cancer (GC) patients serum, and the AUC values of exosomal

miR-423-5p, serum CEA and CA-199 were 0.763, 0.596 and

0.607 respectively (104). Notably, the combined detection of

miRNAs can improve diagnostic accuracy. Huang et al. (199)

found that six miRNAs were significantly higher expressed in

serum exosomes of GC patients, whose AUC values were 0.627

(miR-10b-5p), 0.652 (miR-132-3p), 0.637 (miR-185-5p), 0.683

(miR-195-5p), 0.637 (miR-20a-3p) and 0.652 (miR-296-5p). At

the same time, the AUC of the combined detection of the six

miRNAs was 0.703, significantly improved the diagnostic

accuracy of GC patients (199). Another study showed that the
Frontiers in Oncology 06
AUC values of serum exosomal miR-19b-3p and miR-106a-5p

were 0.813 and 0.806 respectively. The AUC of their combined

diagnosis was 0.826 (154). Similarly, in urinary exosomes from

patients with renal clear cell carcinoma (ccRCC), different

combinations of miRNAs, including miR-126-3p + miR-449a,

miR-126-3p + miR-34b-5p, miR-126-3p + miR-486-5p, miR-25-

3p + miR-34b-5p, miR-34b-5p, miR-2 b-5p-34 b-5p and miR-

150-5 p + miR-126-3p have been reported to be potential

diagnostic biomarkers in ccRCC patients. The sensitivities of

these six combinations were 60.6%, 67.3%, 52.9%, 73.1%, 74%,

and 61.5% respectively. Accordingly, specificities were 100%,

82.8%, 95.8%, 79.3%, 72.4%, and 82.8%, respectively.

Furthermore, the targets of these miRNAs may be related to

cell cycle regulation, tumorigenesis and angiogenesis (200).

Muramatsu-Maekawa et al. (201) stated that miRNA-4525 in

serum EVs is significantly higher expression in patients with

advanced renal cell carcinoma (RCC) (201). Initially, serum

exosomal miR-17-5p and miR-21 levels were considered as

potential biomarkers for the differentiation of primary

adenocarcinoma (PC). The mean levels of miR-17-5p and

miR-21 were significantly higher in PC patients than in

healthy controls (HPs) and non-PC groups, and the AUC

values for miR-17-5p and miR-21 were 0.887 and 0.897

respectively, and the sensitivity and specificity of miR-17-5p

were 72.7% and 92.6%, and 95.5% and 81.5% for miR-21

respectively (93). Subsequently, serum exosomal miRNAs

(including miR-1246, miR-4644, miR-3976, and miR-4306)

were also proposed as potential diagnostic biomarkers for

pancreatic cancer (202). Notably, Manterola et al. (203) found

that serum exosomal miR-320 and miR-574-3p were

significantly higher expression in patients with glioblastoma

multiforme (GBM) as compared with healthy controls, and

ROC curve analysis indicated AUC for exosomal miR-320 and

miR-574-3p of 0.720 and 0.738 respectively (203). In conclusion,

exosomal miRNAs may be regarded as potential biomarkers

of diseases.

Exosomal lncRNAs
In addition to miRNAs, exosomal lncRNAs are also

attractive as potential diagnostic biomarkers. Long noncoding

RNA (lncRNA) exists in the nucleus or cytoplasm, and they can

interact with DNA, RNA, or proteins (204). Several studies have

shown that exosomal lncRNAs may have the potential to act as

biomarkers for cancer diagnosis. For example, plasma

expression of lncUEGC1 was significantly higher in gastric

cancer (GC) patients of stage I or II, and plasma exosomal

lncUEGC1 (AUC =0.8760) was significantly superior to serum

CEA (AUC = 0.6614). This suggests that exosomal lncUEGC1

may be a highly potential sensitive biomarker in early gastric

cancer diagnosis (107). In addition, serum exosomal lncRNA

HOTTIP was found to be a potential diagnostic index for gastric

cancer patients. The ROC curve indicated that HOTTIP had
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high diagnostic value with an AUC value of 0.827 and higher

diagnostic power than CEA, CA19-9 and CA72-4 (AUC values

of 0.653, 0.685 and 0.639, respectively). It’s important that

HOTTIP expression level was significantly correlated with the

depth of invasion and TNM stage in gastric cancer (108).

Another study confirmed that circulating exosomal long

noncoding RNA-GC1 (lncRNA-GC1) expression could

distinguish early gastric cancer patients and healthy controls,

and ROC curve indicated that better exosomal lncRNA-GC1

(AUC=0.9033) compared to serum CEA, CA72-4 and CA19-9

(AUC values of 0.5987,0.6816 and 0.6482, respectively) (109). In

addition, LINC00152 was also significantly elevated in the

plasma exosomes of gastric cancer patients. Elevated exosomal

LINC00152 was considered as a potential diagnostic indicator of

gastric cancer with an AUC value of 0.657 (205). Similarly, Xiao

et al. (110) demonstrated that lncRNA CCAT1 was significantly

higher in serum EVs in gastric cancer patients than in healthy

controls, chronic gastritis or dysplasia, with EVs lncRNA

CCAT1 having an AUC of 0.890, sensitivity of 79.6%,

specificity of 92.6%, while EVs lncRNA CCAT1 and embryo

antibody combinations of 0.910 of 80.5% and 92.6% respectively.

Moreover, EVs lncRNA CCAT1 may promote gastric cancer

cells proliferation, migration and invasion through c-Myc or

Bmi-1 upmodulation (110).
Exosomal circRNAs
Circular RNA (circRNA) is a class of noncoding RNA, mainly

produced by pre-mRNA splicing. In contrast to miRNA, circRNA

is abnormally stable, conserved and has cells or tissue-specific

expression pattern (206). Exosomal circRNAs are anti-

degradative, and its secretion into the extracellular environment

can be used for many biological applications. Importantly, exosomal

circRNAs may serve as novel diagnostic biomarkers. For example,

Shao et al. (115) found that the expression of plasma exosomal

hsa_circ_0065149 was significantly reduced in gastric cancer

patients compared with healthy cohort, suggesting that reduced

hsa_circ_0065149 is a potential diagnostic biomarker for gastric

cancer (AUC=0.640) (115). Similarly, Xie et al. (116) found

significant higher serum circSHKBP1 level in gastric cancer

patients with a sharp decrease in exosomal circSHKBP1 after

surgical resection of the tumor (116). A previous study in plasma

EVs from breast cancer patients proved that nine circRNAs

( inc lud ing hsa_c i r c_0002190 , h sa_c i r c_0007177 ,

hsa_circ_0000642, hsa_circ_0001439, hsa_circ_0001417,

hsa_circ_0005552, hsa_circ_0001073, hsa_circ_0000267

and hsa_circ_04004) combinations display maximum AUC

values, and the AUC is 0.83 (207). In cholangiocarcinoma, circ-

0000284 was significantly elevated in cholangiocarcinoma cell lines,

its tissues and plasma exosomes, and higher expression of circ-

0000284 promoted the migration, invasion and proliferation

capacity of cholangiocarcinoma cells in vitro and in vivo (208).
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Therefore, the exosomal circ-0000284 could be used as a potential

metastatic diagnostic biomarker. Circulating exosomal hsa-circ-

0004771 was significantly upregulated in colorectal cancer (CRC)

patients and AUC values of hsa-circ-0004771 were 0.59, 0.86 and

0.88 in differentiating between intercancer, stage I/II and CRC

patients and healthy controls respectively, suggesting that hsa-circ-

0004771 could serve as a new potential diagnostic biomarker for

CRC patients (209). Moreover, exosomal circRNAs in serum and

urine have the potential to act as diagnostic biomarker for

idiopathic membranous nephropathy (IMN) (210). In short, these

studies suggest that exosomal circRNAs have the possibility of act as

biomarkers for disease diagnosis. However, whether its expression

levels are specific for different disease and tumor subtypes remains

to be further investigated.
Exosomal proteins

In addition to nucleic acids, exosomal proteins have been

found to act as potential biomarkers for diseases. Because

exosomes contain multiple protein molecules that reflect the

characteristics of its parental cells (211). Exosomal proteins have

been found in different body fluids (including serum, plasma,

urine, saliva and cerebrospinal fluid) and may have the potential

to serve as biomarkers for cancer diagnosis. For example, the cell

surface proteoglycan Glypican-1 (GPC1), a member of the

heparan sulfate proteoglycan family, is a widespread cell

surface protein (212). It has been suggested that GPC1-

positive exosomal was highly expressed in the serum of

pancreatic cancer patients, and the diagnostic power of the

exosomal protein GPC1 (AUC = 1.0) was significantly better

than CA19-9 (AUC =0.739) in distinguishing pancreatic cancer

patients from healthy controls. CA19-9 serum levels cannot

distinguish patients with intraductal papillary mucinous

tumors (PCPL) from healthy controls, while GPC1-positive

serum exosomal had 100% sensitivity and specificity in all

stages of pancreatic cancer (e. g.: cancer in situ, stage I, and

stage II-IV) (120). Similarly, the exosomal protein GPC1

expression was significantly increased in both plasma and

tissue samples of colorectal cancer (CRC) patients, and both

normalized after surgical treatment (213). Another study

indicated that the downregulation of serum exosomal

Gastrokine 1 (GKN1) protein may be a valid diagnostic

biomarker in gastric cancer patients (129).

Recently, the proteomic analysis of extracellular vesicles and

granules (EVP) from 426 human samples derived from tissue

explants (TE), plasma and other body fluids by Hoshino et al.

(214). They confirmed that CD63 and flotillins were

heterogeneous in plasma and tissue EVP. And Leucine-rich

repeat protein 26 (LRRC26), ATP-dependent translocase

ABCB1 (ABCB1), Bile salt export pump (ABCB11), Adhesion

G protein-coupled receptor G6 (ADGRG6), Desmosomes-1
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(DSC1), Desmoglein-1 (DSG1), Keratin and Plasminogen-like

protein B (PLGLB1) were present only in plasma-derived EVP in

patients with pancreatic cancer (PaCa), absent or extremely low

expression in tumor tissue (TT) and adjacent normal tissue (AT)

-derived EVP. This suggests that these proteins have the

potential to act as characteristic tumor-associated EVP

proteins. In addition, they said that EVP proteins can

distinguish between cancer in the early stages of pancreatic

cancer (PaCa) and lung adenocarcinoma (Luca) patients (214).

It is interesting that, by proteomic analysis of Sun et al. (215),

Annexin family members (Annexin A1, A2, A3, A5, A6, A11),

Nitrogen permease regulator 2-like protein(NPRL2),

Carcinoembryonic antigen-related cell adhesion molecule 1

(CEACAM1), Mucin 1(MUC1), Prominin-1 (PROM1),

Histone H4 (HIST1H4A) and Tumor necrosis factor alpha-

induced protein 3 (TNFAIP3) were associated with lung cancer,

which is helpful in lung cancer diagnosis (215). The expression

levels of plasma exosomal Tim-3 and Galectin-9 protein

molecules were significantly increased in non-small-cell lung

cancer (NSCLC) patients, as compared with healthy controls. It’s

important that exosomal Tim-3 and Galectin-9 expression levels

were positively correlated with clinicopathological features such

as patient age, tumor size, distant metastasis and cancer stage.

Moreover, exosomal Tim-3 is also associated with lymph node

metastasis. Therefore, exosomal Tim-3 and Galectin-9 may serve

as potential biomarkers for the clinical application of NSCLC

(216). All of these findings suggest that exosomal proteins have

the potential to serve as biomarkers for disease diagnosis. In the

future, we still need to focus on the expression levels of specific

proteins in a certain disease.
Exosomal lipids

Lipid molecules in exosomes are mainly used to maintain

their external morphology. It has been reported that lipid

molecules in EVs can not only protect nucleic acids and

protein contents from harmful stimuli in the extracellular

environment, but also exert bioactive functions to participate

in tumor biological processes as signaling molecules (217, 218).

It has been shown that lipid molecules in exosomes can also be

used as potential biomarkers in cancer patients (136, 219–222).

Among them, the expression levels of phosphatidylcholine(PC),

phosphatidylethanolamine (PE),phosphatidylinositol(PI),

sphingomyelin(SM),ceramide(Cer) and cholesterol are various

in difference diseases (150, 223–225).

Previously, Skotland et al. (223) pointed out that urinary

exosomal lipid molecules (such as phosphoresterdylserine and

lactoceramide) have potential as biomarkers in prostate cancer

(134). Subsequently, Brzozowski et al. (226) performed lipid

analysis in exosomes released from non-tumorigenic (RWPE1),

tumorigenic (NB26) and metastatic (PC-3) prostate cell lines, and
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they foundsignificantdifferences in lipid speciesabundance incellsof

these three different prostate species. The abundance of

Diacylglycerol (DG) and Triacylglycerol (TG) species were reduced

in both the NB26 and PC-3 cell lines EVs as compared to the EVs in

the RWPE1 cell line. However, in contrast to EVs in the RWPE1 cell

line, EVs in the NB2 and PC-3 cell lines were rich in

glycerophospholipids, while Cer and SM species do not differ

much among the three cell lines (226). In addition, Exosomal lipid

components have been detected in Hepatocellular Carcinoma

(HepG2/C3a and Huh7 cells) (227), Melanoma (B16-F10 cells)

(228), Glioblastoma (U87 cells) (229)and Pancreatic cancer (AsPC-

1 cells) (230). Recently, Glover et al. (135) stated that the content of

exosomal lipid molecules such as glycerophospholipids, glycerolips,

and sterols is reduced in the urine of patients with hereditary-

trypsinaemia (135). Overexpression of exosomal lipid molecules

such as acid sphingolipase in the cerebrospinal fluid of multiple

sclerosis(MS) patients is strongly associated with disease severity,

creating new opportunities for the diagnosis and treatment of the

disease (137). Furthermore, sphingomyelin, derived from EVs in

tumor cells, promotes endothelial cell migration and angiogenesis

during tumor growth andmetastasis (231). To sum up, this suggests

that the great potential of EVs lipid molecules for cancer

diagnostic biomarkers.
Summarizing the role of exosomal
molecular cargoes in cancer diagnosis

In conclusion, exosomal nucleic acids, proteins and lipid

molecular cargoes in different body fluids have broad application

prospects as cancer diagnostic biomarkers (Table 3). Previous

researches have shown that exosomal molecular cargoes are

differentially expressed in body fluids, and exosomal molecular

cargoes with higher AUC values may effectively distinguish

cancer patients from healthy individuals (232–234). It is worth

noting that the combined detection of multiple potential

exosome molecular cargoes may provide a rapid, reliable and

non-invasive aid to the diagnosis of diseases. In addition, that

exosomes used as diagnostic biomarkers also requires

consideration of all preanalytical variables associated with

sample collection, such as whole blood (or other biofluid)

treatment, hemolysis interference, and other contaminant

interference (235). In the future, we should also focus on

large-scale preparation and standardized protocols for

exosomes analysis, and need advanced techniques to minimize

contaminants in the samples as well.
Conclusion

In this review, we illustrate that exosomal molecular cargoes

participate in exosome biogenesis, which is a complex process
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TABLE 3 Exosomal molecular cargoes are used as biomarkers for disease diagnosis.

Potential
Molecular Cargoes

Expression Diseases Source Isolation AUC Clinical Significance References

mRNAs

CTGF ↑ Prostate cancer Serum UC 0.8600 Early diagnosis & Prognostic
monitoring

(88)

CAV1 ↓ Prostate cancer Serum UC 0.8100 Early diagnosis & Prognostic
monitoring

(88)

THBS1 ↓ Prostate cancer Serum UC 0.8200 Early diagnosis (88)

TIMP2 ↓ Prostate cancer Serum UC 0.8000 Early diagnosis (88)

MT1-MMP ↑ Gastric cancer Serum CRG 0.7880 Diagnosis, Treatment, and
Prognosis

(89)

hnRNPH1 ↑ Hepatocellular
carcinoma

Serum CRG 0.8650 Early diagnosis & Prognostic
monitoring

(90)

miRNAs

miR-141 ↑ Prostate cancer Serum PC 0.8694 Early diagnosis (91)

miR-196a-5p ↓ Prostate cancer Urine UC 0.7300 Early diagnosis (92)

miR-501-3p ↓ Prostate cancer Urine UC 0.6900 Early diagnosis (92)

miR-196a ↓ Prostate cancer Urine UC 0.9200 Early diagnosis (92)

miR-17-5p ↑ Pancreatic
cancer

Serum UC 0.8870 Early diagnosis & Prognostic
monitoring

(93)

miR-196a ↑ Pancreatic
cancer

Plasma UC 0.8100 Early diagnosis & Prognostic
monitoring

(94)

miR-1246 ↑ Pancreatic
cancer

Saliva CRG 0.8140 Early diagnosis (95)

miR-4644 ↑ Pancreatic
cancer

Saliva CRG 0.7630 Early diagnosis (95)

miR-101 ↓ Ovarian cancer Serum PC — Early diagnosis & Treatment
assessment

(96)

miR-224 ↑ Hepatocellular
carcinoma

Serum PC 0.9100 Early diagnosis & Prognostic
monitoring

(97)

miR-92b ↑ Hepatocellular
carcinoma

Serum PC 0.9250 Early diagnosis of recurrence after
living donor liver transplantation
(LD LT)

(98)

miR-122 ↑ Hepatocellular
carcinoma

Serum PC 0.9900 Early diagnosis (99)

miR-92b ↑ Colorectal
cancer

Plasma UC 0.7930 Early diagnosis (100)

miR-122 ↑ Colorectal
cancer

Serum PC 0.8900 Early diagnosis & Prognostic
monitoring

(101)

miR-520c-3p ↑ Nonsmall-cell
lung cancer

Serum UC 、PC 0.8190 Early diagnosis (102)

miR-1274b ↑ Nonsmall-cell
lung cancer

Serum UC 、PC 0.7880 Early diagnosis (102)

miR-15a-5p ↑ Endometrial
carcinoma

Plasma PC 0.8130 Early diagnosis (103)

miR-423-5p ↑ Gastric cancer Serum PC 0.7630 Early diagnosis & Prognostic
monitoring

(104)

miR-15b-3p ↑ Gastric cancer Serum UC 0.8200 Early diagnosis & Prognostic
monitoring

(105)

miR-4732-5p ↑ Epithelial
Ovarian cancer

Plasma CRG 0.8890 Early diagnosis (106)

lncRNAs

lncRNA-UEGC1 ↑ Gastric cancer Plasma UC 0.8760 Early diagnosis (107)

lncRNA-HOTTIP ↑ Gastric cancer Serum UC 0.8270 Early diagnosis & Prognostic
monitoring

(108)

(Continued)
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TABLE 3 Continued

Potential
Molecular Cargoes

Expression Diseases Source Isolation AUC Clinical Significance References

lncRNA-GC1 ↑ Gastric cancer Serum UC 0.9033 Early diagnosis (109)

lncRNA-CCAT 1 ↑ Gastric cancer Serum UC, CRG 0.8900 Early diagnosis (110)

lncRNA-UCA1 ↑ Bladder cancer Serum CRG 0.7530 Early diagnosis (111)

lncRNA - PTENP1 ↓ Bladder cancer Plasma CRG 0.7430 Early diagnosis & Prognostic
monitoring

(112)

lncRNA - TERC ↑ Bladder cancer Urine UC 0.8360 Early diagnosis & Prognostic
monitoring

(112)

lncRNA -LINC00635 ↑ Hepatocellular
carcinoma

Serum CRG 0.7500 Early diagnosis & Prognostic
monitoring

(113)

lncRNA -HOTAIR ↑ Glioblastoma Serum CRG 0.9130 Early diagnosis & Prognostic
monitoring

(114)

circRNAs

hsa_circ_0065149 ↓ Gastric cancer Plasma CRG 0.6400 Early diagnosis & Prognostic
monitoring

(115)

circSHKBP1 ↑ Gastric cancer Serum PC — Early diagnosis & Prognostic
monitoring

(116)

circ-KIAA1244 ↓ Gastric cancer Plasma CRG 0.7481 Early diagnosis (117)

circSATB2 ↑ Lung cancer Serum UC 0.6600 Early diagnosis (118)

circLPAR1 ↓ Colorectal
cancer

Plasma CRG 0.8580 Early diagnosis (119)

Proteins

glypican-1 ↑ Pancreatic
cancer

Serum UC 1.0000 Early diagnosis (120)

Survivin ↑ Prostate cancer Plasma UC — Early diagnosis & Prognostic
monitoring

(121)

EphrinA2 ↑ Prostate cancer Serum UC 0.7666 Early diagnosis (122)

MAGE 3/6 ↑ Ovarian cancer Plasma UC — Early diagnosis & Treatment
assessment

(123)

Epcam-CD63 ↑ Colorectal
cancer

Plasma UC 0.9600 Early diagnosis & Prognostic
monitoring

(124)

TRIM3 ↓ Gastric cancer Serum PC — Early diagnosis (125)

MUC1 ↑ Nonsmall-cell
lung cancer

Plasma CRG 0.6850 Early diagnosis (126)

Del-1 ↑ Breast cancer Plasma ELISA
(CD63*
capture)

0.9610 Early diagnosis (127)

Fibronectin ↑ Breast cancer Plasma ELISA
(CD63*
capture)

0.7700 Early diagnosis (128)

GKN1 ↓ Gastric cancer Serum UC 1.0000 Early diagnosis & Treatment
assessment

(129)

CP ↑ Renal cell
carcinoma

Urine UC 1.0000 Early diagnosis (130)

PODXL ↑ Renal cell
carcinoma

Urine UC 1.0000 Early diagnosis (130)

EpCAM ↑ Metastatic
breast cancer

Plasma UC 0.9709 Early diagnosis (131)

PD-L1 ↑ Nonsmall-cell
lung cancer

Serum UC 0.9700 Early diagnosis (132)

CD24 ↑ Ovarian cancer Plasma UC 1.0000 Early diagnosis (133)

EpCAM ↑ Ovarian cancer Plasma UC 1.0000 Early diagnosis (133)

FRa ↓ Ovarian cancer Plasma UC 0.9950 Early diagnosis (133)

(Continued)
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that may vary in cargoes or cellular origin. In addition, the

regulation of exosome biogenesis processes involves the

coordination of many different molecular cargoes and

signaling mechanisms, mainly dominated by ESCRT-

dependent, lipid raft and tetraspanin protein mechanisms, and

Rab proteins further assists cargo sorting and exosome release.

Notably, this cargo molecules interact with each other to mainly

mediate exosome biogenesis by regulating the negative curvature

of the cell membrane (236). So far, ESCRT and ceramide

pathways are established for exosome biogenesis.

Furthermore, exosomes and their molecular cargoes are

elaborated as effective tools for the diagnosis of cancer.

Although tissue biopsy is still the gold standard for tumor

diagnosis, but it is invasive. An ideal diagnostic approach for

cancer should accurately detect tumor-specific biomarkers using

non-invasive techniques at the pre-metastatic stage (237). Most of

the current molecules used as tumor diagnostic biomarkers are

based on detecting the higher expression molecules above the

threshold in healthy individuals. For instance, PSA and CEA serve

as diagnostic biomarkers for prostate cancer and gastrointestinal

cancer respectively, and these biomarkers are significantly elevated

only at tumor progression state (238). Since exosomes are present

in most body fluids and their stability properties, and the

molecular cargoes carried by exosomes reflects the genetic or

signaling changes in the cancer cells of origin. If it would be

detected earlier as biomarkers, so as to achieve a means of treating

the disease, it would make exosomes potentially replace invasive

biopsies as cancer diagnostic biomarkers of important clinical

significance (239, 240).

Understanding the process of exosome biogenesis is an

important part of the research and physiological significance

of exosomes function, especially for disease diagnosis, treatment,

and prognosis. Controlling exosome generation in pathological

states may serve as a therapeutic opportunity to reduce

tumorigenesis. However, it is still challenging to investigate the

whole mechanism of exosome biogenesis. Because the exosome
Frontiers in Oncology 11
formation pathway may be different according to different cell

types, some specific molecules will participate in multiple

processes, leading to the exact mechanism of action of many

molecules is not clear, for which their heterogeneity may be a

disadvantage of their use as biomarkers. It is worth noting that

most studies in the field of exosomes are conducted in vitro, and

the laboratory culture conditions or technical methods also affect

the biological characteristics of exosomes (241). Therefore,

special attention should also be paid to the methods of

exosomes extraction used in each study. How to promote the

yield and purity of exosomes is a top priority, which has been a

bottleneck limiting their translational applications. Recent

studies have shown that appropriate combinations of several

methods for extracting and purifying exosomes can effectively

improve the above problems, and how to integrate them for

optimum results remains to be further investigated. More work

needs to be done in the future to elucidate the role of exosomes

in diseases progression, with particular attention to the precise

mechanisms by which exosome biogenesis pathways influence

cellular function. The questions will be raised such as, will

different biogenesis pathways produce vesicles with different or

similar functions? Will there be any correlation between vesicles

produced by this biogenesis pathways? This will be useful for

treatments involving the pathological mechanisms of

exosomes. Understanding the physiological effects and how

they can be induced into pathological factors is crucial when

developing new therapeutic strategies.
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TABLE 3 Continued

Potential
Molecular Cargoes

Expression Diseases Source Isolation AUC Clinical Significance References

Lipids

Phosphatidylserine (PS) 18:1/
18:1 and lactose ceramide
(d18:1/16:0)

↑ Prostate cancer Urine UC 0.9890 (In
combination)

Early diagnosis (134)

Glycerophospholipids,
glycerolips and sterols

↓ Hereditary
alpha-
tryptophanemia

Urine UC – Early diagnosis (135)

PC (P-14:0/22:2) ↑ Pancreatic
cancer

Serum PC – Early diagnosis & Prognostic
monitoring

(136)

Acid sphingomyelinase ↑ Multiple
sclerosis

Cerebrospinal
fluid

UC 0.7700 Early diagnosis & Treatment
assessment

(137)
fr
↑, increased; ↓, decreased; –, unrevealed; UC, ultracentrifugation; PC, precipitation; CRG, Commercial reagents.
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49. Bestard-Escalas J, Maimó-Barceló A, Lopez DH, Reigada R, Guardiola-
Serrano F, Ramos-Vivas J, et al. Common and differential traits of the membrane
lipidome of colon cancer cell lines and their secreted vesicles: Impact on studies
using cell lines. Cancers (2020) 12. doi: 10.3390/cancers12051293
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