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N-myc downstream-regulated gene-1 (NDRG1) is a recently described hypoxia-inducible protein that is upregulated in various
human cancers. Pancreatic ductal adenocarcinoma, called pancreatic cancer, is a highly aggressive cancer that is characterised by its
avascular structure, which results in a severe hypoxic environment. In this study, we investigated whether NDRG1 is upregulated in
these tumours, thus providing a novel marker for malignant cells in the pancreas. By immunohistochemistry, we observed that
NDRG1 was highly expressed in well-differentiated cells of pancreatic cancer, whereas the poorly differentiated tumour cells were
negative. In addition, hyperplastic islets and ducts of nonquiescent pancreatic tissue were positive. To further explore its selective
expression in tumours, two well-established pancreatic cancer cell lines of unequal differentiation status were exposed to 2% oxygen.
NDRG1 mRNA and protein were upregulated by hypoxia in the moderately differentiated Capan-1 cells; however, its levels
remained unchanged in the poorly differentiated Panc-1 cell line. Taken together, our data suggest that NDRG1 will not serve as a
reliable marker of tumour cells in the pancreas, but may serve as a marker of differentiation. Furthermore, we present the novel
finding that cellular differentiation may be an important factor that determines the hypoxia-induced regulation of NDRG1.
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Pancreatic ductal adenocarcinoma, further mentioned as pancrea-
tic cancer, is one of the most aggressive cancer with an overall
5-year survival of merely 4% in Western countries (http://
seer.cancer.gov/csr/1975_2000/). It is described as a poorly
differentiated tumour type that aggressively invades surrounding
tissue and metastasises early to distant organs. Pancreatic cancer is
usually undiagnosed until it has reached an advanced symptomatic
stage, and consequently, only 15–20% of all patients are
candidates for a surgical resection (Warren et al, 1983). Among
those patients amenable to surgical resection, tumour character-
istics including size and degree of differentiation are important
independent prognostic factors (Sohn and Yeo, 2000).

A major characteristic of pancreatic cancers is an avascular
morphology, which results in a poor blood and oxygen supply.
Consequently, pancreatic tumours are generally hypoxic, which
has been proven by intratumoral pO2 measurements (Koong et al,
2000). Hypoxia can contribute significantly to an aggressive
behaviour of pancreatic cancers through the hypoxia-induced
expression of proangiogenic factors, such as vascular endothelial
growth factor (VEGF) and interleukin-8 (Shi et al, 1999; Buchler
et al, 2003; Hotz et al, 2005). Tumour hypoxia also has been shown
to increase tumour growth and the metastatic potential of
pancreatic cancer cells (Niizeki et al, 2002; Buchler et al, 2004).
Additionally, pancreatic cancers highly express the hypoxia-

inducible transcription factor, hypoxia-inducible factor 1 (HIF-1)
(Shibaji et al, 2003). HIF-1 is a heterodimeric protein that is tightly
regulated through the oxygen-dependent degradation of its a-
subunit. In the presence of oxygen, iron and 2-oxoglutarate HIF-1a
protein is hydroxylated by a class of enzymes termed HIF prolyl
hydroxylases. The hydroxylation leads to its rapid proteosomal
degradation in a von Hippel Lindau protein-dependent manner
(Wang and Semenza, 1993a; Salceda and Caro, 1997; Huang et al,
1998). Hypoxia can be mimicked by the heavy metal cobalt
chloride (CoCl2), the iron-chelating agent, deferoxamine (DFX) or
an inhibitor of the prolyl hydroxylases dimethyloxaloylglycine
(DMOG), which all lead to the stabilisation of HIF-1a protein
(Brahmachari and Joseph, 1973; Wang and Semenza, 1993b;
Ivan et al, 2001). In tumours with a poor oxygen supply, HIF-1
target genes are induced, which help cell survival and encourage a
more aggressive tumour phenotype by promoting growth, invasion
and metastasis (Hockel et al, 1996; Vaupel et al, 2001; Yoon et al,
2001).

N-myc downstream-regulated gene 1 (NDRG1) is a recently
described protein that is induced by cellular stress, in particular, it
is significantly upregulated by hypoxia through HIF-1-dependent
and -independent mechanisms (Park et al, 2000; Salnikow et al,
2000; Salnikow et al, 2002; Karaczyn et al, 2005). Other stress-
inducing agents, such as homocysteine and tunicamycin (Kokame
et al, 1996), nickel compounds (Zhou et al, 1998), synthetic
retinoids (Piquemal et al, 1999) and compounds that lead to
cellular differentiation (van Belzen et al, 1997) can also modulate
its expression.
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The precise biological function of NDRG1 is still not known, but
various studies support its role as a potential tumour suppressor
protein. Overexpression of NDRG1 in vitro results in morpholo-
gical changes typical of cell differentiation and is inversely related
to tumour growth and metastasis (Kurdistani et al, 1998; Guan
et al, 2000; Bandyopadhyay et al, 2003; Bandyopadhyay et al,
2004a). Furthermore, its expression is increased by the tumour
suppressor proteins p53 and PTEN (Kurdistani et al, 1998;
Bandyopadhyay et al, 2004b) and clinical data have shown that
its presence is statistically correlated with an increased survival of
patients diagnosed with prostate cancer or liver metastasis from
colorectal cancers (Bandyopadhyay et al, 2003; Shah et al, 2005).

NDRG1 mRNA is broadly expressed in many normal tissues,
whereas its protein is generally restricted to cells of epithelial
origin (Lachat et al, 2002). In some cancers, NDRG1 has been
proposed to be a tumour marker because it is highly expressed in
malignant compared to normal tissue of the same origin (Gomez-
Casero et al, 2001; Nishie et al, 2001; Cangul et al, 2002b).
However, the reliability of NDRG1 as a tumour marker is still
undecided because its expression was initially shown to be
repressed in colorectal cancer cells compared to the well-
differentiated normal colon epithelial cells (van Belzen et al,
1997). Furthermore, NDRG1 is a highly stable protein and has been
suggested as a prognostic marker for hypoxic regions within a
tumour mass (Park et al, 2000; Cangul et al, 2002b; Lachat et al,
2002).

Thus far, NDRG1 expression has yet to be studied in pancreatic
cancer. We hypothesised that NDRG1 may be a novel indicator of
malignant cells in the pancreas as hypoxia is a general feature of
these tumours. The data presented in this study demonstrate that
regardless of the hypoxic environment, there is a selective
expression of NDRG1 in the pancreatic tumour cells. Therefore,
we suggest that the determining factor of NDRG1 expression in
pancreatic cancer is not hypoxia, but rather the differentiation
status of the tumour.

MATERIALS AND METHODS

Immunohistochemistry

Human pancreatic samples were obtained at our institution from
consented patients by standard surgical oncology procedures.
Tissue samples from patients diagnosed with pancreatic cancer
(n¼ 27) and pancreatic intraepithelial neoplasia (PanIN) (n¼ 6)
were compared to samples taken from tumour-free resection
margins (n¼ 11) and normal tissues obtained by organ donation
or from patients with nonpancreatic diseases (n¼ 7). Formalin-
fixed samples were paraffin embedded and cut into 5 mm thin
sections for analysis. Deparaffinised sections were microwave
heated for 20 min in 0.01 M Na-citrate, pH 6.4, for antigen retrieval.
Endogenous peroxidases were blocked by 0.3% H2O2 in methanol
for 30 min. Sections were incubated with either affinity-purified
polyclonal rabbit anti-NDRG1 antibody (1:100, Zymeds Labora-
tories Inc., 52-3557, San Francisco, CA, USA), a polyclonal affinity-
purified antibody raised in sheep against the full-length protein
(1:3000, Kinasource AB-160 Limited, Scotland, UK) or with a
monoclonal antibody against HIF-1a (clone H1alpha67-sup; Novus
Biologicals Inc., Colorado, USA) overnight at 41C. Specificity of the
NDRG1 antibody from Zymeds was confirmed by blocking with
the peptide immunogen. Sections were further developed with
components of the Vectastains Kit (Vector Laboratories Inc.,
Burlingame, CA, USA) according to the manufacturer’s instruc-
tions. Immunoreactivity was developed using 3,30-diaminobenzi-
dine as the peroxidase substrate and nuclei were counterstained
with haematoxylin. Negative controls were performed by sub-
stituting the first antibody with rabbit IgG (Dako, Schweiz AG,
Baar, CH). For histological analysis, serial sections were stained

with haematoxylin and eosin and documented using a Leica DMRB
microscope with IM50 Leica imaging software. The samples were
evaluated by a pathologist (RW) and classified according to
Klöppel’s grading (Klöppel et al, 2000). In brief, G1 (n¼ 3) was
stated in samples bearing well-differentiated duct-like glands,
intensive mucin production, o5 mitoses per 10 high-power fields
(HPF), little nuclear polymorphism or polar arrangement. G2
(n¼ 15) was stated in samples bearing moderately differentiated
duct-like and tubular glands, irregular mucin production, 6– 10
mitosis per 10 HPF and moderate nuclear polymorphism. G3
(n¼ 9) was stated in samples bearing poorly differentiated glands,
mucoepidermoid and pleomorphic structures, abortive mucin
production, 410 mitosis per 10 HPF and marked nuclear
polymorphism and increased nuclear size. The intensity of
immunohistochemical staining was scored 0 for no staining or
from 1 to 3, if cells were positively stained in more than 10% of the
tumour. A score of 1 corresponded to weak and partial cell
staining, 2 represented weak and complete staining and 3 for
strong and complete staining. The mean intensity of 5 HPF per
section was calculated.

Cell lines and culture conditions

Human pancreatic cancer cells Capan-1 (moderately differen-
tiated) and Panc-1 (poorly differentiated) were purchased from
ATCC (LCG Promochem, Molsheim, France) and cultured in
Dulbecco’s modified Eagle’s medium supplemented with 20% heat-
inactivated fetal bovine serum for Capan-1 and 10% for Panc-1,
100 U/ml penicillin and 100 mg/ml streptomycin (all from Life
Technology, Paisley, Scotland) and incubated at 371C in a
humidified atmosphere with 5% CO2. Hypoxic culture conditions
were performed in a microaerophilic system (Ruskinn, Biotrace
International, Bridgend, UK) at 2% O2, 5% CO2 and 93% N2 for 2,
4, 12, 24 and 48 h. To test additional activators of HIF-1a, cells
were exposed to 125 mM DMOG (Alexis Biochemicals, Lousen),
100mM CoCl2 (Sigma, Bucks, CH) or 100 mM DFX (Sigma, Bucks,
CH).

RNA extraction and real-time PCR

Total RNA was extracted with TRIzols (Life Technologies, Paisley,
Scotland) according to the manufacturer’s instructions. One
microgram of total RNA was DNase treated (Promega, Madison,
WI, USA) and reverse transcribed into cDNA with a commercial
kit (Qiagen, Hilden, Germany). FAMt dye-labelled TaqMans

MGB probes and polymerase chain reaction (PCR) primers were
purchased for human NDRG1 and VEGF at Applied Biosystems
(Warrington, UK). As internal positive control, 18S was used with
a VICs dye-labelled TaqMans MGB probe. Real-time PCR was
performed using ABI PRISMt 7000 Sequence Detector System
(Applied Biosystems). The amplification conditions were as
follows: 40 cycles at 951C for 15 s (denaturation step) and 601C
for 1 min (combined annealing–extension step). Each experiment
was carried out in triplicate. Mean cycle threshold (Ct) values were
calculated for 18S and the reporter gene. Ct values for NDRG1 and
VEGF were normalised against the internal ribosomal RNA (18S)
control probe to calculate DCt values. DDCt values were calculated
by subtracting the DCt values of cells under normoxia from the DCt

value of cells under hypoxia. Fold increase was calculated using the
formula 2�ðDDCtÞ. Each experiment was repeated three times. After
three repetitions mean and s.d. were calculated.

Protein extraction and Western blotting

For NDRG1 analysis, total cell lysates were prepared using 10 mM

Tris (pH 8.0), 1 mM EDTA (pH 8.0), 150 mM NaCl and 0.5% NP-40
with the inhibitors 1 mM NaF, 10 mM Na3VO4, 1 mM PMSF and
1� protease inhibitor cocktail (P-8340, Sigma). For HIF-1a,
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nuclear-enriched protein extracts were prepared as described
previously (Jewell et al, 2001). Total protein concentrations were
determined by Bio-Rad Protein Assay (Bio-Rad, Reinach, CH) and
equal amounts (20 mg) were separated by sodium dodecyl
sulphate–polyacrylamide gel electrophoresis (10%). Proteins were
transferred to nitrocellulose membrane using a semidry transfer
system (Bio-Rad), blocked with 5% nonfat dry milk in 50 mM Tris
(pH 7.5), 150 mM NaCl, 0.1% Tween-20 and incubated with the
primary antibody (either sheep anti-NDRG1 (0.1 mg/ml, Kina-
source AB-160, Scotland) or mouse anti-HIF-1a (1:500, courtesy of
Professor Max Gassmann, Zürich Switzerland)), rabbit anti-b-actin
(1:500, Sigma A5060) or rabbit anti-Sp1 (Santa Cruz, SC-59,
California, USA) overnight at 41C. Membranes were incubated with
either anti-sheep (1:3000, Dako), anti-mouse (1:10 000, Pierce) or
anti-rabbit (1:10 000, Dako) HRP-labelled secondary antibodies for
1 h at room temperature and developed with an enhanced
chemiluminescent substrate (LiteAblot, Euroclone SpA, Lugano,
Switzerland).

Statistics

Immunohistochemical data were analysed with the Mann–
Whitney U-test. For the comparison of the real-time PCR data,
DCt values were analysed by one-way analysis of variance
(ANOVA) followed by Dunnett’s multiple comparisons test. The
statistical analysis software, SPSS (version 11.5), was used and
Po0.05 was considered significant.

RESULTS

NDRG1 protein is expressed in peritumoural, hyperplastic
pancreatic areas

NDRG1 protein expression was not found in unmodified
pancreatic tissue obtained from organ donors; specifically, there
was no staining in the glandular epithelial cells of the acini or in
the pancreatic islet cells (Figure 1A). However, pancreatic tissue
obtained from tumour-free resection margins displayed strong
staining for NDRG1 specifically in hyperplastic islets and
hyperplastics ducts (Figure 1B). The peritumoral tissue is
nonquiescent and considered reactive because it is under the

influence of stimulating factors secreted by the tumour. The
observed staining in these areas demonstrates that NDRG1 is
expressed in nontumoral reactive pancreatic tissue.

NDRG1 protein as a marker of pancreatic cancer
differentiation

Samples from patients diagnosed with pancreatic cancer were
graded G1–3 (Klöppel et al, 2000) or as a PanIN. In all the
samples, NDRG1 staining was restricted to the tumour epithelial
cells and no staining was visible in fibrocytes of the desmoplastic
reaction. In PanIN (Figure 1C) and in well-differentiated tumour
regions (G1, n¼ 3) (Figure 1D), there was a distinct staining of the
epithelial cells. Moderately differentiated tumour regions (G2,
n¼ 15) showed a less prominent expression with patchy and
irregular patterns on the membranes (Figure 1E). The median
intensity score of G2 graded tumours was 1.8 with an interquartile
range of 1.3– 2.0. In comparison, there was nominal staining for
NDRG1 in tumours that lost histopathological signs of differentia-
tion (G3, n¼ 9) (Figure 1F). The median intensity score of G3
graded tumours was 0.8 with an interquartile range of 0.6–1.4.
This was significantly lower than in G2 graded tumours
(P¼ 0.014). Furthermore, on resection margins it was frequently
noted that, nonmalignant, highly differentiated tubular complexes
in reactive pancreatic areas showed a stronger staining than the
adjacent tumour cells (Figure 2).

Cellular hypoxia is a characteristic feature of pancreatic tumours
and is generally known to act as potent inducer of NDRG1
expression. Using HIF-1a expression as a marker for tumour
hypoxia, we demonstrate that in both differentiated and undiffer-
entiated pancreatic tumours HIF-1a protein is stabilised. As
expected, immunoreactivity for HIF-1a was observed in the nuclei
of tumour cells (Figure 3). In serial sections, NDRG1 was
colocalised only in well-differentiated tumour regions.

Hypoxia-induced upregulation of NDRG1 is influenced by
pancreatic cancer cell differentiation

To test whether hypoxia-induced expression of NDRG1 is
dependent on differentiation, two pancreatic cancer cells lines,
the moderately differentiated Capan-1 and the poorly differen-

H & E
A

B

C

D

E

F

NDRG1 H & E NDRG1

100 �m

Figure 1 Photomicrographs of haematoxylin and eosion staining and NDRG1 immunohistochemistry of pancreatic tissue sections (original magnification
� 200). (A) Normal pancreatic tissue from organ donors, with the pancreatic islets (*) surrounded by acini. (B) Peritumoral tissue with hyperplastic islets
(**), hyperplastic ducts and fibrotic peritumoral tissue (#). (C) PanIN of the main duct (-). (D–F) Ductal adenocarcinomas of the pancreas, (D) well-
differentiated tumour (-), embedded in the tumour stroma (#). (E) Moderately differentiated tumour with strongly staining malignant cells (-), beside
malignant cells showing a faint staining (o). (F) Undifferentiated tumour characterised by polynuclear cells ’.
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tiated Panc-1, were cultured either at 21% O2 (normoxia, N) or at
2% O2 (hypoxia, H). Exposure to 2% O2 is sufficient to stabilise the
a-subunit of HIF-1 protein (Figure 4). HIF-1a is stabilised and
strongly detected by Western blot in nuclear protein extracts from
cells cultured at 2% O2 compared to normoxic controls in both
tumour cell lines. Equal amounts of protein were controlled for
with Sp1. VEGF mRNA expression was examined by real-time PCR
as a control for the induction of an established HIF-1-dependent
gene. Both cell lines show a significant 4–6-fold increase of VEGF
mRNA after 12 h that was maintained up to 48 h of exposure to
hypoxia (Figure 5).

Capan-1 and Panc-1 cells constitutively express similar levels of
NDRG1 mRNA under normoxic conditions (data not shown).
Under hypoxia, however, NDRG1 mRNA was upregulated 10-fold
after 2 h and steadily increased reaching a 60-fold induction after
24 h in the moderately differentiated Capan-1 cells. In contrast,
there was no significant increase of NDRG1 mRNA at any time
point tested in the poorly differentiated Panc-1 cells (Figure 6A).
By Western blot, there was no expression of NDRG1 protein in
both cell lines cultures under normoxic conditions. Yet, consistent
with the mRNA analysis, NDRG1 protein was detected after 2 h of
hypoxia and its level steadily increased reaching a maximum
expression after 48 h in Capan-1 cells. There was no NDRG1

protein expression at all time points tested in Panc-1 cells. Equal
amounts of protein were controlled for with b-actin (Figure 6B).

To confirm that NDRG1 expression is dependent on the cellular
differentiation status of cells, other activators of HIF-1a were
tested. There was a strong induction of NDRG1 protein in Capan-1

100 �m

Figure 2 Photomicrograph of NDRG1 immunohistochemistry (original
magnification � 200) of a moderately differentiated ductal adenocarcinoma
of the pancreas -, surrounded by fibrotic tissue (#), with embedded
regenerating tubular complexes (o). The possible pathomechanism of
dedifferentiation.

Negative control
A

B

HIF-1� NDRG1

50 �m

Figure 3 Photomicrographs of (A) moderately differentiated and (B) poorly differentiated ductal adenocarcinomas of the pancreas stained for HIF-1a
and NDRG1 (original magnification � 400). (-) Indicating positive reactivity in tumour cells.

N

HIF-1�

Sp1

Capan-1Panc-1

H N H

Figure 4 HIF-1a protein is stabilised in Capan-1 and Panc-1 cells under
hypoxia. Nuclear enriched protein extracts from cells cultured either under
normoxia (N) or hypoxia (H: 2% O2) for 24 h. Proteins were analysed
by Western blot using a monoclonal antibody against HIF-1a (120 kDa)
or a rabbit polyclonal antibody against Sp1 (87 kDa) to control for equal
nuclear protein loading. Signals were developed with enhanced chemi-
luminescence.
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Figure 5 VEGF mRNA is equally upregulated in both Capan-1 and Panc-
1 cells under hypoxia. Cells were grown under hypoxic conditions (2% O2)
for 2, 4, 12, 24 and 48 h. The bars represent the mean fold increase plus s.d.
of hypoxic cells compared to normoxic controls. Results are from three
independent experiments. Statistics were calculated by ANOVA followed
by Dunnett’s multiple comparisons test, *Po0.05, **Po0.01, ***Po0.001.
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cells incubated with DMOG, CoCl2, DFX and under hypoxia in
comparison to Panc-1 cells, at equal loading and exposure time
(Figure 7). Analysis of NDRG1 mRNA confirmed these results
(data not shown). Of note, unlike in the previous Western blots
shown, we found faint signals in the Panc-1 cells, which are a result
of increased antibody sensitivity.

Taken together, this series of experiments suggest a selective
loss of NDRG1 expression despite HIF-1a stabilisation in the
undifferentiated pancreatic cell line, Panc-1.

DISCUSSION

NDRG1 is strongly induced by hypoxia, one of the key
characteristics of pancreatic cancer, thus our first goal was to
establish NDRG1 as a tumour marker for this aggressive
malignancy. Initially, our data in the pancreas were consistent
with previous reports on other cancers (Gomez-Casero et al, 2001;
Nishie et al, 2001; Cangul et al, 2002a), showing that NDRG1
protein is highly expressed in tumours compared to normal tissue
of the same origin. However, pancreatic cancers induce a strong
peritumoral desmoplastic reaction characterised by fibrosis and
hypoxia. Within this region, where pancreatic regeneration is an
active process, we observed a strong staining of newly formed,
highly differentiated tubular complexes as well as in hyperplastic
ducts and islets. The high NDRG1 expression levels found in these
reactive areas supports studies that have demonstrated its
modulation during differentiation and by multiple stress-inducing
agents.

On closer examination, we observed that PanIN and areas
consisting of well-differentiated cells were strongly stained within
pancreatic tumours. Conversely there was very little to no
expression of NDRG1 protein in poorly differentiated cells,
although we showed HIF-1a-positive nuclei in these regions. This
observation was in agreement with studies of colorectal and
prostatic cancer, in which NDRG1 was reduced in poorly
differentiated adenocarcinoma compared to well-differentiated
cells (van Belzen et al, 1997; Guan et al, 2000; Caruso et al,
2004). The difference being that, quiescent apical colonic epithelia
express NDRG1, whereas normal pancreatic cell types do not.

From a clinical point of view, the observed presence of NDRG1
in nontumoral tissue taken together with its negligible expression
in undifferentiated tumours argues against its value as a reliable
tumour marker. It may, however, be a potential marker to predict
the differentiation status of pancreatic cancer cells. Within a
tumour lesion, loss of expression would serve as a poor prognostic
indicator and a tool to plan the adjuvant therapy. In a retrospective
analysis, high levels of NDRG1 was associated with indolent
tumour growth and with improved survival in patients diagnosed
with colorectal cancer (Shah et al, 2005).

As pancreatic cancer is characterised as a hypoxic tumour, we
next questioned why there was negligible NDRG1 expression in the
undifferentiated tumour cells. Hypoxia can influence cellular
phenotypes by altering the expression of specific genes and is
generally thought to give pancreatic cancers cells an advantage by
promoting factors beneficial for tumour growth and survival
(Duffy et al, 2003). This idea is maintained by our in vitro
experiments in which HIF-1a protein and VEGF mRNA were
upregulated by hypoxia in both cell lines tested. Whereas Panc-1,
the more aggressive undifferentiated cell line, showed a modest
increase of NDRG1 mRNA or protein under different HIF-1a
stabilizer, compared to the prominent response of the moderately
differentiated tumour cell line, Capan-1. This suggests that the
expression of NDRG1 may be dependent on cell differentiation. If
indeed NDRG1 is a potential tumour suppressor protein, it would
be a survival advantage for an aggressive cancer to shut down the
ability to upregulate a growth inhibitory protein. The loss of ability
to express NDRG1 would assist cells to dedifferentiate to a more
aggressive phenotype with more metastatic potential. Recently, it
has been suggested that hypoxia can induce dedifferentiation and
genetic instability of tumour cells, which may account for the
heterogeneity and aggressiveness of solid tumours (Reynolds et al,
1996; Jogi et al, 2002; Helczynska et al, 2003; Unruh et al, 2003).

NDRG1 is a very stable protein and has been proposed as an
indicator of tumour hypoxia (Cangul et al, 2002a). From our
studies, along with the published work of others, we would predict
that its use as a marker of hypoxia would also be unreliable. The
first point, as we suggest here, its expression is dependent on the
differentiation status of cells within a hypoxic environment.
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Figure 6 Comparison of NDRG1 mRNA (A) and protein (B)
expression in Capan-1 and Panc-1 cell lines. (A) Refer to Figure 5 for
explanation. (B) Cells were exposed to normoxia (N) or hypoxia (2% O2)
for 2, 4, 12, 24 or 48 h. Total protein lysates were analysed by Western blot
with a sheep anti-NDRG1 antibody (43 kDa). Signals were developed with
enhanced chemiluminescence. b-actin (42 kDa) is shown as a control for
equal protein loading.
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Figure 7 Comparison of NDRG1 expression in Panc-1 and Capan-1 cell
lines exposed to HIF-1a activators. Panc-1 and Capan-1 cell lines were
exposed to several HIF-1a activators for 24 h. Total protein lysates were
analysed by Western blot with a sheep anti-NDRG1 antibody (43 kDa).
b-Actin (42 kDa) is shown as a control for equal protein loading. Lanes 1
and 6: normoxia; lanes 2 and 7: 125 mM DMOG; lane 3 and 8: 100 mM cobalt
chloride; lanes 4 and 9: 100 mM DFX; and lanes 5 and 10: hypoxia with
2% O2.
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Furthermore, other potential markers such as HIF-1a and its target
genes Glut-1 and CAIX were proven unreliable because of the
influence of other regulating factors (Mayer et al, 2004, 2005a, b).
In addition to oxygen deprivation, hypoxia-regulated genes can be
influenced by nutrient deficiencies, oncogenic mutations and
oxidative stress. NDRG1 expression is also modulated by ascorbate
levels within a tumour microenvironment, directly demonstrating
an alternative mechanism of its regulation (Karaczyn et al, 2005).

In this study, our data suggest that it is the differentiated cells
that can express NDRG1 in a hypoxia-stressed environment.
Hypoxic areas within solid tumours are diverse and nonuniform
through the new formation and collapse of subfunctional blood
vessels. This may account for the observed patchy pattern of
NDRG1 expression we observed in moderately differentiated
tumours. The mechanism by which this response is lost in
undifferentiated cells warrants further investigations.

Pancreatic cancer is characterised by its predisposition to
aggressively invade surrounding tissues, to metastasise early and
extensively and to resist conventional chemoradiation treatment
strategies. Although the precise function of NDRG1 is unknown,
there is solid evidence that suggests it may suppress the invasive

ability and spontaneous metastasis of cancer cells by inducing
differentiation and reversing a metastatic phenotype. Further
studies are aimed to clarify the function of this novel protein, and
its role in the progression and metastasis of various cancers.
Clinically important, the data provided suggest that NDRG1
may offer a powerful diagnostic tool for the grading of
pancreatic cancers, whereas better characterising of the protein
may help to decide on how aggressive the adjuvant therapy should
be planned.
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