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Abstract

Insect antennae are sensory organs involved in a variety of behaviors, sensing many different stimulus modalities. As
mechanosensors, they are crucial for flight control in the hawkmoth Manduca sexta. One of their roles is to mediate
compensatory reflexes of the abdomen in response to rotations of the body in the pitch axis. Abdominal motions, in turn,
are a component of the steering mechanism for flying insects. Using a radio controlled, programmable, miniature
stimulator, we show that ultra-low-current electrical stimulation of antennal muscles in freely-flying hawkmoths leads to
repeatable, transient changes in the animals’ pitch angle, as well as less predictable changes in flight speed and flight
altitude. We postulate that by deflecting the antennae we indirectly stimulate mechanoreceptors at the base, which drive
compensatory reflexes leading to changes in pitch attitude.
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Introduction

All insects possess antennae [1]. While in many species these

appendages primarily function as olfactory and tactile organs, in

flying insects antennae also subsume a mechanosensory role that is

crucial for flight control. For example, antennae have been

associated with air flow sensing, through behavioral evidence

indicating that intact antennae are necessary for flight speed

regulation in bees, flies, locusts, dragonflies, and butterflies [2–7].

More recently, antennal mechanoreceptors have also been shown

to be important for inertial sensing providing sensory feedback

that counteracts rapid perturbations of an insect’s body orienta-

tion. Sane et al. [8] discovered that flight performance depends on

the presence of the antennal flagellum. The latter acts as a proof

mass for mechanosensors, most likely Johnston’s organ, located at

the base of each antenna. The sensory neurons are neurophys-

iologically tuned to the mechanical signals expected from inertial

strain signals occurring during rotations of the body [8].

Specifically, the mechanosensors at the base of the antennae

mediate an abdominal flexion response to rotations that can be

employed in steering [9]. As with the free-flight experiments

conducted by Sane et al., cutting the flagella off their bases leads to

a loss of function; gluing them back rescues the response. In

addition to being driven by antennal mechanosensors, abdominal

flexion is elicited by visual stimuli. In fact, the visual system, by

measuring rotational optic flow, leads to even stronger abdominal

responses, which are almost anti-phase to the ones elicited

mechanically.

As a further complication, antennae are not merely passively

moved by wind or inertial forces that happen during body turns.

In Manduca sexta, there are two sets of small muscles that control

antennal posture: 1.) extrinsic muscles that attach in the tentorium

within the head capsule and insert onto the proximal scape; and 2.)

intrinsic muscles within the scape that insert onto the pedicel [10].

For flight, these muscle groups bring antennae from a recessed rest

position into a forward-facing flight position permitting wind and

rotation sensing. When in flight mode, multiple feedback circuits

act on the muscles. One keeps the inter-antennal angle constant

and independent of air speed [11], which can provide a means of

regulating flight speed [6–7].

Thus, the behavior of a flying moth is the complex result of

combining information from multiple sensors acting over many

neural circuits to affect multiple actuators. To gain a better

understanding of the role of a subsystem to this complex cascade,

namely the antennal mechanosensors, perturbation studies can

lead to important insights [12]. We therefore asked whether in-

flight stimulation of these sensors can lead to predictable changes

in a moth’s flight trajectory.

Due to the challenges posed by experiments on a freely flying

animal, we decided to use extrinsic antennal muscle stimulation as

a proxy for stimulation of antennal mechanosensors, driving

antennal motions via stimulation of their supporting muscles. We

first show that stimulation of extrinsic muscles in resting animals

leads to transient deflections of the antennae. Such deflection

necessarily leads to changes in strain at the antennal base,

stimulating local mechanosensors. When using the same stimula-
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tion paradigm in freely flying moths by employing a telemetrically

controlled ultra-low mass current stimulus board, we find that

transient changes in the moth’s pitch angle are the most reliable

response. Observed changes in the flight path elicited by antennal

stimulation is consistent with the earlier finding that mechanical

rotations in tethered moths lead to an abdominal flexion that

would lead to changes in the animals’ pitch orientation.

Materials and Methods

Animals
Manduca sexta were reared in the Department of Biology at the

University of Washington, Seattle. All experiments used male

moths with no apparent defects in wings or eyes 3–5 days after

eclosion. Animals were usually chilled in a refridgerator at ,10uC
for about 10 minutes prior to preparing them for an experiment.

Antennal stimulation and deflection measurements
Electrical stimuli were delivered to extrinsic antennal muscles by

inserting fine stimulation electrodes to a depth of ,1 mm, in a

dorso-medial location near each antennal rim on the head capsule

(Fig. 1). All stimuli consisted of 2.8–3 V square-pulse signals of

50% duty cycle and varying frequencies. They were delivered by a

miniature stimulator board based on a PIC16F688 microprocessor

(Microchip Technology Inc., Chandler, AZ). A transmitter that

communicated with the stimulator board wirelessly was connected

to a computer running custom-written software (implemented in

Java) to cycle through the different stimulus parameters, and

stimulate the antennal muscles every 5 seconds.

A high-speed video camera (Phantom Miro 4; Vision Research,

NJ) filmed the moth from above (at 250 fps) and the tip and base

coordinates of the stimulated antenna were extracted with custom

MATLAB digitizing software (DLTdataviewer [13]) to calculate

deflection angles for each frame.

Only antennal motions were elicited by the electrical stimuli

when electrodes were placed correctly. We only kept trials in

which antennal motion mainly occurred in a plane extending

backwards and slightly upwards because other directions tended to

also show responses beyond just antennal movement (such as leg

twitching). Due to this directionality we assume that our target

muscles are mainly the anterior or posterior levator muscles (ALM,

PLM in [10]). Imperfectly placed electrodes also elicited other

behaviors, such as extension of legs, or movement of the

contralateral antenna, suggesting that stimulus delivery was less

isolated than is possible when placed into intrinsic muscles of the

scape. Animals which showed such stimulus leakage, or antennal

deflection in a direction other than backwards, were discarded

after a tethered pre-flight test.

Stimulation of extrinsic muscles in free flight
Stimulus electrode placement for free-flight experiments was the

same as above. The stimulator board, which is small and light

enough to be carried by a moth (6.8610.265.1 mm; weight about

420 mg), was mounted on the ventral side of the animal, just

posterior to the junction between thorax and abdomen. Before

each experiment, the stimulus frequency was titrated to elicit

backwards antennal deflection, and no other visible behavioral

responses. We were unable to keep the electrodes and chip in place

for prolonged periods of time, so all experiments were performed

on the day of electrode placement. For all trials reported here, the

stimulation paradigm consisted of 200 ms long trains of square

pulses at 2.8–3 V, 250 Hz and a duty cycle of 50%.

Videography and analysis of 3D trajectories
We filmed moths flying in a custom-built wind tunnel (air speed

set to ca. 1 m/s) with three synchronized high-speed video

cameras (Basler Pilot GigE, Basler Vision Technologies, Ahrens-

burg, Germany) operated at 150 fps. All cameras were synchro-

nized with a pulse signal generated in the StreamPix 4 recording

software used for visualization (NorPix, Inc. Montreal, Canada),

and output through a National Instruments DAQ board (DAQ

SPECS, NI, Austin, TX). A custom-built trigger circuit, based on

an Arduino board (Arduino Duemilanove; SparkFun Electronics,

Boulder, CO), elicited stimulation of the moth, as well as triggered

the cameras, either when the moth blocked two crossed laser

beams (632 nm, red low-power laser diodes), or when a push-

button switch was pressed.

The three-dimensional coordinates of stimulated moths were

reconstructed using customized routines (DLTdataviewer; [13]) in

MATLAB (MathWorks, Natick, MA, USA). Once the 3D

trajectory was extracted from a video, the moth’s body angle (tip

of abdomen to rostrum of the head) was calculated for each frame.

The pitch angle is defined as the angle between the body vector

and its projected component onto the x/y plane. The yaw

orientation is the angle between the body vector’s x/y component

and the x-axis, which corresponds to the longitudinal axis of the

wind tunnel. Altitude is the height (z-coordinate) of the center of

the body vector, and speed is the absolute value of the numeric

derivative of the center’s position.

Figure 1. Overview of how antennal stimulation in free-flying
animals was achieved. (A) Top view of a moth’s head, with one
electrode pair placed (indicated by red arrow), but not yet waxed down,
to target extrinsic antennal muscles. The other electrode pair has not
yet been placed. (B) Photograph of a typical pair of tungsten electrodes
used for electrical stimulation of extrinsic muscles. (C) Photograph of
the ‘‘RadioFlyer’’ microcircuit that is mounted ventrally on a moth to
provide telemetrically triggered electric muscle stimulation. (D)
Simplified schematic (redrawn and modified from [10]) showing the
two muscle groups involved in positioning a moth’s antennae. Extrinsic
muscles, which move the whole antenna with respect to the head, were
targeted for the experiments presented here.
doi:10.1371/journal.pone.0052725.g001
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To quantify responses to stimulation, a 200 ms period before

(Tpre), and 200 ms after stimulus onset (Tpost) was compared: 1.)

for the pitch and yaw response (DTheta), we calculated the

difference between the mean angle during Tpre and the maximum

or minimum deflection during Tpost. 2.) To quantify altitude and

speed changes, we fit linear regressions to the data in the pre and

post periods and calculated the difference in the slopes to get a

mean difference in the climb rate (cm/s) or change in speed (m/

s2), respectively.

Results

Electrical stimulation of intrinsic antennal muscles elicits
antennal motion

To confirm whether electrical stimulation of antennal muscles is

feasible (given the power limitations of the stimulus chip used for

free-flight experiments), we implanted tungsten electrodes next to

the antennal rim on the head capsule to target extrinsic antennal

muscles (see Figure 1A). Using a 3 V, pulse width modulated

(PWM) stimulus paradigm (pulse train duration: 200 ms), we

found that stimulus trains between 100 and 400 Hz lead to robust

antennal deflections (see Figure 2A, supplemental Movie S1). The

exact direction of the deflection depended critically on electrode

implantation and was hard to repeat in a consistent fashion. We

limited our analysis, as well as free-flight experiments, to animals

in which stimulation lead to a qualitatively similar backwards

motion of the antennal flagellum. Motion in other directions

tended to be correlated with responses other than antennal

motion, such as twitching of the legs or proboscis, indicating

stimulus leakage. Very high stimulation frequencies might lead to

recruitment of antagonistic muscles, and therefore lead to an

overall decrease in deflection amplitude (see decreased response to

600 Hz stimulus in Figure 2A). Thus, depending on electrode

placement, it was possible to tune the stimulus paradigm to

maximize the resultant antennal deflection.

The deflection response did not fatigue significantly when

stimulus trains with the same parameters (3 V, 250 Hz pulse trains

with a 50% duty cycle and 200 ms pulse train duration) were

repeated every five seconds for 12 successive stimulus presenta-

tions. When such repeated stimuli were presented to 8 moths, the

amplitudes of antennal deflection elicited by successive stimulation

events changed by an average of 0.3% per stimulus presentation

(S.D. 4.3% per stimulus; see Figure 2B). A t-test between the

normalized deflections due to the first and due to the last stimulus

train revealed no significant difference between the two distribu-

tions (p = 0.78).

Antennal stimulation in freely-flying moths
After repeatedly eliciting antennal deflections in tethered

individuals, we performed stimulation experiments in freely flying

animals. Although moths were outfitted with electrodes on both

antennae, we only succeeded in unilateral stimulation. We

successfully recorded video data of in-flight antennal stimulation

from six moths (supplemental Movie S2 shows one example). For

five moths, we were able to reconstruct 3D coordinates of the body

vector (head to abdominal tip) before, during, and after

stimulation. As a measure of digitization error, we compared the

magnitude of the body vector to the actual body size of a moth.

For the representative flight path shown in Figure 3 (see

supplemental Movie S2 for the corresponding flight sequence),

the body vector length was 4.7 cm (S.D. 0.24 cm) which agrees

well with the measured body length of ca. 4.7 cm. The standard

deviation of 0.24 cm is an indication of digitization errors, as well

as potential changes in the curvature of the moth’s body.

The body vectors showed a distinct increase in their pitch angle

shortly after stimulus onset. Additionally, the moth increased its

yaw heading, i.e. it turned right, during the stimulus. A better

picture of the timing of these events is provided by the graphs in

Figure 4, in which the animal’s estimated ground speed, its

altitude, as well as its pitch and yaw angles are plotted as time

increases.

Similar to the representative moth shown in Figure 3, we found

that unilateral stimulation of an antenna elicited a pronounced

change in pitch angle (DTheta.10 degrees) in five of the six

animals. Changes in yaw heading, however, occurred less

predictably. Table 1 summarizes these changes in pitch and yaw

heading elicited by antennal stimulation.

In one animal, we were able to perform 3D - reconstructions of

the flight trajectories of 4 successive stimulation events (stimulus

train duration:,230 ms; 34 pulses of 0.25 ms length at 3 V). All

stimulus events elicited a transient head-up change in pitch angle.

The pitch angle returned to the pre-stimulus value before the

stimulus was over, at approximately 200 ms. The maximum of the

mean excursion in pitch angle for the four trials was about 24.2u in

Figure 2. Antennal motion evoked by electrical stimulation of extrinisic antennal muscles in tethered moths. (A) Changing the
stimulus frequency of a 3 V, 50% duty-cycle pulse train of 200 ms duration leads to changes in antennal motion: Increasing stimulus frequency leads
to an increase in antennal deflection amplitude. (B) Antennal deflection amplitudes of 8 animals to 12 consecutive electrical stimulation events of
extrinsic muscles. For each animal, the deflection amplitudes are normalized to the mean deflection for all 12 stimulus repeats. There is no significant
difference between deflection amplitudes elicited by the first compared to the last stimulus trains (gray boxes; t-test p = 0.78). Likewise, linear fits to
each animal’s responses show a negligible trend in any direction. The overall mean slope for all fits is 0.003/stimulus event (S.D. = 0.043).
doi:10.1371/journal.pone.0052725.g002
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amplitude (DTheta) and occured ca. 127 ms after stimulus onset

(Fig. 4c).

Discussion

Previous studies have clearly demonstrated that antennae in

Lepidoptera and other insects fulfill a crucial mechanosensory role

that mediates reflexes important for flight control [6–8], [14]. In

the present study we explored whether indirect stimulation of

antenna-based mechanosensors has an effect on the flight

trajectory of Manduca sexta. We first show that stimulation of

extrinsic muscles leads to antennal deflections in resting animals.

Such flagellar deflections necessarily stimulate mechanosensory

structures within and around the antennal base such as the Böhm’s

bristles or the scolopedia of the Johnston’s organ.

The complex nature of mechanical strain patterns that arise

when a moth is flying makes it experimentally extremely difficult

to deliver mechanical stimuli that, for example, mimic a natural

perturbation. Thus, we had to restrict our stimulus protocol to

rather crude antennal deflections that were delivered without any

knowledge of their phase within the wing beat cycle. For future

experiments, this limitation could be overcome by designing a

stimulus circuit that can be triggered on a particular phase in the

wing beat signal derived from an on-board accelerometer.

The other limitation of our stimulus stems from the difficulty of

targeting extrinsic antennal muscles. In tethered moths, intrinsic

muscles located in the first antennal segment (scape) are an easier

target for stimulation, and we were able to achieve more

controlled deflections of the antennae (data not shown). This

approach could unfortunately not be used for free-flight experi-

ments, because when electrodes were placed in the scape the

stiffness of the electrode wire prevented moths from positioning

their antennae in a natural angle assumed during flight. This slight

tension in wires, in turn, prevented them from taking flight. Thus

we were unable to map antennal deflection direction to a

behavioral response direction.

At the onset of each experiment, the stimulus level was titrated

in the resting moth by changing its frequency to elicit antennal

deflection in absence of a more generalized response, such as

twitching of legs or initiation of flight. We thereby tried to limit the

effect of the stimulus to within the local muscles. However, we

cannot completely rule out that the stimulus current spread further

to produce non-local effects. It is possible that the stimulus current

also affected the antennal nerve. That said, the observed changes

Figure 3. Four projections of a reconstructed flight path while extrinsic muscles of the left antenna were electrically stimulated.
Stimulus timing is indicated by the red (onset) and black (end) arrows as well as by red body vector lines connecting the head (circular marker), with
the abdominal tip. The arrow labeled ‘‘flight dir’’ indicates the moth’s flight direction. (A)–(C) Orthographic views from the side, top, and front of the
wind tunnel, respectively. (D) Perspective view (elevation: 15u, azimuth: 250u.)
doi:10.1371/journal.pone.0052725.g003

Wireless Stimulation in Freely Flying Insects

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52725



in flight trajectory are much more likely attributed to excitement of

mechanosensory as opposed to olfactory neurons. Thus our results

still suggest a role of antennal mechanosensors as a feedback for

rapid course corrections.

Using a novel stimulus generator small enough to be carried by

a hawkmoth flying in a wind tunnel, we show that unilateral,

telemetric antennal stimulation leads to repeatable, transient

changes in flight trajectory. More specifically, in-flight antennal

deflections in a backwards direction lead to perturbations in the

pitch axis of the insect, while any influence on altitude, yaw

orientation, or body speed is more varied and depends on other

factors, such as the moth’s proximity to a wall, or its initial heading

with respect to the wind (Table 1, Figure 4.). It is also possible that

variation in electrode placement lead to slightly different

recruitment of mechanosensors, thus leading to responses in other

than the pitch orientation. However, pitch orientation seems to be

the most readily disturbed, even though in our experiments

antennal stimulation is applied unilaterally.

The pitch angle returned to the pre-stimulus value while the

stimulus was still active, at approximately 200 ms. The phasic

response might be caused by a stimulus train leading to a transient

mechanical stress. By moving the scape, the flagellum will follow

this movement with a delay. Stresses experienced by receptors in

the pedicel that sits between scape and flagellum are thus phasic.

Additionally, the moth’s nervous system, presumably via the visual

and other mechanoreceptive systems, could react to the pertur-

bation with a compensatory action. The speed of recovery

(,100 ms) would suggest that active compensatory mechanisms

play a role in shaping the transient response.

The change in pitch orientation agrees with the effect of the

underlying antennal circuit that is involved in abdominal flexion.

Antennal mechanoreceptors are used to perceive rotations of a

moth around its pitch axis [9]. When rotated without any visual

Figure 4. Analysis of changes in flight trajectory elicited by in-flight stimulation of antennal muscles. (A) Ground speed (vground),
altitude, as well as pitch and yaw heading of a moth’s body vector calculated from a 3D reconstruction of a free-flight trial during which extrinsic
muscles of the left antenna were stimulated electrically. Stimulus timing is indicated by the gray bar. The change in pitch angle is the only parameter
change that could be elicited repeatedly and in a similar fashion in multiple animals. Changes in ground speed, altitude and yaw heading are unique
to a specific trial. (B) Still images of a moth outfitted with an on-board stimulator shortly before (1), and during the stimulus (2). (C) Average change in
pitch angle (red line) for 4 successive trials (underlying grey lines) in one animal shows a consistent response to stimulation. The arrows indicate time
points corresponding to the still images in B.
doi:10.1371/journal.pone.0052725.g004
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input, a moth responds to this stimulus with a movement of its

abdomen. This movement changes the animal’s center of mass

with respect to its center of lift, and therefore induces torques that

can lead to body rotations [9]. The fact that antennal stimulation

mostly leads to transient perturbations in pitch is therefore

evidence that antennal circuits preferentially stabilize this body

axis, as opposed to the roll or yaw orientation.

That the pitch axis might be more important than others for

rapid feedback control is also corroborated by computational

models that suggest that the body orientation in flying insects is

inherently unstable, and that it needs active control to be stabilized

[15–16]. Pitch rate and attitude, as well as horizontal velocity are

three feedback parameters that are sufficient for stabilizing flight in

a model of a hovering insect [16]. The relative importance of

information about the animal’s pitch axis for control could therefore

also explain why the effects of responses mediated by antennal

mechanosensors are so strongly tied to the moth’s pitch orientation.

By augmenting the visual system in signaling changes occurring in

the animal’s pitch attitude, antennal mechanoreceptors could provide

the necessary feedback for stabilizing this inherently unstable axis. This

notion agrees well with the observation from the free-flight experiments

with cut antenna: the supplemental videos in [8] show moths losing

pitch control first when they lack feedback from their antennae. The

present results, in which stimulation to antennal mechanoreceptors

preferentially leads to pitch instabilities, provide further evidence for a

pitch-stabilizing role of insect antennae.

Supporting Information

Movie S1 Example of a strong antennal motion elicited by
electrical stimulation of extrinsic antennal muscles, filmed
at 250 fps. The tethered moth’s head is viewed from above, with an

electrode pair implanted in close proximity to the antennal rim of the

left antenna. The LED on the left border of the frame indicates the

timing of a 3 V square-pulse train of 200 Hz that lasted 200 ms.

(MOV)

Movie S2 Example of an in-flight stimulation event of
antennal muscles in a hawkmoth as seen from three
synchronized high-speed cameras filming at 250 fps.
Stimulus timing is indicated by a micro-LED on the stimulator

board that is mounted ventrally on the moth’s abdomen. In this

sequence, stimulation occurs between frames 174 and 223, with

the LED best visible in Side Camera 1 (middle panel). This video

corresponds to the sequence shown in Figure 3.

(MOV)
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Table 1. Summary of responses to free-flight antennal
stimulation of extrinsic antennal muscles in six animals.

Animal Response to stimulation

animal #
stim. antenna
(L/R) trial

pitch axis
(DH) yaw axis Daltitude Dspeed

1 L 1 + + + n.a. n.a. n.a.

2 + + 2 n.r. 2 2

3 + + + 2 2 2 2

4 + + 2/+ 2 2 2 2

5 n.r. + 2 n.r.

2 R 1 + + + + 2 + +

3 L 1 n.r. n.r. + + n.r.

2 n.r n.r. n.r. 2 2

4 R 1 + + n.a. n.a. n.a.

5 L 1 + + 2 2 2 2 2

6 L 1 + + + + n.r.

Responses in body pitch angle are quantified by calculating the difference DH
between the mean pitch angle (H) of a 200 ms period before stimulus onset
and the maximum H during 400 ms after stimulus onset. All pitch responses
were nose-up, with pitch magnitude indicated as follows: +: DH.10u; + +:
DH.15u; + + +: DH.20u (maximum was 29u). Yaw axis responses are defined
as changes in yaw heading that happened within 400 ms of stimulus onset.
Yaw responses varied from one stimulation to the next. Animals either turned
clockwise (+), counter-clockwise (2), or showed no change (n.r.) in yaw
heading. Symbols in the Daltitude column indicate whether a change in the z-
coordinate of the moth occurred after stimulation. A change in altitude of
610 cm between a 200 ms interval before, and a 200 ms interval after stimulus
onset is symbolized with a 2 or +, depending on whether the moth lost or
gained altitude, respectively. Similarly, a change greater than 615 cm is shown
as either 2 2 or ++ (maximum was 22 cm/s ). Similarly, the Dspeed column
indicates changes in the mean body speed before and after stimulus onset.
(+ +: .1 m/s2; 2: ,20.5 m/s2; 2 2: ,21 m/s2; 2 2 2: ,21.5 m/s2(max. was
22.8 m/s2). In most cases, stimulation is associated with a decrease in ground
speed. In cells labeled ‘‘n.a.’’, parameters could not be computed because a full
3D path was impossible to reconstruct.
doi:10.1371/journal.pone.0052725.t001
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