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Heart failure (HF) is a challenging situation in healthcare worldwide. Secondary mitral

regurgitation (SMR) is a common condition in HF patients with reduced ejection fraction

(HFrEF) and tends to be increasingly associated with unfavorable clinical outcomes as

the severity of SMR increases. It is worth noting that SMR can deteriorate dynamically

under stress. Over the past three decades, the characteristics of dynamic SMR have

been studied. Dynamic SMR contributes to the reduction in exercise capacity and

adverse clinical outcomes. Current guidelines refer to the indication of transcatheter

edge-to-edge repair (TEER) for significant SMR based on data from the Cardiovascular

Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients

with Functional Mitral Regurgitation (COAPT) trial if symptomatic despite optimal

guideline-directed medical therapy (GDMT) and cardiac resynchronization therapy (CRT),

but nonpharmacological treatment for dynamic SMR remains challenging. In HFrEF

patients with LV dyssynchrony and dynamic SMR, CRT can improve LV dyssynchrony

and subsequently attenuate SMR at rest and during exercise. Also, a recent study

suggests that TEER with GDMT and CRT is more effective in symptomatic patients with

HFrEF and dynamic SMR than GDMT and CRT alone. Further studies are needed to

evaluate the safety and efficacy of nonpharmacological treatments for dynamic SMR. In

this review, current evidence and challenges for the future of dynamic SMR are discussed.

Keywords: dynamic secondary mitral regurgitation, heart failure with reduced left ventricular ejection fraction,

guideline-directed medical therapy, cardiac resynchronization therapy, transcatheter edge-to-edge repair

INTRODUCTION

Heart failure (HF) is a challenging situation in healthcare worldwide (1–3). HF with reduced
ejection fraction (HFrEF) is seen in approximately half of the patients with HF (4). Secondary
mitral regurgitation (SMR) with structurally normal leaflets is a common disease in patients with
HFrEF (5, 6). Moreover, as the severity of SMR increases, the condition significantly tends to
be incrementally associated with unfavorable clinical outcomes (6). As for the treatments for
HFrEF with severe SMR, maximally tolerated guideline-directed medical therapy (GDMT) s is
recommended (7–10). In patients with an ischemic etiology of the condition, the revascularization
of significant coronary artery disease is recommended if applicable. Also, cardiac resynchronization
therapy (CRT) for left ventricular (LV) dyssynchrony should be considered when the condition
is refractory to the treatments above. Moreover, current guidelines recommend transcatheter
edge-to-edge repair (TEER) if feasible when patients with HFrEF and severe SMR have symptoms
despite optimal GDMT and CRT.
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It is worth noting that SMR can deteriorate dynamically
according to changes in hemodynamics (Figure 1). The
characteristics of dynamic SMR have been investigated during
the past three decades (11–13). Dynamic SMR contributes to
reductions in exercise capacity and adverse clinical outcomes
(14–19). Although there are evidence-based nonpharmacological
approaches for symptomatic SMR, the optimal treatment of
dynamic SMR remains a matter of debate. In HFrEF patients
with LV dyssynchrony and dynamic SMR, CRT can ameliorate
LV dyssynchrony and subsequently attenuate dynamic SMR
during exercise (20–22). Also, a recent study has demonstrated
that TEER may be effective for dynamic severe SMR (23).
Therefore, it is time to renew our knowledge of dynamic
SMR and reconsider the optimal therapy of symptomatic
dynamic SMR.

This review summarizes current evidence and
challenges for the future of dynamic SMR in
light of the mechanisms of dynamic SMR, its
prognostic value, and its potentially effective
treatment options.

FIGURE 1 | Dynamic changes in SMR during transesophageal echocardiography in a 66-year-old male patient who had an anterior old myocardial infarction and

heart failure with reduced ejection fraction. Mild SMR (EROA 0.10 cm2 ) under sedation using midazolam under a systolic blood pressure of approximately 70mm Hg.

(A) Two-dimensional B-mode and color Doppler images from the intercommissural view and (B) a three-dimensional color Doppler image from the en-face view.

Dynamic severe SMR (EROA 0.51 cm2 ) under an elevated systolic blood pressure of approximately 110mm Hg using norepinephrine. (C) Two-dimensional B-mode

and color Doppler images from the intercommissural view and (D) a three-dimensional color Doppler image from the en-face view. SMR, secondary mitral

regurgitation; EROA, effective regurgitant orifice area.

MECHANISM OF DYNAMIC SMR

The mitral valve apparatus is intricately comprised of several
components, including themitral annulus, anterior and posterior
mitral leaflets, chordae tendinae, anterolateral and posteromedial
papillary muscles, and adjacent LV wall. MR can be regulated
based on an exquisite balance among these components
during systole. In SMR, tethering and closing forces of the
mitral valve during systole are essential to understand the
intricate mechanism. The tethering force is affected by LV
dilatation, LV sphericity, LV regional wall motion abnormalities,
papillary muscle displacement, papillary muscle dyssynchrony,
papillary muscle asymmetry, annular dilatation, and annular
flattening. The closing force is decreased due to LV contractility
impairments, LV dyssynchrony, increased left atrial (LA)
pressure, and decreased mitral annular contraction.

Over the past three decades, the characteristics of dynamic
SMR have been studied (11–13). Previous reports have elucidated
that changes in LV dyssynchrony, LV sphericity, LV regional wall
motion abnormality, increased mitral valve coaptation depth and
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tenting area, and mitral annular dilatation during exercise are
crucial in light of the mechanism of dynamic SMR (24–32). It
is worth noting that when comparing ischemic cardiomyopathy
with apical and inferobasal scars, the coaptation depth is
important in the case of an anterior myocardial infarction while
the tenting area and LV regional wall motion abnormality are
crucial in the case of an inferior myocardial infarction (24).
There is a paucity of data on resting factors associated with
dynamic SMR although only LV dyssynchrony at rest is suggested
to be related to dynamic SMR (31). It may be because mitral
valve tethering and closing forces change based on complicated
combinations of dynamic changes of LV and LA geometry and
MV apparatus during exercise.

EXERCISE CAPACITY AND CLINICAL
OUTCOMES IN DYNAMIC SMR

SMR can deteriorate dynamically during exercise (Figure 2).
Dynamic SMR is expected to affect a patient’s exercise tolerance
due to the abruptly deteriorated severity, leading to a reduction
in the forward stroke volume and an increase in the overload on

the LA and pulmonary circulation during exercise. Izumo et al.
elucidated that changes in the effective regurgitant orifice area
(EROA) of SMR during exercise stress echocardiography (ESE)
are significantly associated with the peak VO2 and VE/VCO2

slope and that the rate of exercise termination is higher in
patients with dynamic SMR (1EROA≥0.13 cm2 during exercise)
than in those without dynamic SMR (18). Also, Bandera et
al. investigated the exercise capacity of patients with HFrEF
via cardiopulmonary exercise testing combined with ESE and
reported that the exercise tolerance of patients with dynamic
severe SMR (EROA≥0.20 cm2 during exercise) was less than that
of patients without dynamic severe SMR (19).

Lancellotti et al. initially reported that dynamic SMR
with changes in the EROA ≥0.13 cm2 during exercise was
independently associated with adverse clinical outcomes at mid-
term (14, 15). Moreover, long-term clinical outcomes in patients
with dynamic severe SMR (EROA ≥0.20 cm2 during exercise)
were shown to be unfavorable by Suzuki et al. (16). Also,
Piérard et al. (33) investigated the association of dynamic SMR
with acute pulmonary edema in patients who recently suffered
from acute pulmonary edema and underwent ESE after the
improvement of pulmonary edema. Then, changes in the EROA

FIGURE 2 | Dynamic changes in SMR during exercise stress echocardiography in an 85-year-old male patient who had an anterior old myocardial infarction and heart

failure with reduced ejection fraction. Moderate SMR (EROA 0.22 cm2 ) at rest. (A,B) Two-dimensional color Doppler images from three- and two-chamber views.

Dynamic severe SMR (EROA 0.46 cm2 ) under stress. (C,D) Two-dimensional color Doppler images from three-chamber and two-chamber views. SMR, secondary

mitral regurgitation; EROA, effective regurgitant orifice area.
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on exercise were reported to be significantly associated with
recent acute pulmonary edema. Furthermore, in patients that
require hospitalization for acute decompensated HF, dynamic
severe SMR on hospitalization is expected to be similar to
persistent severe SMR in light of favorable outcomes (17).

PHARMACOLOGICAL TREATMENT FOR
DYNAMIC SMR

The four classes of drugs that constitute GDMT in HFrEF are
angiotensin-converting enzyme inhibitors (ACEi)/angiotensin
II receptor blockers (ARB)/angiotensin receptor-neprilysin
inhibitors (ARNI), beta-blockers (BB), mineralocorticoid
receptor agonists (MRA), and sodium-glucose cotransporter
2 inhibitors (SGLT2i); these drugs should be titrated to the
maximum tolerated doses in all patients with HFrEF regardless
of the presence of SMR (7–10). The optimization of GDMT
using ACEi/ARB, BB, and MRA in HFrEF patients is expected
to reduce the severity of SMR (34, 35). Also, ARNI has
recently received attention as an effective basic HF drug and
is recommended prior to ACEi/ARB in patients with HFrEF if
applicable according to current guidelines (7–10). ARNIs are
effective for LV and LA reverse remodeling (36–39). Moreover,
ARNIs are reported to reduce the SMR (40). Also, according to
data from a previous meta-analysis, the new “golden triangle”
consisting of ARNIs, BBs, andMRAs is the most effective remedy
for LV reverse remodeling among several combinations using
some GDMT drugs (ACEi, ARB, ARNI, BB, and MRA) (41),

which may be expected to bring about further improvements in
the dynamic SMR.

A meta-analysis of three cardiac magnetic resonance imaging
trials reported that SGLT2i therapy in patients with HFrEF
was not significantly associated with reverse cardiac remodeling,
including left ventricular ejection fraction, end-systolic volume,
and end-diastolic volume; however, there was a tendency toward
the improvement of these parameters (42).

NONPHARMACOLOGICAL TREATMENT
FOR DYNAMIC SMR

In HFrEF patients with persistent severe SMR, GDMT should
be optimized as much as possible; however, such patients often
suffer from either residual or worsening HF symptoms or
undergo repeat HF hospitalization. Thus, when these patients
have symptoms despite optimal GDMT, current guidelines
recommend nonpharmacological treatment, including CRT and
TEER (if applicable), after appropriate revascularization for
significant coronary artery disease. However, there remains
a matter for consideration in terms of nonpharmacological
treatment for dynamic SMR in patients with HFrEF. Then, the
nonpharmacological treatment of dynamic SMR is discussed
below with a focus on CRT and TEER.

CRT FOR DYNAMIC SMR

In HFrEF patients with LV dyssynchrony, CRT can suppress
LV dyssynchrony and subsequently improve LV hemodynamics

FIGURE 3 | Dynamic changes of SMR during exercise stress echocardiography before CRT and controlled SMR following CRT during exercise stress

echocardiography in a 71-year-old male patient who had an anterior old myocardial infarction and heart failure with reduced ejection fraction. (A) Complete left bundle

branch block with a QRS duration of 154ms in the electrocardiogram before CRT. (B,C) Mild SMR (EROA 0.14 cm2 ) at rest and dynamic moderate-to-severe SMR

(EROA 0.32 cm2) under stress in two-dimensional color Doppler images from the three-chamber view before CRT. (D) Non-left bundle branch block with a QRS

duration of 128ms in the electrocardiogram after CRT. (E,F) Trivial SMR at rest and under stress 1 year after the CRT in two-dimensional color Doppler images from

the three-chamber view after CRT. SMR, secondary mitral regurgitation; CRT, cardiac resynchronization therapy, EROA, effective regurgitant orifice area.
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while attenuating MR at rest and during exercise (Figure 3)
(20, 22). Madaric et al. elucidated the time course of changes
in LV dyssynchrony, LV contractility, and SMR at rest and
during exercise following CRT (21). Approximately 1 week
after CRT, LV dyssynchrony and SMR during exercise did not
adequately improve despite ameliorations in LV dyssynchrony

and SMR at rest. However, approximately 3 months after CRT,
LV dyssynchrony and dynamic SMR were controlled even during
exercise with resting SMR and in LV volumes progressively
reduced despite there being no additional improvement in
the resting LV dyssynchrony. Moreover, the cardiopulmonary
performance after CRT improved at late follow-up in HFrEF

FIGURE 4 | Dynamic changes in SMR during exercise stress echocardiography before TEER and controlled SMR following TEER during exercise stress

echocardiography in an 83-year-old male patient who had an anterior and inferior old myocardial infarction and heart failure with reduced ejection fraction after CRT.

(A,B) Trivial SMR at rest in two-dimensional color Doppler images from four-chamber and two-chamber views. (C,D) Dynamic severe SMR (EROA 0.52 cm2 ) under

stress in two-dimensional color Doppler images from four-chamber and two-chamber views. (E,F) Mild MR under stress 6 months after the TEER in two-dimensional

color Doppler images from four-chamber and two-chamber views. SMR, secondary mitral regurgitation; TEER, transcatheter edge-to-edge repair; CRT, cardiac

resynchronization therapy; EROA, effective regurgitant orifice area; MR, mitral regurgitation.
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patients with dynamic SMR although no reports showed a
prognostic value of CRT.

Also, it was (reportedly) possible to induce a left bundle
branch block (LBBB) during exercise by increasing the heart
rate of HFrEF patients with non-LBBB at rest (43). Rate-related
LBBB may be accompanied by LV dyssynchrony and dynamic
SMR, subsequently leading to deteriorated hemodynamics and
worsening HF symptoms. In the case report, the patient
underwent CRT to correct rate-related LBBB, LV dyssynchrony,
and dynamic SMR and had favorable clinical outcomes during
follow-up (43). Thus, dynamic SMR with rate-related LBBB may
be assessed using ESE in unexplained symptomatic patients with
HFrEF despite resting non-LBBB, no dyssynchrony, and non-
significant SMR.

TEER FOR DYNAMIC SMR

In patients with HFrEF and dynamic SMR, it may be possible
that HF symptoms remain or recur with dynamic SMR refractory
to optimal GDMT and CRT. In such patients, TEER can
control not only the SMR at rest but also the dynamic change
during exercise (Figure 4). Previously, Lancellotti et al. suggested
that dynamic SMR should be considered in HFrEF patients
with moderate SMR at rest and unexplained dyspnea under
optimal GDMT and nonpharmacological treatments, including
CRT and revascularization, if indicated, and TEER might be
indicated when dynamic SMR was performed during exercise
(44). Recently, Izumo et al. reported that TEER is suggested
to be safe and effective in light of HF symptoms and clinical
outcomes during follow-up in symptomatic HFrEF patients with
dynamic SMR (1EROA ≥0.13 cm2 during exercise) refractory
to treatment with optimized GDMT and CRT if applicable (23).
Of note, the patients in the non-TEER group, who had no
significant SMR (the EROA of 0.20 ± 0.08 cm2) at rest but
significant SMR (the EROA of 0.38 ± 0.10 cm2) during exercise,
had a significantly higher rate of HF-related hospitalization
and all-cause mortality than those in the TEER group. This
suggested that resting SMR in patients with HFrEF is potentially
underestimated unless ESE is performed and, consequently, even
a non-significant resting SMR can bring about adverse clinical
events if medically treated. In addition, this study addressed the
association of EROA of SMR with left ventricular end-diastolic
volume at rest and during exercise. In the study patients, EROA
and left ventricular end-diastolic volume increased significantly
during exercise, and as a result, the relationship between EROA
in the study and left ventricular end-diastolic volume during
exercise was similar to that in the COAPT study. Thus, ESE may
be useful to figure out symptomatic patients with HFrEF who
have potentially disproportionate dynamic SMR and are expected
to receive adequate benefit from TEER.

TEER can reduce the intensity of the symptoms of SMR
and its prevalence because of the acute changes in mitral valve
geometry as follows; improved coaptation area and mitral valve
tethering, decreased anteroposterior diameter and area of the
mitral annulus, and increased sphericity of the mitral annulus
(45–50), all of which lead to a persistent reduction of the SMR

and improvement of the functional status (45, 46). Such acute
changes following TEER seem to resist dynamic SMR derived
from changes in the mitral valve geometry during exercise.
Therefore, TEER could be a reasonable treatment for dynamic
SMR in patients with HFrEF. Further studies are required to
evaluate the safety and efficacy of TEER for dynamic SMR.

CHALLENGES FOR THE FUTURE IN
DYNAMIC SMR

Optimal GDMT reduces the severity of SMR in patients with
HFrEF (34, 35, 40). Current guidelines recommend TEER
for SMR in patients with HFrEF if they had HF symptoms
despite the uptitration of HF drugs as long as tolerated (7,
8). However, a previous study reported that optimal GDMT
before TEER was not necessarily achieved (51). Less than 50%
of the overall population received >50% of the target dose of
ACEi/ARB/ARNI and BB, which suggests the difficulty in the
maximal optimization of GDMT in clinical practice. This might
be because of hypotension, worsening HF, drug intolerance, and
worsening kidney function.

The study also reported that 67% of the patients who
underwent TEER had either unchanged or uptitrated GDMT
(51). Such patients showed a lower rate of recurrent MR
≥3+, more reduced LV end-systolic volumes, and lower NYHA
classes during follow-up than those with downtitrated GDMT.
Moreover, unchanged or uptitrated GDMT following TEER was
associated with favorable clinical outcomes, which was defined as
freedom from death and heart transplantation.

TEER for dynamic SMR may be expected to improve
hemodynamics, mitral valve geometry, and HF symptoms,
subsequently enabling patients to avoid downtitrated GDMT
and gain clinical benefits as with TEER for persistent severe
SMR. Thus, optimal GDMT even after TEER for dynamic SMR
is also considered the crucial cornerstone of HF management
considering its effect in further cardiac reverse remodeling and
SMR reduction (45–53). Further studies are needed in light of the
importance of optimal GDMT after TEER as well as the safety and
efficacy of TEER in patients with HFrEF and dynamic SMR.

Also, there are issues with ESE in patients with HFrEF and
SMR; such patients can not exercise long enough to reach peak
stress. Therefore, it may be difficult to compare dynamic SMRs
among different patients based on certain stress criteria. Then,
low-load ESE, which can be performed for a shorter time and
under lower stress than conventional ESE, may be reasonable to
evaluate the dynamic changes of SMR under specific stress in
HFrEF patients. In such patients, it is expected that the usefulness
of low load ESE will be examined in future.

CONCLUSION

Dynamic SMR is associated with exercise performance
impairments and adverse clinical outcomes in patients
with HFrEF. In such patients, optimal GDMT and CRT are
expected to ameliorate the deteriorated mitral valve apparatus,
which subsequently leads to improvements in the dynamic
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SMR. Dynamic SMR can be residual or recurrent even after
administering the appropriate treatments above. In such
cases, other invasive treatment options, including TEER,
may be indicated considering the effectiveness of TEER for
dynamic SMR. CRT and TEER, along with GDMT, can improve
deteriorated mitral valves and LVs, left ventricular dynamics,
HF symptoms, exercise tolerance, and clinical outcomes. Even
after obtaining such clinical benefits from CRT and TEER,
GDMT regimens should be re-evaluated and reinforced as
long as patients are tolerated to aim at further cardiac reverse
remodeling and the reduction and prevention of dynamic SMR,
subsequently leading to the amelioration of exercise tolerance
and clinical outcomes.
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