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The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes)

is tightly associated with humans. It is the dominant bacterium in sebaceous regions

of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple

strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this

review we summarize and discuss the current knowledge of C. acnes regarding bacterial

properties and traits that allow host colonization and play major roles in host-bacterium

interactions and also regarding the host responses that C. acnes can trigger. These

responses can have beneficial or detrimental consequences for the host. In the first

part of the review, we highlight and critically review disease associations of C. acnes,

in particular acne vulgaris, implant-associated infections and native infections. Here,

we also analyse the current evidence for a direct or indirect role of a C. acnes-related

dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity

and/or the predominance of a certain phylotype. In the second part of the review, we

highlight historical and recent findings demonstrating beneficial aspects of colonization

by C. acnes such as colonization resistance, immune system interactions, and oxidant

protection, and discuss the molecular mechanisms behind these effects. This new insight

led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as

probiotic options to treat skin disorders.

Keywords: Cutibacterium acnes, acne (acne vulgaris), implant-associated infection, skin microbiome, beneficial

bacteria, Propionibacterium acnes

INTRODUCTION

Cutibacterium acnes (C. acnes) is a Gram-positive member of the skin microbiota and as such, a
very prevalent microorganism associated with humans. It is a lipophilic microorganism, and the
most dominant bacterium in sebaceous, lipid-rich areas of normal human skin; in addition, it is
also very abundant on moist and dry skin areas (Byrd et al., 2018). It is also found in several other
organs and tissue sites, such as oral cavity, stomach, lung, urinary tract, and prostate (Sasaki et al.,
1980; Shannon et al., 2006; Delgado et al., 2011; Davidsson et al., 2016); however, it is unclear if
the organism can live and thrive in sites other than the skin or if its detection is a result from
skin-derived carry-over, sample contamination, or a temporary breach.

The colonization of C. acnes, or rather the fact that human defense systems allow C. acnes to
colonize the largest organ, suggests that the bacterium does not harm the human host, at least not
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under normal circumstances. C. acnes grows particular well
in sebaceous rich areas; during the development of puberty,
with increased sebaceous gland activity, C. acnes predominantly
colonizes those skin areas with preference of infrainfundibula
of sebaceous follicles (Leyden et al., 1998). The successful
colonization by C. acnes could indicate that the bacterium
actually has host-beneficial roles. In this review, we highlight
some of the known and suggested beneficial functions of C.
acnes. On the other hand, most, if not all, bacteria can cause
harm to the human host under certain conditions such as in a
predisposed or immunocompromised state. This also holds true
for C. acnes, in particular if bacteria breach the skin surface and
reach deeper tissue sites. However, we still know very little about
the active roles that C. acnes might have in disease formation
or progression; even for the skin condition acne vulgaris (AV)
there are still open questions regarding the exact involvement
of C. acnes on the molecular level. This review aims at a
description and evaluation of some disease associations of C.
acnes (Figure 1, Table 1).

In the last decades, improvement of technologies such as next
generation sequencing (NGS) has provided new possibilities to
study C. acnes and the skin microbiome. Full genome sequencing
of many different strains has highlighted the pan-genome and
the genetic repertoire of C. acnes (Tomida et al., 2013; Scholz
et al., 2016). This has led to the identification of host-interacting,
secreted, and/or surface-exposed proteins of C. acnes as well as
other molecules and metabolites. This review contains current
knowledge of bacterial factors thought to be important in host-
beneficial or -detrimental functions. In addition, sequencing
of almost 300 genomes (status February 2021) has provided
a deep insight into the population structure of this species.
Results of the phylogenomic analysis and the comparison with
genomes of other propionibacteria, in particular the classical
diary propionibacteria, e.g., Propionibacterium freudenreichii,
have led to a proposal of changing the species name from
Propionibacterium acnes to Cutibacterium acnes (Scholz and
Kilian, 2016). This name change provoked a controversy among
scientists; among others, it was noted that a new species name
might generate some confusion among clinicians (Alexeyev et al.,
2018).

Among C. acnes, we distinguish six main phylotypes, often
labeled as IA1, IA2, IB, IC, II, and III (McLaughlin et al.,
2019). Several typing schemes to distinguish strains of C. acnes
exist, traditionally based on multi-locus sequence typing (MLST)
schemes and now more and more replaced by whole genome-
based phylotyping (Lomholt and Kilian, 2010; McDowell et al.,
2011; Scholz et al., 2014). Three subspecies are currently
distinguished, subspecies acnes (comprising phylotypes IA1, IA2,
IB, IC), subspecies defendens (phylotype II) and subspecies
elongatum (phylotype III) (Dekio et al., 2019). Based on the core
genome phylogeny of C. acnes, a single-locus sequence typing
(SLST) scheme was created that can differentiate 10 lineages in
total (types A-L); the complex phylotype IA1 is further split into
five SLST types (A-E) (Scholz et al., 2014). The other SLST types
correspond to the phylotypes as follows: F, IA2; G, IC; H, IB; K,
II; L, III (Figure 2). This review will often refer to the main six
phylotypes (and the 10 SLST types) and their distinct associations

with health and disease. Apart from core genome differences, the
accessory genome of C. acnes is relatively small but comprises
elements such as a linear plasmid (designated p15.1.R1 or
pIMPLE-HL096PA1, encoding a conjugation apparatus and a
tight adherence pili locus) and a circular plasmid (designated
pTZC1, encoding genes conferring resistance to macrolides,
clindamycin and tetracycline) (Tomida et al., 2013; Davidsson
et al., 2017; Aoki et al., 2020). In addition, around 60 other
regions that are not part of the core genome can be identified
in the pan-genome of C. acnes; these non-core genes are often,
but not exclusively, phylotype-specific, and code for a variety
of functions such as different transport systems, bacteriocin
synthesis, resistance to heavy metals and antibiotics, restriction
modification systems, CRISPR/cas systems, (cryptic) prophages,
transposases, carbohydrate and amino acid processing enzymes,
and many so far unknown functions (Brüggemann et al., 2012;
Tomida et al., 2013; Scholz et al., 2016).

MR. HYDE—THE PATHOGENIC SIDE OF
C. acnes: PROVEN AND SUGGESTED
DISEASE ASSOCIATIONS AND
MECHANISMS

General Considerations
Hundreds of studies have been carried out to shed light on
the potential role of C. acnes in various diseases. Due to the
ubiquitous bacterium’s presence on human skin (Byrd et al.,
2018), many efforts focused on skin disorders, in particular
AV. Mainly in the last two decades several non-skin diseases
were reported to be associated with C. acnes, including implant-
associated infections (IAIs), primary joint and bone infections,
sarcoidosis, and prostate cancer (Figure 1).

Here, we do not aim at the presentation of the entire literature
that reported evidence and counter-evidence for a role of C.
acnes in disease formation and/or progression; rather, this review
will present and discuss selected disease associations of C. acnes.
The selection is based on the availability of recent advances, as
well as new findings that shed light on C. acnes’ role and its
host-interacting properties.

Skin Disorders Associated With C. acnes
C. acnes and Acne Vulgaris
Historically, much effort has been undertaken to pinpoint the
exact role of C. acnes in the onset and/or progression of AV.
Many hypotheses and possible mechanisms have been suggested,
but solid evidence is still scarce. On the other hand, there
is no case of AV without C. acnes. There is strong evidence
that therapeutically induced reduction of C. acnes’ population
(e.g., directly by antibiotics or indirectly by retinoids that
suppress sebum production) diminish inflammation. The reader
is referred to a few recent reviews that summarize diverse aspects
on the debated role of C. acnes in AV (Dréno et al., 2018, 2020;
Platsidaki and Dessinioti, 2018; Brüggemann, 2019; McLaughlin
et al., 2019).

Here, a few selected features regarding C. acnes’ association
with AV should be highlighted. In the last decade, the concept
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FIGURE 1 | Known or suspected disease associations of C. acnes. Shown are currently investigated and debated disease associations of C. acnes. In this review we

mainly focus on acne vulgaris, implant-associated infections, and a few native infections. The clinical pictures regarding acne vulgaris are taken from Gollnick and

Zouboulis (2014).

of a dysbiosis of the C. acnes population on acne-affected skin
compared to normal skin was put forward; such a shift of
the C. acnes population was -to some extent- observed with
culture-dependent and culture-independent methods (Lomholt
and Kilian, 2010; McDowell et al., 2011; Fitz-Gibbon et al.,
2013; Dréno et al., 2020). In these studies, it was stated that
strains belonging to certain phylotypes of C. acnes are AV-
associated, while other strains belonging to different phylotypes
are preferentially associated with healthy skin. More accurately,
in case of AV-affected skin compared to normal skin, a higher
relative abundance of certain strains, in particular strains of
phylotype IA1 (and phylotype IA2) was observed. However,
strains of phylotype IA1 are, in average, also more abundant
on healthy (facial) skin than strains belonging to the other
phylogenetic lineages, i.e., phylotypes IA2, IB, IC, II, and III
(McLaughlin et al., 2019). So far, not many studies have used
the SLST typing scheme to determine the phylogeny of acne-
associated strains. A recent study has reported the association
of the SLST type A (a subset of IA1 strains, Figure 2) with
acne-affected skin; however, this study only processed a rather
small cohort (n = 36) (Dagnelie et al., 2018). In contrast,
studies with Japanese patients have detected the SLST type F
(IA2) as strongly acne-associated (Nakase et al., 2017, 2020),
suggesting geographic differences between Europe and Asia. In
addition, the SLST type C (IA1) is enriched among acne patients;

this SLST type corresponds to the (MLST-based) phylogenetic
lineage CC3 (Lomholt and Kilian, 2010; McLaughlin et al.,
2019).

It is fairly unlikely that phylotype IA1 strains (or rather
strains of SLST types A and C) or phylotype IA2 strains
(SLST type F) isolated from acne-associated skin have per
se different properties than phylotype IA1/IA2 strains isolated
from healthy skin. In line with this, a study found no
differences in the (core as well as accessory) genomes of
phylotype IA1 strains isolated from acne and healthy skin,
respectively (Lomholt et al., 2017). Moreover, there is no solid
evidence that supports the assumption that phylotype IA1/IA2

strains are per se more virulent compared to strains of other
phylotypes, even though such differences on the strain level
might exist. Studies that have compared strain properties of
C. acnes (comparing either strains belonging to the same
phylotype or strains belonging to different phylotypes) regarding
their pathogenic potential came to conflicting results (Nagy
et al., 2005; Jasson et al., 2013; Lheure et al., 2016; Agak
et al., 2018). Current studies that report strain comparisons
need to be handled with caution; much can depend on the
individual, selected strains (that can have slight differences, e.g.,
in growth behavior and oxygen sensitivity) as well as on the
method/model that is applied to evaluate bacterial pathogenicity
or host-interaction.
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TABLE 1 | Disease associations of C. acnes and evaluation of the existing evidence.

Disease Level of evidence* Phylotype association

(enrichment)

Selected reviews Selected primary

literature

Acne vulgaris A

Disease association

Detection (CD, CI, IHC/IF)**

Skin model

Animal model (with

limitations)

Responsive to

antibiotic treatment

IA1 (SLST types A andC;

possibly also SLST types D

and E) and, possibly, IC

(SLST type G)

Dréno et al., 2018, 2020;

Platsidaki and Dessinioti,

2018; Brüggemann, 2019;

McLaughlin et al., 2019

Lomholt and Kilian,

2010; McDowell et al.,

2011; Fitz-Gibbon

et al., 2013; Dagnelie

et al., 2018

Progressive macular

hypomelanosis

B

Disease association

Detection (CD and CI)**

Responsive to

antibiotic treatment

III (SLST type L) McDowell et al., 2020 Barnard et al., 2016;

Petersen et al., 2017

Implant associated

infections

PJI

Cardiac devices

Neurosurgical

shunts

Breast implants

A

Disease association

Detection (CD and CI)**

Animal model

Responsive to

antibiotic treatment

Conflicting results:

II (SLST type K)

IB (SLST type H)

IA1 (SLST type A)

Portillo et al., 2013;

Achermann et al., 2014;

Aubin et al., 2014; Gharamti

and Kanafani, 2017;

Boisrenoult, 2018; Renz

et al., 2018

Zeller et al., 2007;

Aubin et al., 2017;

Banzon et al., 2017;

Lavergne et al., 2017;

Liew-Littorin et al.,

2019; Lee et al., 2020;

Suzuki et al., 2020a

Spine instrumentation

infections

Spine osteomyelitis

B

Disease association

Detection (CD)**

Responsive to antibiotic

treatment (with limitations)

IA1 (SLST type A)

IA2 (SLST type F)

Khalil et al., 2019 Uçkay et al., 2010

Disc degeneration and

Modic type 1 changes

B

Disease association

Detection (CD, CI, IHC/IF)**

Animal model

Responsive to antibiotic

treatment (with limitations)

IA1 (SLST type A)

II (SLST type K)

Capoor et al., 2019;

Manniche and O’Neill, 2019;

Jha and Sairyo, 2020

Albert et al., 2013;

Capoor et al., 2017; Lin

et al., 2018;

Ohrt-Nissen et al.,

2018

Sarcoidosis B

Disease association

Detection (CD, CI, IHC/IF)**

Animal model

? Eishi, 2013; Yamaguchi

et al., 2021

Nagata et al., 2017;

Werner et al., 2017;

Suzuki et al., 2018;

Song et al., 2019;

Beijer et al., 2021

Prostate cancer C

Disease association

Detection (CD, IHC/IF)**

Animal model

II (SLST type K) Brüggemann and Al-Zeer,

2020

Cohen et al., 2005;

Alexeyev et al., 2007;

Fassi Fehri et al., 2011;

Shinohara et al., 2013;

Bae et al., 2014;

Davidsson et al., 2016,

2017

*A, B, C: strong, medium, and weak evidence, respectively, based on the existing scientific literature. **CD, culture-dependent; CI, culture-independent; IHC/IF,

immunohistochemistry/immunofluorescence.

The relative enrichment of phylotype IA1/IA2 strains in acne
could also have another explanation: the reduction of strains
belonging to other phylotypes. An overall reduction of C. acnes
strain diversity could be associated with AV; this implies that
not one or a few C. acnes phylotypes are disease-associated but
rather the lack of strain/phylotype diversity. However, a clear-cut,
solid large scale study with 100’s of early-stage acne patients and
matched healthy controls is lacking; such a study should also take
possible confounders into consideration, such as past and current
treatments, since most acne suffers use some sort of (topical)
treatment. A recent study indicated that loss of strain/phylotype
diversity might go along with increased innate immune

stimulation: a three-strain mixture (strains of phylotypes IA1,
II, and III) elicited a weaker innate immune response in
healthy skin explants than the three strains applied individually
(Dagnelie et al., 2019). Regarding bacterial properties and
factors that could influence the formation and/or progression
of AV, some of them will be presented below, including CAMP
factors, biofilm formation, porphyrin, and short-chain fatty acid
production. Figure 3 summarizes a tentative model of the role of
C. acnes in AV.

Taken together, the concept of an acne-associated C.
acnes dysbiosis on the phylotype/strain level leading to a
diversity loss seems likely but needs further proof. If the
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FIGURE 2 | Diversity of the population of C. acnes. A population tree is shown based on a phylogenomic comparison relying on core genome-located nucleotide

polymorphisms. Distinct phylotypes of C. acnes are highlighted as six main phylotypes IA1, IA2, IB, IC, II, III, and 10 SLST types A-L. SLST types F, G, H, K, L

correspond to phylotypes IA2, IC, IB, II, and III, respectively. Please note that SLST types A–E are distinct clades of phylotype IA1. In particular, SLST types D and E are

distinct from acne-associated SLST types A–C. In total, 286 publicly available C. acnes genomes were analyzed and the closed genome of strain KPA171202

(phylotype IB, SLST type H) was taken as reference [modified from Brüggemann (2019)].

reduction of phylotype/strain diversity in acne-affected skin
holds true, as current data suggests, it would imply that
a diverse C. acnes population is a marker of healthy skin
and such diversity thus may be beneficial for skin heath.
The question then remains how a high strain diversity
could contribute to health, e.g., which mechanisms are at
play. Since different phylotypes of C. acnes are reported
to have different microbiological, and -to some extent-
different host-interacting properties (Nagy et al., 2005; Jasson
et al., 2013; Lheure et al., 2016; Agak et al., 2018; Dekio
et al., 2019), it can be speculated that a diverse C. acnes
population can compensate or dampen phylotype-specific
peculiarities, metabolize different components, provide
complementary beneficial traits and/or undergo some sort
of symbiotic relationship.

Other Skin-Disease Associated With C. acnes
C. acnes is suspected to be involved in other skin diseases.
The disease progressive macular hypolmelanosis (PMH) is
characterized by non-scaly hypopigmented skin areas that are
visible in the sebaceous areas; often the lower back skin is
affected. Regarding the role of C. acnes in PMH the reader is
referred to a recent review (McDowell et al., 2020) that, among
others, summarized and discussed data from primary studies
(Barnard et al., 2016; Petersen et al., 2017). In brief, a rather
clear enrichment of certain strains of C. acnes was seen in PMH
lesions; these strains belong to phylotype III (SLST type L) of C.
acnes. This phylotype (renamed to C. acnes subsp. elongatum) is
poorly investigated so far; it is quite different from the other main
phylotypes, also regarding its morphology (Dekio et al., 2019).

C. acnesmight also play a role in acne fulminans, a rare, severe
form of inflammatory acne, associated with painful ulceration,
and in some cases with systemic signs. A recent study identified
the SLST type A (phylotype IA1) in about 60% of patients
(Bocquet-Trémoureux et al., 2020); however, as discussed above,
the SLST type A is often found to be the dominating type in
healthy skin as well. Thus, at present, there is no strong evidence
that (a specific phylotype of) C. acnes is a driver of disease.

Non-skin Diseases Associated With
C. acnes
C. acnes and Implant-Associated Infections
More and more studies report the detection of C. acnes in IAIs. A
few reviews have summarized the current knowledge regarding
the role of C. acnes in IAIs (Portillo et al., 2013; Achermann
et al., 2014; Aubin et al., 2014; Gharamti and Kanafani, 2017;
Boisrenoult, 2018; Renz et al., 2018; Lin et al., 2020). It seems
that C. acnes is now more often found in IAI-associated
specimens than two decades ago. The reason for this increase
is most likely related to changed procedures and diagnostic
tools. One important change is the introduction of sonication
of removed periprosthetic tissue specimens or removed medical
devices before microbial cultivation (Trampuz et al., 2007). This
technique is nowadays more often used in everyday clinical
microbiology practice in many hospitals; it has been shown
to increase the bacterial recovery from specimens (Trampuz
et al., 2007; Esteban et al., 2008). In addition, cultivation
procedures have been adapted to guarantee also the reliable
detection of slow-growing anaerobic bacteria such as C. acnes;
e.g., cultivation times have often been extended to 14 and even
21 days (Bossard et al., 2016; Kvich et al., 2016). Moreover, due to

Frontiers in Microbiology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 673845

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Brüggemann et al. Beneficial and Detrimental Roles of C. acnes

the introduction of MALDI-TOFmass spectrometry for bacterial
species determination in the last decade, the identification of
cultivated bacteria has become more easily, and samples with
polymicrobial growth can be analyzed more comprehensively.
Furthermore, the use of multiplex PCR techniques has also
aided to improve the detection of low-virulent microorganisms
such as C. acnes (Morgenstern et al., 2018; Sigmund et al.,
2019).

Prosthetic Joint Infections
C. acnes is associated with around 10% of all prosthetic joint
infections (PJIs), being more frequently isolated in late-chronic
infections (Benito et al., 2019; Triffault-Fillit et al., 2019). The
shoulder is the most frequent site of isolation, probably due to
the greater rate of colonization in the axillary region than in
the hip or knee (Boisrenoult, 2018; Lin et al., 2020). It is now
estimated that C. acnes accounts for 31–70% of all PJIs after
shoulder arthroplasty (Fink and Sevelda, 2017). C. acnes is also
believed to be one of the main opportunistic pathogens involved
in latent postoperative infections in spinal instrumentation
surgeries (Khalil et al., 2019).

The diagnosis of C. acnes-associated PJI is difficult, mainly
due to the lack of specific local inflammatory signs at the
surgical site of infection. Persistent unexplained pain is often
the only symptom; evidence of implant loosening is seen in
a great number of cases (Shah et al., 2015; Lin et al., 2020).
Even though C. acnes is primarily associated with low-grade,
chronic or delayed infections, it can also cause acute infections
(Zeller et al., 2007; Dodson et al., 2010). Systemic symptoms,
such as fever are not frequent and inflammatory markers are
normal or slightly elevated. Only half of the patients presented
local signs of infections (Zeller et al., 2007; Lavergne et al.,
2017). This might explain why C. acnes can be unexpectedly
found in revision surgery (Benito et al., 2019). Clinical signs
of infection are more often encountered during the first two
years after arthroplasty procedure (Zeller et al., 2007). Nodzo
et al. reported that shoulder PJIs present with a less robust host
peripheral inflammatory response in comparison with knee and
hip PJIs (Nodzo et al., 2017). Rates of infections are higher in
males (Figa et al., 2017; Renz et al., 2018). One reason might be
related to gender-specific differences regarding the distribution
and frequency of hair follicles (Hudek et al., 2016). Abnormal
radiographic findings are usually observed in a minority of cases
of shoulder PJIs (Piggott et al., 2015; Shields et al., 2016). It
is still unclear if humeral loosening may indicate a C. acnes
infection. Radiographic findings (e.g., in C. acnes-associated
spinal infections) may show the formation of a “halo” around
screws, osteolysis or evidence of pseudoarthrosis of the fusion
mass (Khalil et al., 2019).

Cardiac Device-Related Infections
C. acnes has also been described as a causative agent of
cardiovascular device-related infections, involving prosthetic
heart valves, permanent pacemakers, prosthetic valve rings, or
implantable cardioverter-defibrillators. Diagnosis of C. acnes-
associated infective endocarditis (IE) is complicated, due to the
indolent nature of the infection, the slow growth rate of the

microorganism and its consideration as a common contaminant
in blood cultures (Clayton et al., 2006). In the C. acnes-associated
IE cohort of Banzon et al. invasive disease was reported in 78%
of the cases and embolic complications in 36% (Banzon et al.,
2017), whereas in the study of Sohail et al. myocardial abscesses
occurred in 36% of the cases (Sohail et al., 2009). Extended
incubation of blood cultures is recommended to increase the
microbiological yield. Banzon et al. showed that valve sequencing
may aid in the identification of C. acnes-associated IE, in
particular in culture negative cases (Banzon et al., 2017).

Breast Implant Infections
Capsular contracture is a frequent and severe complication
following breast implantation. The etiology is not fully
understood, but studies that employed sonication of the implant,
have suggested that bacterial colonization is associated with
capsular contracture (Reischies et al., 2017). Tamboto et al.
demonstrated in a porcine model a relation between subclinical
infection, bacterial biofilm formation and capsular contracture
(Tamboto et al., 2010). The most common bacteria isolated in
these samples are microorganisms from the skin microbiota,
being C. acnes one of the most recovered ones (del Pozo et al.,
2009; Karau et al., 2013). In the study of Lee et al. C. acnes was
found as the most prevalent microorganism in cases with chronic
infection (Lee et al., 2020).

Neurosurgical Shunt Infections
C. acnes is considered an emerging opportunistic pathogen
in neurosurgery procedures (Nisbet et al., 2007). It may be
responsible for∼15% of infections associated with shunt tubular
devices, that drain cerebrospinal fluid (CSF) from cerebral
ventricles to other body sites, usually the peritoneum (Conen
et al., 2008; Bayston et al., 2010). Clinical symptoms in shunt
infections are non-specific; the absence of fever is common
(Aubin et al., 2014). PCR has been described as effective method
to detect C. acnes in CSF infections (Suzuki et al., 2020a),
although this method might be too sensitive.

Molecular Typing of C. acnes Isolates From IAIs
Sequence types (ST) or clonal complexes (CC) have been
determined for a large population of C. acnes-associated IAI
strains in order to establish an association between certain
phylotypes and infection. It has been shown that phylotypes
IB and II were more frequently isolated from PJIs (McDowell
et al., 2012; Aubin et al., 2017). Regarding the CCs, Aubin
et al. described CC36 (phylotype IB, SLST type H) and CC53
(phylotype II, SLST type K) as predominant in their cohort. In
contrast, in the study of Littorin et al. CC18 (phylotype IA1, more
specifically SLST type A) was found to be predominant, followed
by CC53 (Liew-Littorin et al., 2019). The study of El Sayed et al.
found that CC18 was the most abundant CC, followed by CC36
(el Sayed et al., 2019). In spine instrumentation infections, C.
acnes strains mostly belonged to phylotypes IA1 (CC18) and
IA2 (CC28; SLST type F) (Aubin et al., 2017). Taken together,
these results are contradictory and might indicate that there is
no predominate PJI-specific phylotype, implying that all C. acnes
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FIGURE 3 | Model of the possible involvement of C. acnes in acne vulgaris. The healthy pilosebaceous unit is colonized with a mixture of different C. acnes

phylotypes/strains (1). Androgen and growth hormone levels in the puberty age rise; these activate sebaceous glands to produce more sebum (2). Exceeding sebum

and hyperkeratinization lead to the clogging of the sebaceous duct, the infrainfundibulum, and therefore, to microcomedo formation (acne precursor lesion). The

follicular homeostasis is disrupted; the microenvironment of the microcomedo is more anaerobic, providing an advantage and/or disadvantage for different C. acnes

phylotypes/strains, resulting in the predominance of type IA1 (SLST types A and C) and/or IA2 (SLST type F) strains in the comedo (3). Type IA1/IA2 strains produce

and secrete host-tissue degrading enzymes such as a type IA-specific hyaluronidase, endoglycoceramidases and lipases; the latter lead to the accumulation of free

fatty acids (4). In addition, type IA1/IA2 strains produce CAMP factors (CAMP1 and 2) as secreted and cell surface-attached proteins and the adhesive surface

glycoproteins dermatan-sulfate adhesins/fibrinogen-binding proteins (DsA1/DsA2). They also secrete short-chain fatty acids such as propionate and produce

porphyrins at higher levels (5). These bacterial properties further modulate the follicular microenvironment and pave the way for a closer contact of the bacterium with

the cellular microenvironment of the follicle (6), including keratinocytes and, possibly, sebocytes. The direct (bacterial surface) or indirect (secreted factors) contact of

C. acnes with these cells activates a local innate immune response, mainly in a TLR2-dependent manner, resulting in the release of chemokines/cytokines, such as

IL-8, IL-1β and others, and can also lead to the production of defense factors (6). Skin-resident DCs/Langerhans cells and macrophages sense and/or are recruited to

and infiltrate the irritated tissue site (7). They also interact with skin-resident CD4+ T cells, resulting in clonal expansion (C. acnes clone-specific proliferation of T-cells).

Mixed Th1/Th17 responses result in the secretion of other cytokines including IFN-γ and IL-17 (8). Together, this leads to the formation of papules and pustules as

seen in inflammatory acne.

types might have the potential to cause PJIs and it rather depends
on the individual strain.

C. acnes in IAIs: True Etiology or Sample Contamination?
C. acnes is considered a low-virulent microorganism that causes
infections with subtle clinical presentation, making positive
cultures for C. acnes in IAIs difficult to interpret. Indeed, the
significance of its detection is not always clear because it is
considered a common contaminant due to its omnipresence
in man-made environments. It has also been reported that C.
acnes is a possible commensal of the human shoulder joint
(Hudek et al., 2020), fueling further the debate whether it
represents a contaminant, a passive/transient colonizer or
bystander or whether it accounts for true infection. Given the
high rates of positive cultures after primary and secondary

shoulder arthroplasty, Namdari et al. demonstrated that the
most frequently isolated microorganisms from shoulder revision
arthroplasty (C. acnes and coagulase-negative staphylococci) are
also the most common bacterial contaminants from air in the
operating room (Namdari et al., 2020). A careful interpretation
of the culture results is needed to distinguish a true-positive from
a false-negative result. Parameters, like the number of culture-
positive specimens per patient, the cultivation time, and the
colony-forming unit (CFU) count help to make this distinction.
Frangiamore et al. and Salar-Vidal et al. suggested that clinically
relevant isolates of C. acnes need a shorter incubation period
in comparison with probable contaminants (Frangiamore
et al., 2015; Salar-Vidal et al., 2020). On the other hand, a long
incubation time could be needed to reactivate dormant cells
of C. acnes and/or intracellular or biofilm-embedded C. acnes.
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However, not much is currently known about such different
states of C. acnes.

It is widely accepted that the number of culture-positive
specimens per patient is a measure to evaluate the probability of
infection (Bémer et al., 2008; Asseray et al., 2010; Frangiamore
et al., 2015). In addition, the CFU count may be taken into
consideration, as contaminants in most cases often result in
very low CFU counts (Esteban et al., 2013; Burnham et al.,
2017; Salar-Vidal et al., 2020). In fact, the use of implant
sonication fluid alone could increase the rate of false positives
if no CFU threshold is established (Grosso et al., 2018).
However, neither long cultivation times nor low CFU counts
serve as definitive markers of contamination. Each patient
should be evaluated individually and interpretations should
be done in combination with other relevant clinical and
histopathological findings.

Native Infections by C. acnes

Spine Infections
C. acnes has been rarely associated with native infections of
the spine. Native spine osteomyelitis or spondylodiscitis remains
difficult to diagnose. Patients with an infection potentially caused
by C. acnes usually present with lower back pain without
any associated systemic symptoms, and levels of inflammatory
markers, such as C-reactive protein, are normal or slightly
elevated (Khalil et al., 2019). Magnetic resonance imaging is
needed to confirm the diagnosis, and if possible, at least two
positive tissue cultures should be obtained. The major risk
factor is a past history of spine surgery with an average of
34 months between the procedure and the onset of symptoms
(Uçkay et al., 2010). In most cases, these patients have a
favorable outcome with antibiotic therapy alone (Kowalski et al.,
2007).

Certain controversy exists regarding the role of C. acnes in the
pathogenesis of intervertebral disc degeneration and Modic type
1 changes of disc atrophy (fissuring and edema of the endplates)
in herniated discs. In 2001, the study of Stirling et al. was the
first to report positive cultures of C. acnes in intervertebral
disc material after microdiscectomy (Stirling et al., 2001). Since
then, several studies have reported the identification of C. acnes
in patients with degenerative disc disease (Albert et al., 2013;
Capoor et al., 2017, Ohrt-Nissen et al., 2018; Jha and Sairyo,
2020), although other studies do not support the true presence of
C. acnes inside discs; if found it is often regarded as contaminant
(Chen et al., 2016). Capoor et al. demonstrated the presence of
a C. acnes biofilm in resected intervertebral discs by fluorescent
in-situ hybridization (Capoor et al., 2017). In addition, Lin et al.
showed that C. acnes may be involved in intervertebral disc
degeneration by inducing apoptosis of nucleus pulposus cells via
the TLR2/JNK pathway (Lin et al., 2018). The identification of C.
acnes may indicate a true etiology in the pathogenesis of Modic
type I changes, which could be responsive to antibiotic treatment,
even though it is not possible to prove retrospectively which of
those patients were truly infected. Further research and clinical
trials are needed to clarify the infectious nature of C. acnes in
this disease.

Prostate Pathologies
A recent review summarized the current evidence level of the
involvement of C. acnes in prostate inflammation and prostate
cancer (Brüggemann and Al-Zeer, 2020). There is relatively
little doubt that C. acnes can be cultivated from a considerable
portion of biopsy specimens, mainly obtained from radical
prostatectomy. However, there is little knowledge about the
exact origin of the recovered bacteria, i.e., if they represent
contamination/carry-over from the urogenital tract, or if they
are colonizers of the (anoxic regions) of the tumor tissue. For
instance, a study from Sweden reported thatC. acneswas cultured
in 60% of the prostate cancer cases (n = 100) and in 26%
of cancer-free controls (n = 50) (Davidsson et al., 2016). The
phylotype II (SLST type K) was the most dominant type among
C. acnes strains obtained from prostatic tissue and 26% of those
strains carried an extrachromosomal element (Davidsson et al.,
2017). In contrast, a French study has detected only very few
C. acnes positive samples in their cohort (n = 36) (Bidaud
et al., 2020); the biopsy procedure involved antibiotic prophylaxis
that could explain the relative little bacterial recovery. Recent
studies aimed at the determination of the urogenital tract (tumor)
microbiome using culture-independent NGS-based techniques
(Shrestha et al., 2018; Banerjee et al., 2019). Unfortunately,
such low biomass studies often exclude C. acnes due to its
notorious presence in control samples (Mollerup et al., 2016;
Walker et al., 2020). Thus, NGS-based microbiome studies
are unlikely to contribute significantly to the open questions
regarding the presence and possible role of C. acnes in the
prostate microenvironment.

Sarcoidosis
Sarcoidosis is a systemic inflammatory disease, characterized
by the formation of non-necrotizing granulomas; these are
most often detected in the lungs, but can be found also in
the skin, lymph nodes, eyes, and other body sites and organs.
The cause of sarcoidosis is unknown; infectious and non-
infectious agents, individually or in combination, could play
a role. Bacterial candidates as infectious causes of sarcoidosis
are primarily Mycobacterium tuberculosis and C. acnes (Eishi,
2013). A recent review summarizes current insights in the
disease contribution of M. tuberculosis and C. acnes to
sarcoidosis (Yamaguchi et al., 2021). Several recent studies
have identified C. acnes in granulomas of sarcoidosis patients;
detection was achievedwithDNA-based techniques, but also with
immunohistochemistry/immunofluorescence staining (Nagata
et al., 2017; Suzuki et al., 2018; Beijer et al., 2021). So far, no
specific C. acnes phylotype has been associated with sarcoidosis.
The involvement of C. acnes in sarcoidosis is also supported
by experiments in mice (Werner et al., 2017; Song et al.,
2019). As a possible disease scenario, invasive C. acnes, possibly
derived from the skin, could result in a latent, intracellular
state, for example in macrophages. Intracellular presence and/or
proliferation could activate immune responses, mediated by
bacterial factors, followed by the formation of insoluble immune
complexes, in particular in individuals predisposed with a Th1
hypersensitivity against C. acnes (Yamaguchi et al., 2021). The
multifaceted interactions of C. acnes with the immune system
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and relevant machineries such as autophagy are presented in
the chapter Sensing and Signalling of Extra- and Intracellular C.
acnes and Innate and Adaptive Immune Responses.

C. acnes Virulence Factors and Traits
A few bacterial products and traits that possibly could influence
disease pathologies have been investigated. These include e.g.,
CAMP (Christie–Atkins–Munch-Petersen) factors, dermatan-
sulfate adhesins (DsAs), lipases, sialidases, hyaluronidases,
putative endoglycoceramidases, porphyrins, short-chain
fatty acids (SCFAs), cell wall polysaccharide/lipoglycan, and
lipoproteins (Brüggemann et al., 2004; Valanne et al., 2005; Lodes
et al., 2006; Holland et al., 2010; Mak et al., 2013; Yu et al., 2016;
Brüggemann, 2019; McLaughlin et al., 2019). Some of these
factors are actively or passively secreted, others are part of the
cell surface or attached to/embedded into the cell wall. A recent
study has analyzed a sortase of C. acnes, an enzyme important
for cell wall attachment of secreted proteins. The study predicted
19 sortase substrates, among them some of the above-mentioned
factors, including CAMP factor 1 (locus tag: PPA1340), sialidases
(PPA1560, PPA1821), and DsAs (PA2127, PPA2210) (Girolamo
et al., 2019).

The evidence level of the involvement of the above-mentioned
factors in disease pathology is incomplete. In fact, a clear-
cut virulence factor of C. acnes has yet to be identified,
since there is very little insight into their functionalities. The
lack of functional data can be partially explained with the
lack of an efficient gene knock-out system for C. acnes; so
far only very few mutant strains of C. acnes were created
(Sörensen et al., 2010; Allhorn et al., 2016; Nazipi et al., 2017).
Another reason is the apparent redundancy of host-interacting
factors; C. acnes possesses multiple copies of genes for CAMP
factors, DsAs, lipases, sialidases, putative endoglycoceramidases,
and lipoproteins (Brüggemann et al., 2004). The redundancies
indicate their importance for colonization and survival of C.
acnes on human skin. There are only limited sequence differences
regarding the mentioned host-interacting factors between the
different C. acnes phylotypes. As an exception, substantial
sequence differences can be detected for the hyaluronidase: there
are two variants present in C. acnes. One variant is present in
phylotype IA strains and the other variant is found in strains of
phylotypes IB and II (Nazipi et al., 2017).

Here, we will briefly introduce and discuss new data regarding
bacterial factors and traits that are suspected to be important
for bacterial pathogenesis, in particular in AV, namely the
CAMP factors, lipases and the metabolites/molecules SCFAs and
porphyrins. We will also briefly discuss the evidence for biofilm
formation of C. acnes, and its relevance in IAIs.

CAMP Factors
A review has summarized knowledge regarding CAMP factors
in C. acnes (McDowell et al., 2013). There are five CAMP factor
homologs (CAMP1-CAMP5) present in (all phylotypes of) C.
acnes. In particular, CAMP1 and CAMP2 are produced in higher
amounts in most C. acnes strains. There are phylotype-specific
variations; for example (some strains of) phylotype IB produce
higher amounts of CAMP4 (Holland et al., 2010). CAMP2 and

CAMP4 are abundantly secreted, as well as CAMP1; however,
CAMP1 is also cell surface-exposed; it is predicted to be a
sortase substrate (Girolamo et al., 2019). In human follicular
casts CAMP1 was the most abundantly detected CAMP factor,
followed by CAMP2 (Bek-Thomsen et al., 2014). The redundancy
of CAMP factors is intriguing. C. acnes not only secretes high
amount of CAMP factors but also decorates its surface with this
protein. Thus, it can be assumed that CAMP factors have a vital
function in the biology and/or host-interaction of C. acnes.

Regarding their functionality, CAMP factors are described as
co-hemolysins, based on in vitro assays in which sheep blood
erythrocytes are used (Christie et al., 1944). However, the in
vivo function is likely to be quite different. Functional studies
on CAMP factors of group B streptococci indicate that they
are able to form micropores in eukaryotic membranes (Lang
and Palmer, 2003). For the CAMP2 of C. acnes it was shown
that is has cytotoxic effects in keratinocytes and macrophages if
applied as recombinant protein (Nakatsuji et al., 2011). Another
study reported that Toll-like receptor 2 (TLR-2) can recognize
CAMP1 (Lheure et al., 2016). If confirmed, CAMP1 could be a
trigger for an innate immune response when C. acnes comes in
close contact with human (immunocompetent) cells. However,
since C. acnes colonization of human skin usually does not go
along with any detectable inflammation, the suspected adverse
effects of CAMP factors, i.e., cytotoxicity and innate immune
activation, must be tightly inhibited in vivo. The true in vivo
function of CAMP factors might be different; e.g., it could be
envisaged that CAMP factors, due to their pore-forming activity,
could be involved in accessing nutrients within the sebaceous
follicle microenvironment, without causing excessive damage to
intact keratinocytes.

Lipases of C. acnes and Interaction With Host

Glycolipids
Sebaceous glands produce sebum, a mixture of relatively non-
polar lipids, in particular triglycerides, squalene, wax- and
cholesterol-esters as well as free cholesterol. Sebum is usually
overproduced during puberty due to the influence of androgens
and other hormones on the sebaceous gland activity.

C. acnes has lipolytic properties; the bacterium possesses
several lipases that can hydrolase triglycerides into fatty acids.
A secreted lipase, the triacylglycerol lipase GehA, has been
identified (Miskin et al., 1997). Interestingly, in human sebaceous
follicles, another secreted lipase of C. acnes was detected in
the infundibulum in larger amounts than GehA; this lipase was
designated GehB (Bek-Thomsen et al., 2014). GehA and GehB
are 42% identical on protein level.

The products of the activity of GehA/GehB, free fatty acids,
have been suspected to contribute to acne. It is thought that
alterations of the lipid composition in the infundibulum of
the sebaceous follicle can provoke inflammatory responses
(Zouboulis et al., 2014).

In addition to the hydrolysis of lipids, C. acnes possesses
also several enzymes that can process glycolipids. Two putative
endoglycoceramidases of C. acnes were identified within the
infundibulum of sebaceous follicles (Bek-Thomsen et al., 2014).
The proteins are predicted to catalyse the hydrolysis of the
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glycosidic linkage between oligosaccharides and ceramides of
glycosphingolipids. As judged from the arsenal of enzymes that
C. acnes possess, it can be hypothesized that the microorganism
can process glycosphingolipids (e.g., gangliosides) to gain
access to carbohydrates as nutrients: the oligosaccharide
is removed from the ceramide by endoglycoceramidases;
terminal sialic acid residues are removed by at least two
sialidases (Brüggemann et al., 2004; Nakatsuji et al., 2008); the
oligosaccharide moiety is further degraded by β-galactosidase,
β-N-acetylhexosaminidase, endo-β-N-acetylglucosaminidase,
and endo-α-N-acetylglucosaminidase. Only the latter enzyme,
designated EngPA was characterized so far (Koutsioulis et al.,
2008).

Short-Chain Fatty Acids (SCFAs)
Short-chain fatty acids are metabolites produced by C. acnes
during fermentative growth; propionate, but also acetate,
butyrate and valerate have been reported to be produced by C.
acnes, in particular in the presence of glycerol in the growth
medium (Shu et al., 2013b; Sanford et al., 2016; Tax et al.,
2016). Diverse roles have been associated with the production
of SCFAs by C. acnes. Shu et al. and Wang et al. reported
that SCFAs can suppress the growth of S. aureus (Shu et al.,
2013b; Wang et al., 2014a), indicating that C. acnes can prevent
the colonization of S. aureus on the skin via the production
of SCFAs. Nakamura et al. reported that SFCAs produced by
C. acnes can inhibit biofilm formation by S. epidermidis by an
unknown mechanism (Nakamura et al., 2020). Sanford et al.
reported that SCFAs of C. acnes might have an adverse effect for
skin barrier function: SCFAs (mainly produced under hypoxic
conditions in the presence of lipids) inhibited histone deacetylase
(HDAC) activity in keratinocytes; as a consequence, cytokine
production in those keratinocytes was elevated in response to
TLR2 ligands (Sanford et al., 2016). A similar observation was
made in sebocytes (Sanford et al., 2019). In contrast, SCFA-
mediated HDAC inhibition had the opposite consequence in
monocytes (Sanford et al., 2016). Taken together, there seem to
be health-beneficial as well as –detrimental roles of C. acnes-
produced SFCAs. It is currently unknown, if this potentially
fragile balance is influenced by the amount and/or the exact
composition of SFCAs produced.

Porphyrins
C. acnes produce porphyrins as part of the vitamin B12
(cobalamin) cofactor biosynthesis pathway. They need
cobalamin for essential enzymatic activities, e.g., for the activity
of the methylmalonyl-CoA mutase, a key enzyme in the Wood-
Werkman cycle that yields propionate production. Depending on
the growth conditions and possibly depending on the individual
strain, different precursor molecules can be accumulated during
cobalamin synthesis, such as protoporphyrin IX, uroporphyrin
III, and coproporphyrin III (Shu et al., 2013a). Under anaerobic
conditions, protoprophyrin IX seems dominant, whereas under
aerobic conditions, coproporphyrin III is more abundant. The
amount of produced porphyrins might be strain-dependent:
in general, type I strains produced more porphyrins compared
to type II and type III strains (Johnson et al., 2016; Barnard

et al., 2020). Porphyrins are suspected to have multiple effects:
as an adverse effect, coproporphyrin III can induce S. aureus
aggregation and possibly biofilm formation (Wollenberg et al.,
2014). Others reported that coproporphyrin III can trigger
cytokine responses in exposed cells (Schaller et al., 2005).
However, clear mechanisms have not been unraveled so far.
Among many open questions, it will be interesting to investigate
the role of C. acnes’ porphyrins on other members of the
skin microbiome.

Biofilm
One of the main virulence traits associated with IAIs is biofilm
formation of the respective pathogen in opportunistic infections
(Tande and Patel, 2014). Several studies have proven the ability
of C. acnes to develop a biofilm in vitro, using a range of
materials (Bayston et al., 2007; Tafin et al., 2012) and in different
types of implants such as hip or knee prosthesis, sternal wires
(Holmberg et al., 2009) or cardiac pacemaker devices (Okuda
et al., 2018). Also in AV, biofilm formation of C. acnes has been
proposed as a mechanism that allows bacterial persistency and
partial resistance to antimicrobial therapy (Coenye et al., 2007;
Spittaels and Coenye, 2018; Aslan Kayiran et al., 2020). A C.
acnes biofilm was also observed in vivo in sebaceous follicles with
distinct C. acnes colonization patterns, such as the attachment of
C. acnes to the follicular wall or matrix-encased biofilms localized
in the infundibulum of the follicle (Jahns and Alexeyev, 2014).
It should be noted here that C. acnes (biofilm) could not be
detected in intact sebaceous glands (Alexeyev and Jahns, 2012;
Jahns and Alexeyev, 2014). Scanning electron microscopy studies
also revealed the formation of biofilm ex vivo on implants such as
shunts (Bayston et al., 2007) or intraocular lenses (Suzuki et al.,
2020b). A few studies about C. acnes biofilm formation in animal
models were performed. Tafin et al. developed a foreign body-
infection model in guinea pigs and results showed the ability
of C. acnes to adhere to the implant surface. This study also
demonstrated that rifampin was the most effective antimicrobial
agent against sessile C. acnes (Tafin et al., 2012). As also proven
for other biofilm-forming bacteria, sessile C. acnes cells seem
more resistant to antimicrobials than planktonic cells; this could
explain why C. acnes-associated IAIs often respond insufficiently
to antibiotic therapy alone (Coenye et al., 2007; Tafin et al., 2012).
Shiono et al. showed that C. acnes could survive in a biofilm
for at least 6 months, causing delayed surgical site infection in
a mouse osteomyelitis model (Shiono et al., 2016). An IAI rabbit
model was developed by Achermann et al. (2015). The study also
identified proteins of C. acnes, produced when grown in a biofilm
and as planktonic cells. The protein signature of C. acnes in both
states was similar; identified proteins were mainly from the core
metabolism and some stress-related factors. This indicates that
there is no large reprogramming taking place when C. acnes
switches from a planktonic to a biofilm-embedded, sessile state.
However, Coeyne et al. observed increased lipase production in
sessile bacteria compared to planktonic cells (Coenye et al., 2007).

The biofilm-embedmentmay allowC. acnes to exist in a latent,
dormant state that does not provoke a substantial inflammatory
host response. However, specific mechanisms employed by C.
acnes that would allow the formation and maturation of a biofilm
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have not been investigated in detail. Kuehnast et al. proposed that
there might be a correlation between biofilm formation and the
C. acnes phylotype, rather than the anatomical site of infection
(Kuehnast et al., 2018). The study showed that strains belonging
to phylotype IA1 formed higher amounts of biofilm in microtiter
plates than other phylotypes. This is in accordance with Okuda
et al.; they demonstrated that biochemical properties and
structures of biofilms differed among C. acnes isolates (Okuda
et al., 2018). In addition, it was suggested that extracellular
DNA may play a role in the formation of C. acnes biofilm,
as also seen for many biofilms produced by other bacteria.
Gannesen et al. develop a method to analyze the composition
of the biofilm matrix of C. acnes. They found that the major
polysaccharide component of the matrix was the same as the cell
wall polysaccharide (Gannesen et al., 2019). This indicates that
C. acnes does not produce a specific extracellular polysaccharide,
but rather aggregates via the existing cell wall polysaccharide.

Taken together, the current data suggest that C. acnes can
form biofilms or aggregates. However, C. acnes seems not to
be a dedicated, specialized biofilm-former, i.e., it does not use
a specific program to form a differentiated biofilm, like it is
seen in other species such as ica-positive staphylococci. Indeed,
compared to other biofilm-forming bacteria,C. acnes biofilms are
rather weak and easily to dissolve, at least in vitro (Kuehnast et al.,
2018). Observed differences in biofilm formation in different
studies may, at least in part, be related to variations in the
employed biofilm detection method and materials used rather
than represent real biological variation (Holmberg et al., 2009).
It seems likely that C. acnes uses endogenous molecules for
adhesive purposes, whose main functions are related to structural
integrity, e.g., cell wall polysaccharide. Biofilm formation in vivo
can be fortified by host-derived molecules such as fibrinogen, as
C. acnes has fibrinogen-binding proteins (DsAs) on its surface
(Grange et al., 2017; Petersson et al., 2018; Pickering et al., 2019).

Antimicrobial Resistance of C. acnes
Antimicrobial resistance (AR) of C. acnes is a major concern
in acne but also in other C. acnes-associated diseases. A few
reviews have summarized the current knowledge regarding the
types of AR and the dissemination of resistant C. acnes strains
(Eady et al., 2003; Dessinioti and Katsambas, 2017; Karadag
et al., 2021). In brief, there is a large variation concerning the
frequency of AR of C. acnes in different countries, which might
be due to different treatment strategies, in particular regarding
acne. In general, higher frequencies of AR are observed regarding
erythromycin and clindamycin, while resistance to tetracyclines
is usually lower. Long-term use of antibiotics is associated with
increasedmacrolide resistance (Nakase et al., 2018). Resistance in
C. acnes to relevant antibiotics is mainly due to point mutations
in genes encoding ribosomal RNAs (16S rRNA and 23S rRNA
genes; Lomholt and Kilian, 2014; Nakase et al., 2017). In addition,
erm(X), encoding a RNA methylase that mediates resistance to
clindamycin, has been identified on a mobile genetic element
(Ross et al., 2002). Interestingly, a novel mobile genetic element
of C. acnes was recently identified, conferring resistance to
macrolides, clindamycin, and tetracyclines: the plasmid pTZC1
carries a novel macrolide-clindamycin resistance gene, erm(50),

as well as a tetracycline resistance gene, tet(W) (Aoki et al.,
2020). Resistant strains of C. acnes often belong to the acne-
associated types, i.e., phylotypes IA1 (SLST types A and C) and
IA2 (SLST type F) (Lomholt and Kilian, 2014; Nakase et al., 2017;
Sheffer-Levi et al., 2020).

Sensing and Signaling of Extra- and
Intracellular C. acnes and Innate and
Adaptive Immune Responses
C. acnes interacts on various levels with human cells such as skin-
resident keratinocytes, but possibly also with sebocytes and with
immune cells, including skin-resident Langerhans cells (LCs),
dendritic cell (DCs), macrophages, and T cells (reviewed in
Mayslich et al., 2021). Previous studies have shown, mostly in cell
culture, that C. acnes has extensive immunostimulatory activity.
The bacterium can stimulate the production of antimicrobial
peptides and diverse chemokine and cytokines. For instance, in
keratinocytes, activation of hBD2, TNF-α, GM-CSF, and IL-1α,
IL-1β, and IL-8 has been observed upon bacterial encounter;
in monocytes, C. acnes triggers the production of cytokines
such as IL-1β, IL-8, IL-12, and TNF-α (Chen et al., 2002; Nagy
et al., 2005; Yu et al., 2016). Innate host cell receptors can
sense C. acnes, either extra- or intracellularly. Important for
sensing extracellular bacteria is TLR-2, since TLR-2 activation is
crucial for NF-κB activation in response to C. acnes (Kim et al.,
2002; Su et al., 2017). As a TLR-2 agonist, CAMP factor 1 of
C. acnes might play a role (Lheure et al., 2016). Intracellular
recognition of C. acnes possibly involves other receptors, such as
TLR-9 and NOD-like receptors, in a cell type-dependent manner
(Kalis et al., 2005; Tanabe et al., 2006). In addition, C. acnes
can activate the NLRP3 inflammasome, a system responsible for
the activation of inflammatory processes via IL-1β maturation
(Kistowska et al., 2014; Qin et al., 2014). A recent study has shown
the involvement of another pathway in sensing intracellular C.
acnes: bacterial DNA seems to be sensed in the host cell cytosol
via the cGAS/STING pathway, resulting in a type I interferon
response (Fischer et al., 2020). C. acnes likely interacts also with
other immune cells such as T-cells. The bacterium can induce the
production of T helper type 1(Th1)-type cytokines (e.g., IL-12,
IFN-γ, and TNF-α) and Th17-type cytokines (e.g., IL-17 and IL-
22) (Thielitz et al., 2008; Agak et al., 2014; Kistowska et al., 2015).
In line with this, C. acnes-specific Th17 and Th1/Th17 cells can
be detected in the peripheral blood of acne patients. Different C.
acnes strains seem to have distinguishable abilities, for example
to induce Th17-type cytokines; thus, C. acnes might modulate
CD4+ T-cell responses in a strain-specific manner (Agak et al.,
2018).

Taken together, the pro-inflammatory activity of C. acnes
involves host cell signaling pathways and systems such as NF-κB,
the inflammasome, and STING/cGAS. Less well-understood is
which C. acnes components, e.g., genomic DNA, surface/secreted
proteins, peptidoglycan and cell wall polysaccharide, are actually
sensed and how the pro-inflammatory activity of C. acnes
is controlled/dampened on normal skin. C. acnes-exposed
keratinocytes may attenuate TLR-induced inflammation by
negative regulatory circuits involving proteins such as TNIP1
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and TNFAIP3 and microRNAs such as miR-146a, that can
downregulate the production of inflammatory cytokines and
chemokines (Erdei et al., 2018, 2021; Zeng et al., 2019).
In addition, besides keeping bacteria in physical distance to
immunocompetent cells, e.g., within infundibula of sebaceous
follicles, another strategy to limited responses might be to
eliminate invasive C. acnes. Intracellular bacteria are degraded
by endocytosis/phagocytosis and in addition, the autophagic
pathway is involved (Nakamura et al., 2016; Megyeri et al., 2018).
It was suggested that induction of autophagy is caused by C.
acnes cells in the host cell cytosol that escaped from endosomes
(Nakamura et al., 2016). Another open question concerns the
extent and significance of strain differences in host cell responses;
here, knowledge remains fragmentary, since different researchers
use often different strains. Thus, a robust, multi-laboratory
investigation is needed with a defined panel of well-characterized
C. acnes strains.

DR. JEKYLL—PROVEN AND SUGGESTED
HEALTH-BENEFICIAL ROLES OF C. acnes

General Considerations
Since the first time Antonie van Leeuwenhoek set his eyes
on bacteria in 1683, the scientific community has focused on
understanding their role in pathogenesis, deciphering the host-
pathogen interactions through molecular analysis of virulence
factors and traits. This focus has paved the way to medical
land-winnings including vaccines, antibiotics, and the general
idea of hygiene. While a focus on bacterial pathogens and their
molecular mediators of virulence has lent us much knowledge
and medical tools, it has also to a large extent made us forget
about the majority of bacteria, living in symbiosis with us, being
commensal or mutualistic in their interaction.

The idea of some bacteria being beneficial was raised several
centuries ago, but has recently received increased attention
(Fijan, 2014), and also turned more molecular (Mazmanian
et al., 2008; Wang et al., 2014c; Wollein Waldetoft et al.,
2020). Now it is well-recognized that (commensal) bacteria play
a critical role in maintaining health and microbial dysbiosis
being a cause to several common diseases (Harmsen and de
Goffau, 2016; Zhu et al., 2018). We recognize the importance
of gut bacteria for production of vital metabolic products (e.g.,
vitamin K; Conly and Stein, 1992) and how commensals produce
bacteriocins and antibacterial substances in order to reduce the
colonization of pathogens (Hammami et al., 2013), as well as
how bacteria orchestrate the immune system to improve its
defensive capacity (Naik et al., 2015). The raised awareness of
beneficial aspects of the commensal microbiota has led to a re-
evaluation of some of the bacterial members of the microbiota.
In particular, the ubiquitous skin bacterium C. acnes has received
much attention during the last years, being suggested to not
only limit colonization by more potent pathogens (Wang et al.,
2014a), but also to positively modulate the immune system (da
Silva et al., 2013; Talib and Saleh, 2015), produce beneficial
metabolites (Christensen and Brüggemann, 2014), treat and
protect from tumor development (Tsuda et al., 2011), and

FIGURE 4 | C. acnes’ prospective probiotic qualities. (A) Colonization

resistance against staphylococci and other potential pathogens. Direct effects

through expression of SCFAs (e.g., propionic acid) and bacteriocins (e.g.,

cutimycin). Indirect effects through induction of host-derived AMPs (e.g., HBD

and LL-37). (B) Modulation of immune response including e.g., Th1 and Th17

priming leading to heightened intrinsic anti-tumor activity and clearance of

pathogens. Interactions with Langerhans cells also help shape host immune

defenses. (C1) Inflammation regulation via RoxP, CLAs, polysaccharides, and

SCFAs (pro- and anti-inflammatory qualities). (C2) Counteracting the

tumorigenic effect of oxidative stress through RoxP secretion.

maintain redox homeostasis on the skin (Allhorn et al., 2016).
Here we summarize the documented beneficial effects ofC. acnes,
describe their molecular mechanisms, and discuss their impact in
maintaining our health (Figure 4).

C. acnes As a Regulator of Pathogenic
Skin Colonizers
The commensal microbiota has been attributed many generic
functions, including the ability to limit colonization by more
pathogenic bacteria (Abt and Pamer, 2014). While undoubtedly
so, the molecular mechanisms underlying such inhibition
are mostly unknown. Production of antibacterial substances,
reduction of nutritional availability and steric hindrance to
adhere to the host have been suggested to be important factors
(Silva et al., 2015). C. acnes, colonizing a highly specific niche of
the skin, employs several mechanisms to promote its exclusivity
in this environment.

Bacteriocins as Regulators of the Skin Microbiota
Competition for colonization not only exists between different
bacterial species, but also between different bacterial strains. For

Frontiers in Microbiology | www.frontiersin.org 12 May 2021 | Volume 12 | Article 673845

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Brüggemann et al. Beneficial and Detrimental Roles of C. acnes

that purpose, several bacteria produce bacteriocins that can target
similar bacteria. Two different bacteriocins have been reported
for C. acnes; acnecin and a thiopeptide, designated cutimycin.
Acnecin was identified 1978, but no follow-up studies have been
conducted since. The protein was determined to be a pentamer
consisting of five 12 kDa monomers, exerting an antibacterial
effect toward non-acnecin producing C. acnes strains, but not
toward other species (Fujimura and Nakamura, 1978; Nakamura
et al., 1978). Further characterizations concluded its protein
composition, being negatively charged (pI 5.5) with a low
carbohydrate content. Strikingly, acnecin was reported to be
bacteriostatic only, not bactericidal (Fujimura and Nakamura,
1978).

The thiopeptide cutimycin has only recently been identified
through comparative genomic studies (Brüggemann et al., 2012),
uniquely found in type IBC. acnes strains only (Christensen et al.,
2016). This peptide was shown to efficiently kill S. epidermidis
and thus give C. acnes a competitive advantage to colonize the
skin (Claesen et al., 2020). On a similar basis, S. epidermidis was
also shown to be able to limit growth of C. acnes by several
mechanisms and molecules; for example, fermentation products
of S. epidermidis have been shown to mediate such reduction of
fitness for C. acnes (Wang et al., 2014b). In contrast, Xia et al.
demonstrated how S. epidermidis can locally reduce C. acnes
induced inflammation, thus improving C. acnes fitness on the
skin (Xia et al., 2016). This suggests that this microbe-microbe
interaction is multifaceted.

Acidification by Propionic Acid Creates a Niche for

C. acnes
A broader, less specific means to limit colonization by other
bacterial species is mediated by the creation of highly specific
niches. The former name of C. acnes, Propionibacterium acnes,
relates to its ability to ferment sebum triglycerides and produce
propionic acid. SCFAs, among them propionic acid, produced by
C. acnes results in a lowered pH that is toxic to many microbes,
both bacteria and yeast (Wang et al., 2014a). The ability of C.
acnes to kill S. aureus through production of propionic acid has
been proven both in vitro and in vivo (Shu et al., 2013b), and
may partake in limiting S. aureus colonization on skin. Thereby,
it was shown that the acidity per se is not toxic to the bacteria,
but a high concentration of propionic acid itself (>25mM) is
efficiently killing several species. C. acnes itself is resistant to the
inhibitory effect of propionic acid at biologically relevant levels
(Wang et al., 2014a), allowing it to create an ecological niche
on the skin, free of (most) other microbial species. The ability
to produce propionic acid and to acidify the surrounding has
however also been associated with the pathogenicity of C. acnes
(Tax et al., 2016), making it a dual-edged sword.

Short Chain Fatty Acids Produced by C. acnes

Promote a Healthy Microbiota
Besides the ability of C. acnes to produce propionic acid from
sebum components such as triglycerides, a few other SCFAs
(acetic acid, butyric acid, and valeric acid) can also be produced
through fermentation (Shu et al., 2013b; Sanford et al., 2016).
SCFAs have proven to limit growth and colonization of several

skin pathogens (e.g., S. aureus and Streptococcus pyogenes)
while not significantly affecting the growth of skin commensals
(Gribbon et al., 1993; Hevia et al., 2015). Besides serving as
a mean to limit pathogen colonization, the presence of SCFAs
entail increased metabolic opportunities for the host (Morrison
and Preston, 2016; LeBlanc et al., 2017). Furthermore, such
SCFAs have been proven to positively regulate both inflammation
and development of cancer (LeBlanc et al., 2017). It has been
argued that the ability of C. acnes to produce such substances is
a positive trait of a mutualistic lifestyle, stressing its benevolent
nature (Christensen and Brüggemann, 2014).

Beneficial Immunomodulating Properties
of C. acnes
Since the discovery of C. acnes around 1,900 (Evans et al.,
1950; Moore and Cato, 1963), its inflammatory and thereby
immunomodulatory properties have been recognized. Initially
seen as only a pathogenic trait of C. acnes, the induction of
a Th1-type immune response has been taken advantage of for
preventing, protecting, and treating several different pathologies.

C. acnes As an Adjuvant Reduces Sensitivity to

Infections by Other Microbes
Due to the inflammatory properties of C. acnes, heat-killed
C. acnes bacteria are commonly used as adjuvants in vaccines
e.g., for horses, activating macrophages efficiently through its
unique peptidoglycan structure (Peters and Hay, 1990; Paillot,
2013). However, injection of heat-killed C. acnes into a host
has also been shown to affect sensitivity to infection by specific
microbes as well as polymicrobial infections. While not being
considered a zoonotic pathogen, the impact of Actinobacillus
pleuropneumoniae on pig production is substantial (Li et al.,
2013). Pre-treatment with C. acnes leads to a potent defense
against A. pleuropneumoniae infections, likely due to cross-
reactivity between one or several C. acnes antigens. A similar
study in mice reached the same conclusion, showing a C.
acnes dose-dependent protection toward A. pleuropneumoniae
infection (Yang et al., 2014). Other studies have shown that pre-
treatment of mice with heat-killed C. acnes allows for a higher
survival rate (50 vs. 0%) when exposed to a polymicrobially
induced sepsis (da Silva et al., 2013), indicating a more general
priming of the immune system. Similarly, pre-treatment of
mice with heat-killed C. acnes significantly improves infection
with the parasite (worm) Heligmosomoides polygyrus (González-
Sánchez et al., 2014). Thus, C. acnes may act as a general
immunomodulator, orchestrating our immune defense against
pathogens. In line with this, it was recently shown by Agak et al.
how the presence of C. acnes can generate specific TH17 clones
with a broad antibacterial activity, protecting against pathogens
(Agak et al., 2021).

C. acnes Can Treat Solid Tumors
Due to the immunomodulatory effects ofC. acnes, inducing a Th1
response, it was speculated if injections ofC. acnes could shift Th2
responses toward Th1. A common Th2-driven disease is tumors,
protecting themselves through modulating the immune response
into a B-cell response (e.g., Th2) rather than a Th1-response
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that would be more apt to clear tumors through cytotoxic T-cells
and NK cells (Disis, 2010). Historically, heat-killed C. acnes has
been experimentally injected intra-tumorally in mice, resulting
in significantly reduced pathology and tumor size (Bartlett et al.,
1980; Kennedyl and Conley, 1989). Treatment of melanoma led
to a switch in the immune response, both locally (skin) and
systemically, to a Th1 response, resulting in heavy infiltration
of T-cells to tumor lesions (Tsuda et al., 2011). In breast cancer
a similar immunological change was observed, resulting in the
complete removal of tumors in 40% of the mice, and significantly
reduced angiogenesis while given in combination with melatonin
(Talib and Saleh, 2015). With no reported toxicity and significant
anti-tumor effect, the usage of C. acnes as an immunomodulator
for tumor reduction may be a future therapy option.

Th1-Driven Response to C. acnes Restores Skin

Pathologies
Several skin disorders have immunomodulatory pathologies,
including atopic dermatitis and psoriasis (Griffiths et al., 2017).
Both diseases have been reported to be associated with microbial
dysbiosis, having significantly increased levels of S. aureus and
reduced levels of C. acnes (Gao et al., 2008; Francuzik et al.,
2018), and the presence of C. acnes has been suggested to play
an important role in maintaining the skin health by influencing
the skin microbiome (Chang et al., 2018). Supporting this claim,
Kitagawa et al. demonstrated the protective effect of C. acnes,
inducing a Th1 immune response locally and systemically, that
resulted in significant improvement of atopic dermatitis in mice
(Kitagawa et al., 2011). Similarly, the Th2-driven disease focal
segmental glomerulosclerosis can be prevented, or limited if
treated after onset, with the polysaccharide fraction of C. acnes
(Reis et al., 2012). Whether the presence of C. acnes on the skin
can protect from, or reduce the risk of, development of Th2-
driven skin diseases is currently unknown. However, the current
data suggest that this may be an interesting scientific avenue
to pursue.

Health-Beneficial Molecules Produced by
C. acnes
Besides the abovementioned health-promoting aspects of C.
acnes, several recent reports have indicated a direct health
beneficial potential of C. acnes, by means of secreted molecules
that may positively impact our health (Cogen et al., 2008). These
benevolent factors may play a role in the protection from several
diseases including oxidative skin diseases and skin cancer (He
et al., 2015; Allhorn et al., 2016).

Conjugated Linoleic Acid (CLA)
Different variants of CLAs can have significant health-beneficial
effects, including lowering cancer risks and enhanced immune
defenses (Benjamin et al., 2015). Production of those acids are
mainly through chemical reactions, resulting in a mixture of
isomers, with some being more beneficial than others (Yang and
Liu, 2004). However, it was recognized that C. acnes possesses a
linoleic acid isomerase creating trans-10, cis-12 CLA as a single
isomer (He et al., 2015) The biological relevance of the isomerase

and the exact role of trans-10, cis-12 CLA on the skin have yet to
be explored.

Antioxidant RoxP
Being a facultative anaerobe, C. acnes has developed several
means to protect itself from oxidative stress, including catalase,
peroxidases, and superoxide dismutase (Rolfe et al., 1978).
Recently, it was discovered that C. acnes secrets high levels of the
potent antioxidant RoxP. RoxP was found to be unique for C.
acnes, conserved in all strains, and indispensable for an efficient
colonization on skin (Allhorn et al., 2016). Due to an oxidative
element in several skin pathologies the presence of C. acnes and
RoxP could have protective functions and limit the negative effect
of oxidative stress and development of disease.

Oxidation of skin, mediated by UVB irradiation, is a
common cause of skin cancer (Narendhirakannan and Hannah,
2013). While C. acnes stimulate apoptosis of UVB-damaged
melanocytes, other skin bacteria (e.g., S. epidermidis) promote
their survivability (Talib and Saleh, 2015). Thus, not only may
C. acnes prevent initial oxidative stress through secretion of
antioxidants, but may also be capable of clearing cancerous
skin cells.

Using RoxP as a biomarker for healthy skin, several highly
sensitive biosensors have been developed (Ertürk and Lood, 2018;
Ertürk et al., 2018; Ertürk Bergdahl et al., 2019), enabling absolute
quantification of RoxP from skin samples from a diversity of
skin conditions (healthy, actinic keratosis, basal cell cancer). This
demonstrated the association of RoxP andC. acneswith oxidative
diseases (Andersson et al., 2019). The ability of an ubiquitous skin
bacterium to produce high quantities of an antioxidant, that aids
in the protection from oxidative stress is of interest from both a
biological andmedical perspective. Modulation of themicrobiota
may thus be a means of affecting the redox homeostasis of the
skin. Further studies are needed to properly evaluate the in vivo
role of RoxP.

CONCLUSIONS

Originally identified from acne, and historically being disreputed
as a skin pathogen only, more and more evidence has enabled
us to start understanding the complex roles of C. acnes. Recent
research indicates that this species is a beneficial skin bacterium
that fulfills important roles for skin homeostasis and protection.
It also became clear that host responses to C. acnes can have
both, beneficial and detrimental consequences. The criteria that
decide about the outcome are multifactorial, and include, among
others, theC. acnes phylotype/strain composition and population
size, the tissue location of C. acnes, host tissue/cell tropism, the
interaction with other skin bacteria, the predisposition and status
of the host, including host genetics, as well as possibly other
factors that are currently poorly understood, such as the influence
of the gut microbiota.

Regarding the involvement of C. acnes in disease, it is widely
accepted that C. acnes plays an important role in skin disorders
such as AV, even though there are still gaps in our understanding
of its exact contribution to disease. More and more studies
point to a strong impact of the skin’s immune system and the
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interactions of C. acnes with skin-resident immunocompetent
cells. Thus, in order to understand the role of C. acnes in AV, one
needs to understand the immune system of the skin.

Regarding the involvement of C. acnes in non-skin diseases
there is a more controversial debate. One reason for the
skepticism is connected to the omnipresence of C. acnes, which
makes it difficult/impossible to apply Koch’s postulates. It is
difficult to exclude skin-derived contamination during sampling
of the diseased tissue site; in this regard, DNA-based diagnostic
tools applied on human specimens may be oversensitive, in
particular regarding studies that use samples (e.g., tissue biopsies)
with low microbial biomass (Eisenhofer et al., 2019). Thus,
despite intensive research, our knowledge about the contribution
of C. acnes to non-skin diseases is far from being complete.
For IAIs, there has been an opinion change in the last decade;
the scientific community now largely acknowledges that C.
acnes can be a monomicrobial cause of IAIs, like other skin-
resident bacteria such as coagulase-negative staphylococci. In
Table 1 we have tried to evaluate the current evidence level for
a (major) role of C. acnes in several diseases, based on clinical
and experimental data.

Further understanding of C. acnes’ biology is needed; in
particular, we need to knowmore about its produced and secreted

factors and their host-interacting functions in order to enable

us to better recognize the beneficial and detrimental aspects
of the bacterium and take advantage of them for improving
(skin) health.
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