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Abstract

Background: Reproducibility of liquid chromatography separation is limited by retention time drift. As a result, measured signals lack
correspondence over replicates of the liquid chromatography–mass spectrometry (LC-MS) experiments. Correction of these errors is
named retention time alignment and needs to be performed before further quantitative analysis. Despite the availability of numerous
alignment algorithms, their accuracy is limited (e.g., for retention time drift that swaps analytes’ elution order).

Results: We present the Alignstein, an algorithm for LC-MS retention time alignment. It correctly finds correspondence even for
swapped signals. To achieve this, we implemented the generalization of the Wasserstein distance to compare multidimensional fea-
tures without any reduction of the information or dimension of the analyzed data. Moreover, Alignstein by design requires neither a
reference sample nor prior signal identification. We validate the algorithm on publicly available benchmark datasets obtaining com-
petitive results. Finally, we show that it can detect the information contained in the tandem mass spectrum by the spatial properties
of chromatograms.

Conclusions: We show that the use of optimal transport effectively overcomes the limitations of existing algorithms for statistical
analysis of mass spectrometry datasets. The algorithm’s source code is available at https://github.com/grzsko/Alignstein.
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Introduction
Advances in liquid chromatography–mass spectrometry (LC-MS)
have provided a remarkable insight into the functioning of the or-
ganisms, ranging from protein level [1], through tissue [2] to envi-
ronmental networks [3]. All of these research studies benefit from
the possibility to separate complex mixtures in the liquid chro-
matographic column and then measure the analytes with high-
throughput mass spectrometry. Although LC-MS systems provide
precise answers to both quantitative and qualitative biological
and medical questions, designing algorithms for efficient and pre-
cise analysis of LC-MS datasets remains challenging.

One of these challenges is the correction of errors caused by
retention time (RT) drift. It limits the reproducibility of LC sep-
aration, which is important for experiments usually acquired in
many (even hundreds) replicates. RT drift became a significant
obstacle with the emergence of high-performance chromatogra-
phy (HPLC) and ultra-performance chromatography (UPLC) tech-
nologies. For example, nanoflow UPLC column separation takes a
relatively long time, usually up to several hours. For these exper-
iments, the elution time of peptides may vary up to 5 minutes [4]
or even 10 minutes [1].

RT drift can be corrected by the experimental protocol only to
a limited extent [5]. It may change the whole gradient or affect
only single peaks. These changes may be caused by various rea-
sons such as the unstable mobile phase, the column change or
degradation, sample chemical instability, or imprecise experiment
setup [6–8].

RT drift requires a correction, usually named the RT alignment.
It results in the correspondence of signals across runs [9]. For
example, in proteomics, the signal correspondence of the same
peptides is needed for further applying label-free quantification
(LFQ) for which samples must be measured separately [10, 11].
Moreover, for LFQ techniques, we cannot obtain the correspon-
dence any other way because analytes do not have any addi-
tional information, such as metabolic labels, or chemical tags
[12, 13].

Here, we present a novel alignment algorithm named Align-
stein (cf. Fig. 1). It finds the correspondence of initially detected
features (i.e., convex sets of peaks representing the signal of a
single analyte). It overcomes the limitations of currently exist-
ing algorithms and properly resolves the correspondence of ana-
lytes of swapped elution order. To achieve this, we take advantage
of the generalization of the Wasserstein distance (GWD) [14] to
compare multidimensional features. To obtain the most feasible
alignment results, Alignstein has formulated a complex optimiza-
tion signal-matching problem, for which we use clustering and
network flow algorithms to achieve a computationally tractable
outcome.

This article is organized as follows. First, we characterize
Alignstein and analyze how it deals with the swapped sig-
nals. Then, we validate the algorithm on publicly available
benchmark datasets. Finally, we show the applicability of our
approach to detecting corresponding biomarkers in differing
samples.
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Figure 1: The outline of the Alignstein algorithm. It starts with feature
preprocessing, for which then centroids are computed and clustered. As
a next step, the problem of optimal feature matching is solved. The
result is obtained with regard to prior clustering and can be further
analyzed and verified.

Findings
The problem: resolving swaps
RT drift may swap the order of eluting analytes. In the proteomic
experiment (cf. Methods), we analyzed that about 3% of all feature
pairs are swapped between two chromatograms. Although many
of the available algorithms properly align most signals, still they
fail to resolve swaps.

Most approaches to RT alignment are so-called warping
algorithms—for example, OpenMS [15], MetAlign [16], MZMine
2 [17], SIMA [18], the solution proposed by Zhang [19], DI-
AlignR [20], and the solution proposed by Chiung-Ting Wu
et al. [21]. These algorithms consist of applying a warping func-
tion that transforms the chromatograms by shifting, stretching,
and squeezing. These transformations result in a close distance
between corresponding signals. After alignment, however, further
feature detection and matching are still required to obtain the sig-
nal correspondence. These algorithms’ applicability is limited be-
cause the warping function is applied under the assumption that
ions elute monotonically with RT. Thus, they are not able to deal
with elution order swaps.

Alternatively, a rarer implemented approach is feature
matching—for example, OpenMS [15] (both warping and match-
ing algorithm), MassUntangler [22], LWBMatch [23], the solution
proposed by Wandy et al. [24], MS-Dial [25], and Quandenser [26].
Algorithms by feature matching find the correspondence between
initially detected features of 2 or more chromatograms. Corre-
sponding features represent the same analyte and further will
be referred to as consensus features. To the best of the authors’
knowledge, all matching algorithms reduce multidimensional
features to 1-dimensional extracted ion chromatograms or a
single point with a monoisotopic peak m/z and average RT value,
ignoring the information of isotopic envelope or feature span
over the RT dimension. Without feature spatial characteris-
tics and information of coeluting ions, elution order swaps are
practically undetectable [8]. The main reason for this simpli-
fication lies in the difficulty to find multidimensional feature
dissimilarity measures. Typically, Euclidean distance between
points or 1-dimensional cosine-like spectra similarity scores is
applied [27, 28]. Although the limitations of these scores are
known, still there is a shortage of their effective improvements
[28, 29].

Figure 2: The optimal transport plan between 2 features. The
Wasserstein distance captures not only the distance of feature drift
along the RT dimension but also spatial differences between features.
Here, the left feature consists of 3 ions, and the right feature consists of
4 ions. To properly capture this difference, part of the signal must be
transported between different ions (denoted with arrows) and thus the
transport cost (the Wasserstein distance) is higher.

Figure 3: Example of swapped features. They represent 4 times charged
peptides: HTALYSSDSVRNVRKKDTTG (Feature 1) and
HTAIYSSDSVRNVRKKDTTG (Feature 2). Isotopic envelopes were
generated using the IsoSpec tool [30] and smoothed over RT with a
Gaussian filter. Retention times were predicted using the Pyteomics
package [31]. The Euclidean distance between corresponding shifted
features reduced to a point is 0.0 and 80.0 and between
noncorresponding features is 40.0 and 40.0, whereas GWD equals 0.3
and 80.3 for corresponding features and 46.3 and 46.3 for
noncorresponding features. For such an example, a simple
feature-matching algorithm using GWD would match the features
correctly, and for the Euclidean distance, this solution would be
ambiguous.

The solution: the Alignstein algorithm
Alignstein is the RT alignment algorithm by feature matching that
properly deals with features of swapped order. It is possible be-
cause the algorithm represents features by all signals contained
within their boundaries. To cope with this representation, we use
the generalization of the Wasserstein distance as a feature dis-
similarity measure. It originates from the optimal transport the-
ory and has been recently attracting growing attention to vari-
ous problems of mass spectrometry [27, 32–35]. Its design signifi-
cantly differs from currently existing similarity scores, and thus it
overcomes the majority of their limitations. The Wasserstein dis-
tance describes the cost of the optimal way how to transform one
feature into the other one. The transformations include not only
shifting the signal from one feature to another but also splitting or
combining the signal between peaks (cf. Fig. 2). The key strength
of Wasserstein distance is the ability to compute features’ similar-
ity by their spatial shape (cf. Fig. 3). Moreover, it easily scales with
dimension. Generalizing the Wasserstein distance allows compar-
ing noisy features by introducing an appropriate penalty. This pro-
vides a highly flexible measure for effective computing feature
distance and similarity.

Alignstein aligns chromatograms by finding consensus fea-
tures. It is done in 2 phases (cf. Fig. 1): at first, feature cen-
troids are clustered to find candidates for consensus features,
which are then verified by the feature-matching phase. During the



Alignstein: Optimal transport for improved LC-MS retention time alignment | 3

Figure 4: Flow network for finding the optimal feature matching. This
matching is computed between selected chromatograms, denoted by n
features L1, …, Ln and m features from the rest of chromatograms,
denoted by nodes R1, …, Rm. Clusters are denoted by s nodes C1, …, Cs.
Nonzero costs are described by edge labels. The cost between features Li

and features Rj is equal to GWD between them. Additional node Tr
(“trash”) gives the possibility to not match the feature with cost c. Every
edge has capacity equal to 1, except edge between S (source) and Tr and
edge between Tr and T (sink) with capacities equal to max {0, s − n} and
max {0, n − s}, respectively (at most, one of them has nonzero capacity).
Edges between R1, …, Rm and C1, …, Cs give the restriction that any
feature can be matched with at most 1 cluster. As a result, we take all
matchings (Li, Ck). We recognize the consensus feature by its cluster.

latter phase, the algorithm computes the optimal feature match-
ing, which represents the most similar feature pairs throughout
all chromatograms (cf. Methods). We solve this problem by reduc-
ing it to finding the maximum flow of minimum cost in an appro-
priate flow network (cf. Fig. 4). Consensus features are then cre-
ated from optimal feature matching with regard to initial centroid
clustering. Such a formulation allows for aligning chromatograms
without a requirement for a reference sample or a prior feature
identification. It also easily scales with a number of input chro-
matograms. Finally, this algorithm is not limited to correcting RT
perturbations in repeated experimental runs; it also accurately
aligns the majority of detected corresponding biomarkers from
samples of different experimental treatments.

Dealing with swapped signal
We assessed that Alignstein properly matches swapped features.
For this purpose, we collected over 580 identified features from
the chromatograms obtained from Barranger et al.’s work [3] (see
Methods). We simulated RT drift by randomly moving features
within range (−150 s, 150 s) in the RT dimension and within range
(−0.3 Da, 0.3 Da) in the m/z dimension. These 2 sets of features,
one with original features and the second with drifted features,
represented chromatograms to be aligned. For such a formulation,
about 2% (ca. 3,400) of feature pairs were swapped. We aligned
these 2 sets and measured a number of properly matched features
and a fraction of properly resolved swapped feature pairs. Our tool
matched practically all drifted features (96%) and most swapped
feature pairs (91%). We compared our results with 2 open-
source feature-matching algorithms: OpenMS and LWBMatch.
OpenMS had high feature matching precision, and it matched
the majority of drifted features (80%). However, its accuracy dras-
tically decreased when analyzing only swapped feature pairs
(61%). LWBMatch had a significantly lower matching precision; it
matched 24% of drifted features and only 3% of swapped feature
pairs.

Algorithm validation on benchmark datasets
We evaluated the accuracy of our method by comparing align-
ment quality on public benchmark datasets. We reproduced the
evaluation protocol from Lange et al. [36] (further referred to as
the Critical Assessment of Alignment Procedures [CAAP] study).
We analyzed 2 proteomic datasets from CAAP evaluation: P1 and
P2, as well as 1 metabolomic: M1. The P1 set contained the anal-
ysis of Escherichia coli protein extracts and consisted of 6 fractions
at different salt bumps, every fraction, in 2 different runs. Analo-
gously, P2 contained the analysis of protein extract from Mycobac-
terium smegmatis in 5 fractions in every 3 replicated runs. M1 con-
tained the analysis of leaf tissue extract from Arabidopsis thaliana
in 44 repeated runs. To assess the correctness of alignment algo-
rithms, the authors of the CAAP study proposed alignment pre-
cision and alignment recall measures (cf. Methods). Moreover, as
proposed by the authors of the SIMA algorithm [18], we computed
the F-score, which is a harmonic mean of alignment precision and
recall.

We analyzed sets P1, P2, and M1 and compared Alignstein with
the results of the OpenMS alignment algorithm [15] from the
CAAP study. We chose OpenMS because it achieved significantly
better results than the other tools and represented a state-of-
the-art solution at the time of the original study. Moreover, we
included in comparison the available results of algorithms pub-
lished more recently: MZMine 2 [17], SIMA [18], MassUntagler [22]
(only P1 set), and Wandy et al. [24].

Alignstein obtained highly competitive results in the CAAP
evaluation. For the P1 dataset, it matched perfectly almost all
features; its precision and recall were on average 0.94, similar
to MZmine 2 and OpenMS (cf. Table 1, Supplementary Table S1).
SIMA obtained slightly worse results, and the rest of the tools ob-
tained lower values than SIMA. Interestingly, all tools achieved
average alignment precision and recall no higher than 0.94. It
may suggest that improperly matched features are too distant
to be matched based on LC-MS information or ground truth is
misspecified.

For the P2 set, we achieved the highest average alignment recall
(on average 0.82); that is, our approach had a minimal number of
unmatched features (cf. Table 1, Supplementary Table S2). It had
a lower precision on average equal to 0.73 and was second only
to OpenMS. Overall, we obtained the best average F-score value,
equal to 0.77.

For the M1 dataset, Alignstein achieved competitive results:
precision equal to 0.88, recall of 0.91, and F-score of 0.89. This con-
firms that Alignstein scales effectively with the number of input
chromatograms. We measured the time of alignment computa-
tion; results are presented in Table 2.

Application to the detection of specific
biomarkers
Alignstein can detect specific biomarkers in medical applications
or biological analysis. To verify this, we analyzed the dataset from
Barranger et al. [3]. It contained LC–tandem MS (MS/MS) chro-
matograms of intestinal protein from marine mussels exposed
in vivo to various benzo[a]pyrene (BaP) concentrations (0, 5, 50,
100 μg/L).

We checked if Alignstein recognizes MS/MS information by spa-
tial properties of LC-MS features. To assess this, we detected LC-
MS features and annotated them with peptide MS/MS identifica-
tions. The accuracy of alignment was quantified using proposed
identification recall (IR) defined as follows. We chose all repeat-
ing identifications that have annotated features and computed a
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Table 1: Comparison of alignment precision (P), alignment recall (R), and F-score (F). For P1 and P2 sets, average over fractions is computed.
Dash marks result not presented in the original papers.

Alignstein OpenMS MZMine 2 Wandy et al. SIMA MassUntangler

P1 P 0.94 0.94 0.94 0.88 0.94 0.87
R 0.94 0.94 0.94 0.89 0.92 0.79
F 0.94 0.94 0.94 0.88 0.93 0.83

P2 P 0.74 0.83 0.68 0.72 0.72 —
R 0.83 0.72 0.75 0.72 0.75 —
F 0.78 0.77 0.71 0.72 0.74 —

M1 P 0.88 0.69 0.74 — 0.75 —
R 0.91 0.87 0.91 — 0.92 —
F 0.89 0.77 0.82 — 0.83 —

Table 2: Alignstein runtimes on benchmark CAAP datasets.

P1 P2 M1

10 s 15 s 15 min 38 s

For the P1 and P2 dataset, wall-time was measured for a single fraction.
For the M1 dataset, wall-time was measured for the whole dataset.

Figure 5: Identification recall calculated separately for every
chromatogram subset. (A) For aligned chromatograms over all BaP
concentrations. (B) For replicates (1, 2, 3) of the sample of 100 μg/L BaP
concentration. Sets represent chromatograms, intersections contain
identification recall, and the nonoverlapping part of the sets contains
the number of feature-annotated identifications.

fraction of them that were properly aligned (cf. Methods). For ev-
ery BaP concentration, we computed IR for all aligned technical
replicates of the sample. We achieved satisfactory results IR equal
to 81%, 78%, 85%, and 86%, respectively, for BaP concentrations
of 0, 5, 50, and 100 μg/L. As a baseline, we repeated this analysis
for the OpenMS algorithm, which achieved similar results with
IR equal to 81%, 76%, 85%, and 83%. Moreover, we calculated the
IR separately for every subset of all aligned chromatograms (see
Methods). This demonstrated that our approach uniformly treats
all chromatograms (cf. Fig. 5A and Supplementary Fig. S1).

Moreover, we checked if Alignstein can detect corresponding
biomarkers for LC-MS measurements of samples under different
experimental conditions. For this purpose, we repeated the anal-
ysis above by aligning chromatograms across all BaP concentra-
tions. The overall IR was equal to 85%. Contrary to the previous
experiment, IR for OpenMS had fallen to 0.75%. Analogously as
earlier, Alignstein’s results were uniform over all chromatogram
subsets (cf. Fig. 5B) with IR values not lower than 67%, reach-
ing even 100% for some subsets of repeated identifications. This
proves that, despite the varying experimental conditions, our so-
lution is able to correctly align most corresponding features with-

out accuracy loss. Finally, this experiment shows that it may be
applied as a tool for biomarker screening in LC-MS analysis.

Discussion
Alignstein is a novel, original algorithm for LC-MS alignment
based on the GWD feature dissimilarity measure. This allows for
incorporating not only distances between features but also their
spatial differences and thus more accurate feature alignment. The
GWD emerges to be a key solution for correctly aligning signals
with a swapped elution order, as demonstrated in the previous
sections.

In addition to correctly resolving feature swaps, Alignstein has
more advantages over the majority of alignment algorithms. It re-
quires no prior feature identification, so LC-MS data without ad-
ditional tandem mass spectra suffice as input to the algorithm.
Moreover, our approach makes no assumptions about the charac-
teristics of the analyzed chromatograms, so it is not limited to one
type of data (e.g., proteomic or metabolomic). Still, specific proper-
ties of the analyzed data (e.g., maximum drift size) can be passed
as algorithm parameters. Finally, it treats uniformly all analyzed
chromatograms, and thus it does not require a reference sample.

Alignstein requires only the prior feature detection as a data
preprocessing step. Although approaches with this requirement
are criticized [8, 20], we argue that the analysis with detected fea-
tures is more accurate than the analysis of raw chromatograms.
Properly executed feature detection effectively discriminates re-
gions of high signal-to-noise ratio from chromatograms [37].
Moreover, multidimensional feature detection is crucial for
collecting information about coeluting ions (e.g., isotopic en-
velopes of compounds). Without this, any alignment algorithm
might yield inaccurate results by aligning signals across isotopic
envelopes.

Besides advantages, Alignstein has also limitations. It correctly
matches most features, but it happens to fail to match distant
features. This mismatch can be explained by interpreting GWD
as a sum of 2 costs: the cost of transporting the feature along
the RT (to eliminate drift) and the cost of transformation (to in-
corporate feature–feature spatial differences). For a pair of dis-
tant, corresponding features, the cost of transport along the RT
far exceeds the cost of transformation. For this reason, even highly
dissimilar but much closer features may camouflage the correct
feature correspondence. This can be particularly troublesome for
complex datasets having a significant number of features, which
are densely packed within chromatograms. This limitation can be
only partially corrected by adjusting GWD parameters because
most corresponding feature pairs have RT differences of less
than 10 seconds (cf. Supplementary Fig. S2), and thus the GWD
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parameters must be optimized for small feature distances. One of
the possible solutions is to incorporate additional information for
alignment, for example, MS/MS data. Thus, we plan to extend our
algorithm to deal with LC-MS/MS datasets in a data-independent
acquisition mode.

In conclusion, Alignstein correctly aligns chromatograms, as
we have shown in the biomarker detection experiment, by repro-
ducing the CAAP evaluation study, as well as in swaps resolving
computational comparison. Its highly competitive matching ac-
curacy is the result of applying the GWD as a feature dissimilarity
measure, which allows matching features without reducing fea-
ture spatial information or the dimension of data. Thus, Alignstein
is capable of detecting nonobvious signal patterns and finding op-
timal alignment. Our solution provides a solid basis for further
applications of optimal transport theory to the multidimensional
problems of automated analysis in mass spectrometry. We hope
that the optimal transport-based distances will become a new
paradigm as a measure of spectra dissimilarity and will allow the
construction of highly effective, robust, and accurate algorithms
for mass spectrometry analysis.

Methods
Feature dissimilarity measure
The most common approach to comparing mass spectra is a
cosine-like similarity score [28, 38]. Despite its popularity, this
class of scores is not applicable to feature alignment, because
they are not scalable with dimension and cannot effectively
compare spectra of significantly different molecules [29]. To ad-
dress these limitations, we propose the Wasserstein distance [39]
with additional generalizations [14, 40] as a feature dissimilarity
measure.

The Wasserstein distance is a metric based on optimal trans-
port theory. It describes how to optimally transform one feature
into the other one. These transformations may include shifting
the signal as well as splitting or combining the signal between
peaks (cf. Fig. 2). Formally, suppose that we have 2 discrete fea-
tures, μ and ν, so that μ(x) is the intensity of μ at m/z value x.
Then we define the transport plan T so that T(x, y) corresponds to
the amount of signal that is transported from a peak x of feature
μ to peak y of feature ν. The transport cost is the sum of amounts
of transport between all pairs of peaks multiplied by the distance
between peaks:

∑
x,y

T(x, y) · d(x, y), (1)

where d(x, y) is a distance between peaks x and y. For this setup,
we have chosen d(x, y) to be �1 distance (a Manhattan distance).
The Wasserstein distance W is the minimal transport cost of all
possible transport plans T:

W(μ, ν ) = min
T

∑
x,y

T(x, y) · d(x, y). (2)

Besides effectiveness, we observed that Wasserstein distance
unsatisfactorily deals with noisy features. To overcome this limi-
tation, we use a GWD as proposed by Chizat et al. [40]. GWD dif-
fers mainly from Wasserstein distance by the possibility of omit-
ting the transporting part of the signal with a constant penalty.
More specifically, GWD allows omitting the transport of signal on
a distance larger than the user-defined λ parameter with a con-
stant penalty proportional to λ and the amount of not transported

signal:

W(μ, ν ) = min
T

∑
x,y

(
T(x, y) · d(x, y) + λ · F(Tμ, μ) + λ · F(Tν , ν )

)
, (3)

where Tμ and Tν are the marginals of the transport plan. F is a di-
vergence chosen so that the approximation of the transport plan
T to features μ and ν is possible. To compute GWD, we regularize
it with the entropic term, which allows for fast and numerically
stable computation, using a scaling Sinkhorn–Knopp approxima-
tion algorithm [41]. Fully formal distance derivation is available
in Supplementary Material sections 1 and 2.

Alignstein algorithm scheme
Alignstein is an algorithm for LC-MS alignment. Here, the align-
ment is formulated as finding the correspondence of detected
features, which represent the same chemical entities (e.g., ions,
compounds). Specifically, the algorithm takes chromatograms
with detected features as an input, and the outcome of the
algorithm is a list of consensus features. Consensus features are
sets of corresponding features from distinct chromatograms. The
algorithm outline is depicted in Fig. 1 and pseudocode is available
in Algorithm 1.

Alignstein starts with feature preprocessing. If the features are
not provided by the user, it detects them using the Feature Finder
algorithm from the OpenMS package. Features are represented as
a set of all signal peaks contained within the boundaries of de-
tected features. For further processing, Alignstein normalizes fea-
tures and scales the RT so that the RT dimension variation be-
comes a similar order of magnitude as the m/z dimension varia-
tion. Scaling is done by dividing the RT by a factor proportional to
the ratio of the average feature length (along the RT axis) and the
average feature width (along the m/z axis).

After preprocessing, alignment consists of 2 phases: the cen-
troid clustering phase and then the feature-matching phase.
During the former one, centroids of features from all chro-
matograms are clustered using Mini-Batch K-Means [42] and hi-
erarchical clustering algorithms. Clustering is computed to cre-
ate candidates for consensus features, which are then verified
by the feature-matching phase. During this phase, the algorithm
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searches for pairs of the most similar features across all chro-
matograms. It is done by finding the feature matching of mini-
mal cost, where the cost is equal to the sum of GWDs between
the matched features. We interpret this problem as finding the
maximal flow of minimum cost in an appropriately designed flow
network, in which we compare iteratively every chromatogram
with the rest of the chromatograms. In Fig. 4, we show a flow net-
work for a single chromatogram. The flow of minimum cost is ob-
tained using the network simplex [43] algorithm. This minimiza-
tion problem has formulated restrictions, such that features may
be not matched with a constant penalty, or at most, 1 feature may
be matched to features within 1 cluster. These restrictions ensure
that features are matched appropriately as required—for exam-
ple, the algorithm treats uniformly all input chromatograms, at
most one feature from every chromatogram would be chosen to
consensus features, and so on. Finally, consensus features are cre-
ated via clusters that have been matched as most similar in opti-
mal matching. A more detailed algorithm description is available
in Supplementary Material section 3.

In the special case, when only 2 chromatograms are aligned,
the clustering phase is omitted and consensus features are cre-
ated by finding the optimal matching between 2 feature sets (cf.
Supplementary Fig. S3).

Implementation details
Alignstein is implemented as a Python 3 package and available
at [44]. It uses C++ implementation of GWD in the MassSinkhorn-
metry package available at [45]. For centroid clustering, we
used clustering algorithms implemented in the scikit-learn pack-
age [46, 47]. For solving the minimum cost flow problem, we
used the data structures and algorithms implemented in the Net-
workX [48, 49] package.

Alignstein benchmarking details
We validated the Alignstein algorithm by reproducing the eval-
uation protocol from the CAAP study [36]. It was the analy-
sis and comparison of 6 alignment algorithms: OpenMS [15],
msInspect [50], MZmine 1 [51], SpecArray [52], XAlign [53], and
XCMS [54].

We analyzed 2 proteomic datasets (P1 and P2) and 1
metabolomic dataset (M1) from the CAAP study. For all sample
sets, preparation and analysis protocols are described in the orig-
inal study. For the metabolomic set as well as for every fraction at
different salt bumps (0, 20, 40, 60, 80, and 100 mM ammonium
chloride) of both proteomic sets, the authors prepared a set of
ground-truth consensus features, which represent feature corre-
spondence over chromatograms of significantly high confidence.

To assess the accuracy of alignment, the authors of the CAAP
study proposed the generalization of precision and recall as align-
ment precision and alignment recall. Alignment precision mea-
sures how the given ground-truth consensus feature was split
over tool consensus features (i.e., it reflects the number of false
positives). Alignment recall measures how many features of a
given ground-truth consensus feature are found by the algorithm
(i.e., it reflects the number of false negatives). Both alignment
precision and recall are calculated as an arithmetic mean over
all ground-truth consensus features. Furthermore, the authors of
SIMA [18] and Wandy et al. [24] proposed the F-score, which is
the harmonic mean of alignment precision and alignment recall
( 2·P·R

P+R , where P is alignment precision and R is alignment recall) to
express the balance of alignment precision and alignment recall.

We used input chromatograms as mzML and mzXML files and
features as featureXML files provided by authors of the CAAP
study. We measured alignment precision and recall using an eval-
uation script written in R programming language by the authors
of this study. Computation was done on a computer with a Linux
operating system and 24 Intel Xeon E5-2620 2.10 GHz processors +
62 GB RAM. We measured wall time using the Linux built-in time

command. More details on CAAP benchmarking are provided in
the Supplementary Material section 4.

Mussels toxicological response experiment
summary
For assessment of Alignstein’s ability to detect specific biomark-
ers, we analyzed chromatograms originally created in Barranger
et al. [3]. The original study aimed to measure the effects of pollut-
ing the environment of marine mussels (Mytilus galloprovincialis)
with fullerene (C60) and BaP. For this purpose, the authors per-
formed a proteomic analysis.

Mussels were collected in Trebarwith Strand, Cornwall, UK, and
were exposed in vivo to C60 and BaP at concentrations 0, 5, 50, and
100 μg/L as described in the original study. For proteomic analy-
sis, mussel intestinal proteins were collected. After digestion and
purification, the peptides were analyzed by the LC-MS/MS system
with the data-dependent acquisition (DDA) mode as described in
Sequiera et al. [55]. In summary, peptides were separated on a
Dionex, Camberly, UK Ultimate 3000 RSLC nanoflow system: Ac-
claim PepMap C18 nano column (75 μm × 25 cm, 3 μm, 100 Å),
plus bypass, including a linear gradient of 96% buffer A (0.5%
acetic acid) and 4% buffer B (80% acetonitrile in 0.5% acetic acid)
to 60% buffer A and 40% buffer B, with a flow rate of 300 mL/min
for 120 minutes. Separated analytes were analyzed in an Orbitrap
Velos Pro FTMS (Thermo Finnigan, Bremen, Germany) with pos-
itive ion mode ionization with a Proxeon, Thermo Fisher Hemel,
UK nanospray ESI source. In each run, the 10 most abundant ions
were further analyzed with additional collision-induced dissoci-
ation (CID) fragmentation (30% collision energy) in a linear ion
trap spectrometer. For every BaP concentration from 0, 5, 50, to
100 μg/L, 3 replicates were obtained. Collected chromatograms for
all BaP exposure levels were deposited in the ProteomeXchange
Consortium PRIDE repository (PXD013805) [56, 57].

Data analysis for detection of repeating
biomarkers
In downloaded chromatograms, we identified peptides using
Comet [58, 59]. We obtained the database for peptide identification
from the original work (taxa Mollusca, subcategory Bivalvia from
Uniprot KnowledgeBase, and contaminants from the Global Pro-
teome Machine [60]). The most important Comet search param-
eters were peptide mass tolerance of 10 ppm, trypsin as search
enzyme, concatenated decoy search, and allowed missed enzyme
cleavages no higher than 2.

We detected features in chromatograms using the OpenMS al-
gorithm Feature Finder in the Centroided version. We annotated
the detected LC-MS features with MS/MS Comet identifications.
Peptide MS/MS identifications were represented in LC-MS by re-
tention time in seconds and the ratio of the precursor neutral
mass to the assumed charge. The feature was annotated with
identification when LC-MS representation of identification was
enclosed within feature boundaries. For further analysis, we con-
sidered annotated features.

For calculating IR, we computed the number of repeating iden-
tifications over chromatograms. For every repeating identification,
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we checked if annotated features were properly matched by Align-
stein. IR was calculated as a ratio of the number of correctly
aligned annotated repeating identifications and the total number
of annotated repeating identifications.

Number of swaps estimation
We analyzed 2 replicates of 0 μg/L BaP concentration in the
dataset described in the previous section. Computation was done
for all pairs of annotated features with repeating identification
in both chromatograms. We computed the fraction of these pairs
that were swapped (i.e., a feature pair was considered a swap
when the computed feature RT means of the same identifications
in 2 replicates were in a different order).

Availability of Source Code and
Requirements
� Project name: Alignstein
� Project homepage: [44]
� Operating systems: Linux, macOS
� Programming language: Python 3
� Other requirements: Python 3.6 or higher; dependency pack-

ages: MassSinkhornmetry, pyOpenMS, NumPy, SciPy, Net-
workX, scikit-learn

� License: MIT
� Any restrictions to use by nonacademics: none
� RRID: SCR_022483
� bio.tools ID: alignstein

Data Availability
The Marine Mussels dataset was obtained from ProteomeXchange
Consortium PRIDE repository under accession no. PXD013805.
Benchmark datasets (P1, P2, M1), as well as evaluation script,
were obtained from the CAAP webpage at [61]. Datasets P1 and
P2 are originally available in Open Proteomic Database [62]. Snap-
shots of Alignstein source code and other data further support-
ing this work are openly available in the GigaScience repository, Gi-
gaDB [63].

Additional Files
Supplementary Fig. S1. Identification recall calculated separately
for identifications repeating in every chromatogram subsets. (A)
For replicates of the sample with 0μg/L BaP. (B) For replicates
of the sample with 5μg/L BaP. (C) For replicates of the sample
with 50μg/L BaP. Sets represent replicates (chromatograms) of the
same experiments, the inconjunct part of the set contains the
number of feature-annotated identifications, and conjunctions
contain identification recall.
Supplementary Fig. S2. Histogram of RT centroid differences be-
tween feature pairs annotated with the same identification. The
histogram is computed for chromatograms from Barranger et al.
[3], including replicates of a sample with 0μg/L BaP. For better
readability, outliers over 200 seconds are omitted. Most RT differ-
ences are not greater than 10 seconds.
Supplementary Fig. S3. Flow network for finding the optimal fea-
ture matching between n features of 1 chromatogram denoted by
nodes L1, …, Ln and m features from the other chromatogram, de-
noted by nodes R1, …, Rm. Nonzero costs are described by edge
labels. The cost between features Li and features Rj is equal to the
GWD between them. Additional node Tr (“trash”) gives the possi-
bility to not match the feature with cost c. Every edge has capacity
equal to 1, except edge between S (source) and Tr and edge be-

tween Tr and T (sink) with capacities equal to max {0, s − n} and
max {0, n − s}, respectively (at most, one of them has nonzero ca-
pacity). As a result, we take all matchings (Li, Rj).
Supplementary Table S1. Detailed results for P1 set in CAAP com-
parison. P stands for alignment precision, R stands for alignment
recall, and F stands for F-score.
Supplementary Table S2. Detailed results for P2 set in CAAP com-
parison. P stands for alignment precision, R stands for alignment
recall, and F stands for F-score.

Abbreviations
BaP: benzo[a]pyrene; CAAP: Critical Assessment of Alignment
Procedures; C60: fullerene; CID: collision-induced dissociation;
DDA: data-dependent acquisition; GWD: generalized Wasserstein
distance; HPLC: high-performance liquid chromatography; IR:
identification recall; LC-MS: liquid chromatography–mass spec-
trometry; MS/MS: tandem mass spectrometry; m/z: mass-to-
charge ratio; RT: retention time; UPLC: ultra-performance liquid
chromatography.
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