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Background: Prostate cancer (PCa) is one of the most prevalent cancers among males,
and its mortality rate is increasing due to biochemical recurrence (BCR). Glycolysis has
been proven to play an important regulatory role in tumorigenesis. Although several key
regulators or predictors involved in PCa progression have been found, the relationship
between glycolysis and PCa is unclear; we aimed to develop a novel glycolysis-associated
multifactor prediction model for better predicting the prognosis of PCa.

Methods: Differential mRNA expression profiles derived from the Cancer Genome Atlas
(TCGA) PCa cohort were generated through the “edgeR” package. Glycolysis-related
genes were obtained from the GSEA database. Univariate Cox and LASSO regression
analyses were used to identify genes significantly associated with disease-free survival.
ROC curves were applied to evaluate the predictive value of the model. An external
dataset derived from Gene Expression Omnibus (GEO) was used to verify the predictive
ability. Glucose consumption and lactic production assays were used to assess changes
in metabolic capacity, and Transwell assays were used to assess the invasion and
migration of PC3 cells.

Results: Five glycolysis-related genes were applied to construct a risk score prediction
model. Patients with PCa derived from TCGA and GEO (GSE70770) were divided into
high-risk and low-risk groups according to the median. In the TCGA cohort, the high-risk
group had a poorer prognosis than the low-risk group, and the results were further verified
in the GSE70770 cohort. In vitro experiments demonstrated that knocking down HMMR,
KIF20A, PGM2L1, and ANKZF1 separately led to less glucose consumption, less lactic
production, and inhibition of cell migration and invasion, and the results were the opposite
with GPR87 knockdown.

Conclusion: The risk score based on five glycolysis-related genes may serve as an
accurate prognostic marker for PCa patients with BCR.
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INTRODUCTION

Prostate cancer (PCa) is the second most common cause of male
malignant tumors and the second leading cause of tumor-
associated death in males worldwide (1, 2). According to
statistics, there were 1.3 million new cases and 359,000 related
deaths worldwide in 2018 (1, 3, 4). PCa with biochemical
recurrence (BCR) was a critical lethal factor that frequently led
to a poor prognosis and seriously threatened patient survival (5).
Although the concept of personalized management of BCR
patients has been greatly improved, a superficial understanding
of the molecular mechanisms of the disease severely limits
clinicians’ treatment strategies, resulting in increased mortality
of patients with BCR (6). Hence, there is an urgent need to
develop an instructive tool to accurately judge the prognosis
of PCa.

Aberrant switching between oxidative phosphorylation
(OXPHOS) and glycolysis plays a crucial regulatory role in
tumorigenesis (7–10). Initially, glycolysis was considered as a
manner of energy supply forced adopted in the hypoxic
microenvironment caused by uncontrolled growth (11).
Interestingly, cancer cells prefer to utilize aerobic glycolysis to
obtain adenosine triphosphate (ATP) to satisfy the needs for
uncontrolled proliferation even in conditions with sufficient
oxygen. This unique metabolic signature termed Warburg
effect has been demonstrated to exist in various solid tumors,
including PCa (12–14). Recently, an increasing number of
studies have reported that abnormal expression of glycolysis-
related molecules have crucial roles in regulating chemotherapy
resistance (15), immune response (16, 17), neuroendocrine
differentiation (18), and growth and metastasis of PCa (19, 20),
ultimately affecting its prognosis. Additionally, some researchers
have successfully constructed prediction models derived from
glycolysis-associated genes in liver cancer and colon cancer (4,
21). However, the actual relationship between glycolysis and PCa
remains unclear and is worth further exploration. Herein, we
hypothesized that a risk score prediction model based on
glycolysis-related genes might have a strong ability to
accurately judge the prognosis of PCa with BCR. We
successfully identified and constructed a satisfactory signature
composed of five glycolytic genes and verified it in the validation
set. Furthermore, the molecular roles of the signature
components in regulating malignant tumor behaviors were
validated in vitro.
MATERIALS AND METHODS

Collection of Prostate Cancer Data
PCa gene expression data (RNA-Seq) and the corresponding
clinical data were downloaded from the TCGA database (https://
portal.gdc.cancer.gov) and Gene Expression Omnibus (GEO:
https://www.ncbi.nlm.nih.gov/geo/). With |log2(fold change)|
>0.5 and false discovery rate (FDR) <0.05 as the standards
(22), the data were standardized with the “edgeR” package of R
software (version 3.6.3, https://www.r-project.org), and then
differential expression analysis was performed. The glycolysis-
Frontiers in Oncology | www.frontiersin.org 2
related gene dataset was downloaded from GSEA (http://www.
hmdb.ca). The same standard was used to analyze the
differentially expressed glycolysis-related genes (DGRGs)
between PCa and normal tissues. The relationships between
pairs of genes were analyzed through GEPIA (http://gepia.
cancer-pku.cn/).

Construction of a Risk-Scoring Model
Based on the DGRGs obtained from the above screening,
univariate Cox regression analysis and LASSO regression
analysis were used to screen the prognostic glycolysis-related
genes. Then, a separate survival analysis was conducted for each
gene to obtain DGRGs with statistically significant associations
with survival. Based on the obtained prognosis-related DGRGs,
LASSO regression analysis was used to calculate the risk
coefficient (coefi) of each DGRG. Then, the sum of the product
of the coefi values of all prognostic-related DGRGs and their
expression (expri) values for each sample was calculated as the
patient risk score (risk score = Sn

i=1(Coef i � Expri)) (23). Using
the median risk score as the cutoff point, patients were divided
into high-risk and low-risk groups. Kaplan–Meier survival
analysis was used to determine whether disease-free survival
(DFS) was significantly different between high-risk and low-risk
patients. Receiver operating characteristic (ROC) curve analysis
was used to calculate the area under the curve (AUC) to evaluate
the predictive performance of the risk-scoring model. Univariate
Cox regression and multivariate Cox regression analyses were
used to clarify the relationship between the risk score, age, TNM
stage, Gleason score, and prognosis of PCa patients.

External Verification of the
Risk-Scoring Model
The GEO dataset GSE70770 was used to verify the risk score
model. Similar to the previous approach, the sum of the product
of the coefi values of all prognostic-related DGRGs and their
expression (expri) values for each sample was calculated as the
patient risk score. Kaplan–Meier survival analysis was used to
determine whether DFS was significantly different between high-
risk and low-risk patients. ROC curve analysis was used to
calculate the AUC to evaluate the predictive performance of
the risk-scoring model.

Feature Set Enrichment Analysis
Gene ontology (GO) is widely used in the field of molecular
biology and can effectively identify the biological attributes of
samples according to high-throughput genetic data. Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a collection of
high-throughput biological datasets related to genomes, cells,
diseases, and signaling pathways. It is usually used to annotate a
list of genes and signaling pathways related to a phenotype of
interest. The R language package was used to perform GO
function and KEGG enrichment analysis of DGRGs.

Cell Lines and Cell Culture
The human PCa cell line PC3 was purchased from the American
Type Culture Collection (ATCC, VA, USA). PC3 cells were
cultured in RPMI-1640 (Gibco, NY, USA) medium with 10%
September 2021 | Volume 11 | Article 605810

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org
http://www.hmdb.ca
http://www.hmdb.ca
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Glycolysis-Related Signature Predicts PCa Prognosis
fetal bovine serum (FBS, BI, Israel), 100 U/ml penicillin, and
100 mg/ml streptomycin. The cells were cultured in an incubator
with 5% CO 2 at 37°C.

RNA Interference
Small interfering RNA (siRNA) duplexes targeting the human
HMMR, KIF20A, GPR87, PGM2L1, and ANKZF1 genes were
synthesized and purified by GenePharma (Suzhou, China). PC3
cells (1 × 105) were seeded in six-well plates and cultured to 50%–
70% confluence, and transient transfection was performed with
Lipofectamine iMAX (Invitrogen, USA) according to the
manufacturer’s instructions. The validated oligo sequences of
siRNAs are listed in Supplementary Table S1. The detailed
procedure is available in Supplementary File 1.

Glycose Consumption and Lactic
Acid Production
PC3 cells were digested after transient transfection with siRNA
for 48 h, counted (1 × 105), seeded in 12-well plates, and cultured
until the cells adhered. The medium was replaced with fresh
medium and the initial glucose and lactic acid concentrations
were detected. After culturing for 24 h, the culture medium was
collected and centrifuged for 15 min at 12,000 rpm at 4°C. A
lactate assay kit (Nanjing, China) was used to measure the lactate
concentration following the manufacturer’s instructions. The
glucose concentration was tested with a glycose assay kit
(Nanjing, China) according to the manufacturer’s instructions.
Glucose consumption and lactate production within 24 h were
calculated according to the difference between the initial and
final concentrations according to a standard curve. The detailed
procedure is available in Supplementary File 1.

Transwell Assay
Cells were harvested after transient transfection with siRNA for
48 h, and chambers (8-mm pore size, Costar) with or without
Matrigel (BD Science, USA) were used for cell invasion assays or
migration assays. Approximately 4 × 104 cells (for the migration
assay) or 6 × 104 cells (for the invasion assay) were resuspended
in 200 ml of serum-free medium and added to the upper
chambers. A total of 600 ml of medium containing 10% FBS
was placed into the lower chambers. After incubation for 24 h,
the cells in the upper chamber were gently removed with cotton
swabs, and cells on the lower surface were fixed with
paraformaldehyde and stained with 0.1% crystal violet for 20
min at room temperature. Photographs were taken with a
microscope (Olympus, Tokyo, Japan), and the cells were
counted for analysis.

Statistical Analysis
All statistical analyses were accomplished with R software
(packages: limma, GSVA, GSEABase, sparcl, pheatmap,
estimate, ggpubr, e1071, preprocessCore, survival, glmnet,
survminer, survivalROC, rms, foreign, timeROC, and ggplot2)
and GraphPad Prism (version 7.03). The correlation was
determined by Pearson correlation analysis. Chi-square tests
and t-tests were utilized to compare clinical variables. Survival
status was assessed by Cox regression analysis. DFS curves were
Frontiers in Oncology | www.frontiersin.org 3
generated by the Kaplan–Meier method and evaluated by the
log-rank test. A two-tailed p < 0.05 was considered to indicate
statistical significance.
RESULTS

Initial Screening and Identification
of Differentially Expressed
Glycolysis-Related Genes
Transcriptome sequencing data and detailed clinical follow-up
information derived from 498 PCa patients were downloaded from
the TCGA.With screening thresholds of |log2(fold change)|>0.5 and
FDR<0.05, the DGRG profile was generated through the “edgeR” R
package (Supplementary Figures S1A, B). Then, five glycolysis or
glycolysis pathway-related gene sets were obtained from GSEA
(Supplementary Table S2). By analyzing the overlaps between the
differential transcriptome expression profile and GSEA gene sets,
DGRGswere identified (Figure 1A). Volcano and heatmaps showed
the expression patterns of the DGRGs (Figures 1B, C).

Identifying Candidate Molecules
Associated With the Prognosis of
Prostate Cancer Patients
To fully understand the role of DGRGs in PCa patients, univariate
Cox regression was carried out to preliminarily analyze this profile.
The results indicated that 13 genes were significantly associated
with the prognosis of PCa patients (Figure 2A). Considering the
possibility of overfitting that affects the authenticity of the results,
LASSO regression was applied to further screen glycolysis-related
genes associated with patient prognosis among these 13 genes. The
data showed that after optimization of penalty parameters, eight
genes (HMMR, KIF20A, PGM2L1, ANKZF1, GPR87, ADH5,
ADH1B, NUP210) were confirmed to be related to the prognosis
of PCa patients (Figures 2B, C).

Validation of the Expression and
Prognosis of Candidate Molecules
We next aimed to further confirm the possible roles of these eight
genes in PCa. Based on the PCa patient cohort derived from
TCGA datasets, the expression and predictive ability of the eight
glycolysis-related genes were tested. Consistent with previous
results, the expression of four glycolysis-related genes (PGM2L1,
ANKZF, KIF20A, and HMMR) was upregulated in cancer tissues
compared with normal tissues (Figures 3A–D), and analysis of
the DFS rate showed that high expression of these genes
predicted a poor prognosis in the cancer group (p < 0.05)
(Figures 3F–I). In addition, PCa patients with high expression
of GPR87 had a longer survival time (Figures 3E, J), which
indicated that it may act as a tumor suppressor. However, three
glycolysis-related genes (ADH1B, ADH5, and NUP210) were
significantly differentially expressed at the mRNA level in tumor
tissues versus adjacent normal tissues (Supplementary Figures
S2A–C) but were not significantly related to patient prognosis
(p > 0.05) (Supplementary Figures S2D–F). Taking all the
results into account, five DGRGs (HMMR, KIF20A, GPR87,
September 2021 | Volume 11 | Article 605810
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PGM2L1, and ANKZF1) were subsequently used to construct a
prediction model for PCa patients.

Construction of a Risk Score Model Based
on Differentially Expressed Glycolysis-
Related Genes
According to previous results, five genes were ultimately selected
for the construction of the risk score model. Based on the
expression (Expr) and coefficient value of each gene (Table 1),
a prognostic model for predicting the survival time of each
patient was developed as follows: risk score = Sn

i=1(Coef i �
Expri). On the basis of the result for each patient, PCa patients
in the TCGA cohort were divided into two groups (high-risk
group and low-risk group) according to the median value. As
Frontiers in Oncology | www.frontiersin.org 4
expected, there were more deaths in the high-risk group than in
the low-risk group (Figure 4A). This result implied that patients
in the low-risk group had a better prognosis than those in the
high-risk group, indicating the excellent predictive effect of this
model. Next, to further confirm this result, DFS analysis was
performed, and the Kaplan–Meier survival curves clearly showed
that patients with a high-risk score had a poorer clinical outcome
than those with a low-risk score (Figure 4B). In addition, we
analyzed the five-gene signature in the high-risk and low-risk
groups. As presented in Figure 4C, ANKZF1, PGM2L1, KIF20A,
and HMMR were significantly upregulated in the high-risk
group, and GPR87 was downregulated in the high-risk group.
The time-dependent ROC curve showed that the AUC was 0.711
(Figure 4D). Some clinical factors, such as age, TNM stage, and
A B

C

FIGURE 1 | Identification of differentially expressed glycolysis-related genes in prostate cancer cohort. (A) Venn diagram showed overlapping of TCGA and
GEO70770 database. (B) Volcano plot of differentially expressed glycolysis-associated genes expressed mRNA. (C) Heatmap of the differentially expressed
glycolysis-associated genes showing expression signature in patients with PCa.
September 2021 | Volume 11 | Article 605810
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Gleason score, are important factors for judging the prognosis of
PCa. Thus, we explored whether the Gleason score, T stage, N
stage, and risk score were independent predictors of PCa
prognosis. Univariate and multivariate Cox regression analyses
were carried out. The results demonstrated that T stage, Gleason
score, and risk score were independent predictors of prognosis in
patients with PCa (Figures 4E, F). Taken together, these findings
showed that the risk score based on the signature of five
glycolysis-related genes was an independent predictor of
prognosis in patients with PCa.

External Dataset to Verify the Predictive
Performance of the Risk Score Model
Previous data showed that the prediction model had a better
predictive performance in the TCGA cohort, but it was unclear
whether the prediction model has the ability to judge prognosis
precisely in other cohorts. To this end, the GSE70770 dataset
derived from the GEO was used to verify the predictive
performance. The expression of these five genes was analyzed,
and the results showed that HMMR, KIF20A, and ANKZF1 were
upregulated in cancer tissues, while GPR87 was downregulated
in cancer tissues, which were consistent with previous results
Frontiers in Oncology | www.frontiersin.org 5
(Supplementary Figures S3A–D). However, the expression of
ANKZF1 showed no significant difference in cancer and normal
tissues (Supplementary Figure S3E). Similarly, patients with
PCa were classified into a high-risk group and a low-risk group
according to the five-gene signature score for each patient. The
mortality rate was notably increased in the high-risk group,
suggesting that patients in the high-risk group had a poorer
prognosis than those in the low-risk group (Figure 5A). DFS
data also showed that the survival time was shorter in patients
with high-risk scores than those with low-risk scores
(Figure 5B). In addition, in the high-risk group, the expression
of ANKZF1, PGM2L1, KIF20A, and HMMR were increased
remarkably, while GPR87 was downregulated (Figure 5C). Based
on the ROC curve, the AUC was 0.73, suggesting good predictive
ability (Figure 5D).

Molecular Functions of the Five Genes
in Glycose Consumption and Lactic
Acid Production
Considering that these genes are derived from glycolytic gene
sets, they are likely to exert biological functions through
changing the metabolic pattern of tumor cells. Hence, glycose
A B

C

FIGURE 2 | Identifying candidate molecules associated with the prognosis of prostate cancer patients. (A) Univariate Cox regression analysis of glycolysis-
associated genes. (B, C) Determination of the best penalty value (−5 < l < −4). LASSO regression of screening glycolysis-associated genes with patients’ prognosis.
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consumption assays and lactic acid production assays were
subsequently adopted. SLC2A1, also known as glucose
transporter Glut-1, is the vital factor for the first step of
glucose uptake, and LDHA is the rate-limiting enzyme that
catalyzes the production of lactic acid. They are both vital
regulators involved in regulating development of malignancy
(24, 25). Therefore, to validate the roles of these five genes in
glucose metabolism, the correlations among the five genes and
SLC2A1 or LDHA were assessed. The data showed that HMMR,
GPR87, KIF20A, and PGM2L1 were positively correlated with
Frontiers in Oncology | www.frontiersin.org 6
SLC2A1 and that ANKZF1 was negatively correlated with
SLC2A1 (Figures 6A, B and Supplementary Figures S4A–C).
Similarly, HMMR, KIF20A, PGM2L1, and ANKZF1 were
positively correlated with LDHA, whereas GPR87 had a
negative correlation with LDHA (Figures 6D–F and
Supplementary Figures S4D, E). To confirm the results,
glucose consumption and lactic acid production were assessed
after gene knockdown and knockdown efficiency confirmation
(Supplementary Figures S5A–E); the results demonstrated that
glucose consumption decreased markedly when KIF20A or
PGM2L1 was knocked down (Figure 6C), while knockdown of
HMMR, GPR87, and ANKZF1 did not induce a significant
change (Supplementary Figure S6A). The lactic acid
production data showed that the concentration of lactic acid
increased when GPR87 expression decreased but markedly
decreased after knockdown of KIF20A or HMMR (Figure 6G);
furthermore, there were no significant changes with PGM2L1 or
ANKZF1 knockdown (Supplementary Figure S6B). In
summary, the glycolysis-related signature truly impacted the
glycolysis process in PCa cells.
A B D

E F G

IH J

C

FIGURE 3 | Investigation of the expression of candidate molecules based on TCGA. (A–E). Expression of PGM2L1 (A), ANKZF1 (B), KIF20A (C), HMMR (D), and
GPR87 (E) in TCGA. **p < 0.01, ***p < 0.001. (F–J). Disease-free survival of PGM2L1 (F), ANKZF1 (G), KIF20A (H), HMMR (I), and GPR87 (J) in TCGA.
TABLE 1 | The detailed information of five glycolysis-related genes for the
prediction model.

Gene Coef HR (95% CI) p-value

HMMR 0.0714607323453938 1.26 (1.13–1.41) <0.0001
KIF20A 0.0697796872729206 1.29 (1.17–1.43) <0.0001
GPR87 −0.0467478802686722 0.83 (0.70–0.99) 0.041788994
PGM2L1 0.0775653229914858 1.12 (1.00–1.27) 0.046947454
ANKZF1 0.0919194115211566 1.14 (1.06–1.23) 0.000321331
risk score = Sn
i=1(Coefi � Expri ):
September 2021 | Volume 11 | Article 605810
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Effect of the Five Glycolytic Genes on
the Migration and Invasion of Prostate
Cancer Cells
After confirming the involvementof the glycolysis-related signature
in the glucose metabolism process, we further explored whether
they affect the progression of PCa. Single-sampleGSEAwas used to
explore the possible molecular functions and signaling pathways
that might be involved. The results indicated that metastasis-
associated pathways (cell adhesion molecules [CAMs], focal
adhesion) and oxidative phosphorylation pathways were
significantly enriched among these genes (Figures 7A–C).
Considering these results, the migration and invasion ability of
PC3 cells were assessed after knocking down different target genes.
Frontiers in Oncology | www.frontiersin.org 7
The results clearly demonstrated that knockdown of HMMR,
KIF20A, PGM2L1, or ANKZF1 significantly attenuated the
invasion and migration of PC3 cells. However, GPR87
knockdown promoted the invasion and migration of PC3 cells
(Figure 7D). After confirmation in vitro, it was clear that this
glycolysis-related signature exerts important regulatory effects in
the progression of PCa.
DISCUSSION

Although improvements in treatment have greatly increased the
survival of PCa patients (26–29), survival and quality of life
A B

D

E F

C

FIGURE 4 | Construction of a risk score model based on five glycolysis-related genes. (A) The distribution of the five-mRNA risk score and survival status for each
patient. (B) Kaplan–Meier curve of survival time in high-risk and low-risk group. (C) Expression of five glycolytic genes in the high-risk group and low-risk group
based on TCGA. (D) ROC curves of the glycolysis-related signature for prediction of DFS of patients with PCa (AUC = 0.711). (E, F) Univariate and multivariate Cox
regression analysis of clinical information (Age, T stage, N stage, Gleason score, and risk score).
September 2021 | Volume 11 | Article 605810
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deteriorate significantly once BCR occurs (30). More regrettably,
it is unavoidable that approximately 50% of high-risk PCa
patients experience BCR despite active treatment (31).
Moreover, the genome sequencing results shows that there are
great individual differences in PCa, indicating the heterogeneity
of PCa. These results pose great challenges in the formulation of
favorable and reasonable personalized treatment strategies (32).
Given that metabolic reprogramming is a crucial hallmark of
malignancy, several studies have successfully recognized
glycolysis-associated factors in multiple solid tumors (13, 33–
35). Hence, we constructed and verified a prediction model based
on glycolysis-related genes to accurately judge the prognosis of
PCa patients.

Initially, in order to obtain sufficient meaningful variables,
differentially expressed genes in cancer tissues were analyzed in
the TCGA and subsequently overlapped with glycolysis-
associated gene sets downloaded from the GSEA database.
Frontiers in Oncology | www.frontiersin.org 8
In addition to univariate and multivariate regression analysis,
LASSO is another scientific variable screening method that is
widely used to construct prediction tools (36). With these
models, we further screened 13 glycolysis-related genes
associated with prognosis. Considering that inclusion of many
variates in signature could reduce the significance of research
and hinder further application, we analyzed their expression
pattern and HR values; five glycolytic genes (HMMR, KIF20A,
GPR87, ANKZF1, and PGM2L1) were eventually selected for
further investigation. ROC curve analysis confirmed the
effectiveness of this model, which indicated that patients with
risk scores had a poor prognosis. In addition, a validation dataset
(GSE70770) was used to evaluate the predictive performance of
the model in the present study, which makes the tool more
valuable. Probably due to the different quality control of each
batch of sequencing, the expression of these five genes was not
completely consistent with TCGA. Even so, we found that the
A B

D

C

FIGURE 5 | Validation of risk score through external data derived from the GEO dataset (GSE70770). (A) The distribution of the five-mRNA risk score and survival
status for each patient. (B) Kaplan–Meier curve of survival time in high- and low-risk groups. (C) Expression of five glycolytic genes in the high-risk group and low-
risk group based on GSE70770. (D) ROC curve of DFS (AUC = 0.73) in validation datasets.
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model still had a good predictive performance in PCa with BCR.
However, due to the lack of a large cohort for clinical validation,
the actual value of this prediction model still needs to be further
evaluated in the clinic.

Increasing evidences have proven that the excessive activation
of glycolysis mediates cell proliferation, resistance to
chemotherapy, the immune response, and distant metastasis (15,
37–39), so targeting aerobic glycolysis has become a promising
treatment strategy (40). In the present study, the molecular
functions of five glycolytic genes were investigated in vitro.
Previous literature clearly indicates that HMMR and KIF20A
function as oncogenes in many types of cancers. For example,
activation of the TGF-b/Smad2 signaling pathway mediated by
HMMR contributes to the chemoresistance of gastric cancer (41).
KIF20A maintains a set of malignant characteristics in colorectal
Frontiers in Oncology | www.frontiersin.org 9
cancer by activating the JAK/STAT3 pathway (42, 43). However,
little is known about GPR87, PGM2L1, and ANKZF1 in PCa. In
the aspect of BCR, few studies have reported these glycolytic genes’
functions in the process of BCR. For patients who underwent
radical prostatectomy (RP), BCR was a precursor to local tumor
recurrence and distant metastasis (44). The regulatory roles of
these glycolytic genes in the process of metastasis were assessed,
which was expected to partially reflect their roles in the process of
BCR. In the present study, the results of the Transwell assays of
HMMR and KIF20A knockdown cells further confirmed their
roles as oncogenes in PCa, which were consistent with previous
studies. Furthermore, this is the first study to prove the anti-
oncogenic or oncogenic role of GPR87, PGM2L1, and ANKZF1 in
PCa progression, providing important information for further
investigating PCa. Interestingly, it is worth noting that GPR87 is
A B

D E F

C

G

FIGURE 6 | Molecular function of five genes in glycose consumption and lactic acid production. (A, B) Analysis of corrections of SLC2A1 with KIF20A (A) or PGM2L1 (B).
(C) Detection of glucose consumption in control or siRNA (KIF20A and PGM2L1) group. ***p < 0.001. (D–F) Analysis of correction of LDHA with HMMR (D), KIF20A (E),
and GPR87 (F). (G) Investigation of lactic production in control and siRNA (HMMR, KIF20A, and GPR87) group. ***p < 0.001.
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generally considered as a tumor driver in the tumorigenesis of
pancreatic cancer (45), lung cancer (46), bladder cancer (47), and
liver cancer (48). However, it was indicated as a tumor suppressor
in PCa. GPR87 is widely known as a G protein-coupled receptor
with seven transmembrane proteins, and the signaling pathways
that it activates are substrate-dependent in terms of mechanism.
For instance, GPR87 couples with Gaq to mediate the activation of
CREB and NF-kB signaling pathway and couples with Ga12/13 to
induce SRE activation (49, 50). The specific characteristics of
GPR87 in PCa and the detailed mechanisms are unclear and
deserve further investigation.

In addition, several bioinformatics analyses have reported that
these genes (HMMR, KIF20A, PGM2L1, ANKZF1, and GPR87)
participate in glycolysis (51, 52). However, their roles in regulating
tumor glycolysis have rarely been confirmed. Therefore, it was
unclear whether they participated in regulating glucose
metabolism in cancer cells. In the present study, we not only
confirmed their involvement in the glycolysis process of PCa
through bioinformatics but also demonstrated that interfering
with KIF20A and PGM2L1 expression could affect glucose
consumption and that interfering with HMMR, KIF20A, and
GPR87 expression could regulate lactic acid production in vitro.
It was worth noting that ANKZF1 had little regulatory role in
glucose metabolism and lactic acid production process. It seems
that the main function of ANKZF1 was to participate in the
process of ribosome biogenesis (53, 54). Due to the lack of
Frontiers in Oncology | www.frontiersin.org 10
sufficient research, the actual role of ANKZF1 in cancer and
glycolysis is unclear, and it is worthy of further investigation. In
conclusion, this study preliminarily revealed their roles in the
regulation of glucose metabolism.

Overall, further functional verification in vitro not only made
our results more comprehensive but also provided a theoretical
basis for this model. However, little is known about the exact
roles of these genes and corresponding signaling pathways in
regulating PCa progression and glycolysis. To better understand
the theoretical basis of this model, the biological roles of these
genes in vivo and their corresponding precise molecular
mechanisms should be further elucidated in the future.
CONCLUSION

By analyzing the transcriptome signature of TCGA and GEO
cohorts, a risk score system based on five glycolysis-associated
genes was constructed and exhibited excellent performance in
judging the prognosis of individual patients. In addition, GSEA
and in vitro functional assays implied that these genes function
through metastasis-related pathways and glucose metabolism
pathways, indicating that they truly have a regulatory effect on
tumor progression. Our findings indicated that the risk score
prediction model might be a potential prognostic predictor for
PCa patients with BCR.
A B

D

C

FIGURE 7 | Effect of the five glycolytic genes on the migration and invasion of prostate cancer cells. (A–C) GESA analysis was performed in the high-risk group and
low-risk group. (D) Investigation of ability of migration and invasion of PC3 cells.
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