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Abstract: The availability of high-density single nucleotide polymorphisms (SNPs) data has made the human genetic as-

sociation studies possible to identify common and rare variants underlying complex diseases in a genome-wide scale. A 

handful of novel genetic variants have been identified, which gives much hope and prospects for the future of genetic as-

sociation studies. In this process, statistical and computational methods play key roles, among which information-based 

association tests have gained large popularity. This paper is intended to give a comprehensive review of the current litera-

ture in genetic association analysis casted in the framework of information theory. We focus our review on the following 

topics: (1) information theoretic approaches in genetic linkage and association studies; (2) entropy-based strategies for op-

timal SNP subset selection; and (3) the usage of theoretic information criteria in gene clustering and gene regulatory net-

work construction. 
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1. INTRODUCTION 

 The availability of high-density single nucleotide poly-
morphisms (SNPs) generated routinely in many labs pro-
vides unprecedented opportunities in understanding the ge-
netic machinery of many complex human diseases. Follow-
ing the completion of human HapMap project and the devel-
opment of high-throughput genotyping biotechnologies, 
SNPs have become the primary source to unravel the genetic 
roots of complex diseases which has led to the flourishing of 
vast amount of SNP data analysis methodologies [1]. Genet-
ic association analysis based on SNPs has been traditionally 
focused on single SNP analysis. Methods of single SNP 
analysis include but are not limited to simple chi-square test, 
logistic or linear regression analysis depending on the under-
lying disease trait distribution [2]. These analyses consider 
one SNP at a time, followed by multiple testing corrections 
in a genome-wide scale. Single SNP-based analysis has been 
broadly applied in early stage genome-wide association stud-
ies (GWAS). For a complex disease, it often involves multi-
ple genetic variants functioning jointly, each with a small or 
moderate effect. Thus, it is likely that the single SNP-based 
analysis may miss many potential players due to their small 
marginal effect size to reach a genome-wide significance 
level. Given the complexity of many human diseases, single 
SNP-based analysis certainly has its limitations. An alterna-
tive way to look for association is to analyzing a group of 
SNPs simultaneously through haplotype analysis. The ad-
vantage of haplotype-based analysis over single SNP-based 
approach has been investigated [3-5]. The biological inter-
pretation is that multiple functional alleles in a cis position 
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within a gene can function jointly to make a “super allele” 
with a large effect on disease phenotypes [6]. However, the 
phase ambiguity problem presents computational challenges 
for haplotype-based analyses. Algorithms have been devel-
oped to infer haplotype frequencies such as fastPHASE [7]. 
The estimated frequencies can be treated as covariates in a 
linear or logistic regression framework to infer specific hap-
lotype effects [6, 8, 9].  

 Despite great successes achieved by GWAS so far, only a 
small proportion of the heritability of complex traits has 
been explained [10, 11]. One possible explanation is that 
methods based on univariate analysis can only identify vari-
ants with strong marginal effects, leaving for large propor-
tion of heritability unaccounted for due to potential interac-
tions among genetic variants [12]. This leads to a broad dis-
cussion of analysis at different levels such as the gene-based 
analysis [13-15], gene-set analysis [16](reviewed by Fridley 
and Biernacka 2011), and pathway-level analysis [17] (re-
viewed by Wang  2010). These analyses at different levels 
are essentially to capture the overall evidence of association 
of a set with a phenotype, which may contain potential inter-
action between multiple variants in the set. However, these 
analyses are essentially different from traditional gene-gene 
interaction (GGI) analysis in a statistical sense. In a typical 
GGI analysis, interacting variants are analyzed through ei-
ther parametric models such as linear or logistic regression, 
or nonparametric methods such as multifactor dimension 
reduction (MDR) [18]. Until recently, Li and Cui proposed a 
gene-centric gene-gene interaction analysis which combines 
gene-based analysis and interaction analysis into a unified 
framework and provides additional insight into disease etiol-
ogy that cannot be discerned from single SNP-based interac-
tion analysis [19]. 

 With the development of next-generation sequencing 
technology, more dense SNP markers are generated, raising 
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the hope for the discovery of rare variants associated with 
complex diseases. However, current bottleneck in genetic 
association studies is not limited by genotyping technology, 
but rather limited by high computational cost and the lack of 
efficient and powerful statistical methods. The underlying 
gene action mode is never clear to us, leaving us great diffi-
culty in choosing right models to fit the data. The infor-
mation theory, which initially emerged in the 1940s [20] to 
quantify the transmission of information in communication 
channels within a rigorous mathematical framework, has 
gained much attention in genetic association studies recently 
[e.g., 15, 21-23]. In this paper, we give a brief review of in-
formation theory-based genetic association studies including 
the applications in single SNP-based, haplotype-based, gene-
based, gene-gene interaction, gene-environment interaction, 
gene clustering and gene network construction analysis. We 
describe key challenges in these areas, how information-
based approaches fit in the framework as potential solutions, 
the unsolved issues and directions for future work.  

2. BACKGROUND ON INFORMATION THEORY 

 We present some key concepts of information theory in 

this section. Information theory quantifies the uncertainty of 

a random variable by its entropy section [24]. Given a dis-

crete random variable (r.v.)  with a set of possible values 

, and corresponding probability distribution 

, entropy of  is defined as 

           (1) 

The higher the entropy, the higher the uncertainty we may 

predict the outcome of  and the entropy is maximized when 

all the possible values of  are equiprobable. When using the 

base 2 logarithm ( ), the entropy is measured in bits.  

Joint entropy of two discrete random variables  and  is 

defined analogously as,  

         (2) 

where  refers to the joint dis-

tribution of the two variables. An important property of en-

tropy is subadditivity: , equality 

holds if and only if  and  are statistically independent.  

Mutual information is defined as the information common to 
both random variables, 

          (3) 

 provides the information of  contained in , or vice 

versa.  when  and  are statistically independ-

ent. The uncertainty remaining in r.v.  given the knowledge 

of r.v.  is defined as the conditional entropy 

         (4) 

Similarly, the uncertainty remaining in r.v.  given the 

knowledge of r.v.  is measured by conditional entropy 

         (5) 

From (3) we have , i.e. the mutual infor-

mation of a r.v.  with itself indicates the decrement in the 

uncertainty of r.v.  given the information of itself. Thus 

entropy is also referred to as self-information. Fig. (1) shows a 

Venn diagram of . The left and right el-

lipses indicate the magnitude of the marginal entropies 

, respectively, and their overlap corresponds to the 

magnitude of the mutual information . 

 

 
 
Fig. (1). The Venn diagram of entropies  , and the mu-

tual information  

 As an illustrative example of entropy in genetic studies, let’s 

consider two bi-allelic SNP markers. Suppose alleles of the two 

SNPs (SNP A and SNP B) are A, a and B, b, respectively, so 

there are three genotypes at the two markers. Denote genotypes 

at marker A as  and genotypes at marker B as , then 

 

 denote corresponding genotype frequencies. The 

marginal entropy of marker A and marker B are then defined 

by 

 

 

And the joint entropy of the two markers is  

 

Then the mutual information and conditional entropies can 
be calculated accordingly using (3), (4) and (5).  

3. ENTROPY-BASED LINKAGE AND ASSOCIATION 
STUDIES 

3.1. Single SNP-Based Association Studies 

 One of the major issues of single-SNP based analysis is 
little power in detecting variants with small/moderate effect 
size or SNPs with small minor allele frequency (MAF). En-
tropy takes the nonlinear transformation of allele frequen-
cies. When testing for allele frequency difference between 
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cases and controls, this nonlinear transformation can poten-
tially increase the testing power [25, 26]. With this property, 
the entropy-oriented approaches have drawn public attention 
in association tests. Kang and Zuo [21] explored the perfor-
mance of the entropy-based statistic in the two-stage ge-
nome-wide association studies. When minor allele frequency 
(MAF) is small, a direct test of MAF difference often ends up 
with lower power. Their investigation shows that the power 
of the entropy-based joint analysis is larger than the linear 
joint analysis under a large range of MAF differences be-
tween cases and controls. Ruiz-Marín  [27] proposed a new 
allelic entropy test from the symbolic dynamics point of 
view. They showed the consistency of the test for a broad 
spectrum of alternative hypothesis and demonstrated the 
efficiency of the test toward SNPs with MAF between 1% 
and 5%. This investigation shows the advantage of the en-
tropy-based test in detecting SNP variants with small MAF. 

3.2. Haplotype-Based Association Studies 

 Haplotypes are combinations of marker alleles that are 
closely linked on the same chromosome and are inclined to 
inherit as a unit. They are essential to decipher the genome-
wide human LD pattern. In the association study of complex 
disease gene mapping, the haplotype-based approaches are 
statistically more appealing than those single locus based 
approaches in certain scenarios. Haplotype association anal-
ysis can be conducted under a population-based or family-
based design [28]. Considering the benefits of haplotype-
based analysis, Zhao  [23] proposed an entropy-based ap-
proach which is shown to improve the power of the standard 

 test for GWAS via the nonlinear transformation of haplo-
type frequencies. Furthermore, Zhao  [26] systematically 
investigated four types of nonlinear tests, the test statistics of 
which are in the form of entropy, exponential function, quad-
ratic function and reciprocal function. They also showed that 
the similarity measure-based statistics in Tzeng  [29] are 
equivalent to the nonlinear test statistics. This study demon-
strates the power of entropy-based test in haplotype analysis. 
In summary, entropy-based approaches tend to outperform 
their non-information theoretic counterparts even through 
high computational cost in inferring haplotype phase and 
frequencies could hinder the development of haplotype-
based analysis. 

3.3. Gene-Based Association Studies 

 Genes are the functional units in most living organisms. 
The sequence information and function of genes are highly 
consistent across diverse populations, which makes the gene-
based association study more robust in terms of replication 
compared to the single SNP-based analysis [13]. Moreover, 
genic SNP variants are more likely to alter gene function and 
affect disease risk than those that occur outside genes [14]. 
Thus, association analysis by focusing genes as testing units 
is biologically attractive by reducing the genotyping cost. In 
addition, it is statistically appealing by reducing the number 
of tests in a genome-wide scale [13]. Applying the entropy 
measure as a tool for nonlinear transformation of joint geno-
type frequencies, Cui  [15] developed a gene-centric ge-
nome-wide association test. This method defines entropy on 
joint genotype frequencies in cases and controls and is com-
putationally faster than the haplotype-based entropy test pro-

posed by Zhao  [23]. Simulation studies have shown the su-
perior power of the entropy-based analysis under a number 
of scenarios. The underlying principle for the two methods is 
essentially the same, that is, to capture the multilocus linkage 
disequilibrium (LD) information in a region. Cui  [15] de-
fined a penalized entropy measure in order to group rare 
joint genotypes into common ones and therefore save com-
putational time. Generally speaking, entropy test based on 
joint genotypes is computationally more attractive, especial-
ly when large number of SNPs are involved in a gene region.  

 Cui ’s method can be easily extended into other scenari-
os. For example, one can consider multiple SNP variants that 
are physically located close to each other on a chromosome 
band, or one can extend the gene idea to a set of genes or 
pathways and assess the association from a gene-set or 
pathway level. The gene-set or pathway information can be 
pre-defined, such as from the KEGG pathway [30] or Gene 
Ontology database. By incorporating various levels of in-
formation into an association test, we could gain additional 
biological insights into the disease etiology of a complex 
disease. These extensions can be done by the entropy-based 
test with properly selected grouping threshold to control 
false positives [15].  

3.4. Family-Based Association Studies 

 In population-based association studies, all samples can-
not be guaranteed to come from a homogeneous population. 
When individuals are sampled from different populations 
and if different populations have different disease allele fre-
quencies, false positive or false negative could be observed if 
the population substructure is not properly taken care of in 
the analysis [31]. This problem can be avoided by adopting a 
family-based design through which parents are treated as 
controls [32]. One of the commonly used methods in a fami-
ly-based association study is the Transmission Disequilibri-
um Test (TDT) [33]. TDT measures association in families 
with transmissions of risk markers from parents to offspring 
in a nuclear family. Under the condition that an allele is as-
sociated with a disease trait, it will be transmitted to the af-
fected offspring more often than expected by chance and this 
can be detected by the TDT test. Zhao  [34] generalized the 
original TDT statistics, which are linear functions of trans-
mitted allele frequencies, into the nonlinear ones via entropy. 
The authors examined the distribution of the novel TDT test 
statistics in both homogeneous and admixture populations 
and demonstrated the entropy-based test is more powerful 
than the original TDT test. The entropy-based TDT test of-
fers an alternative powerful solution to improve the tradi-
tional TDT test in the population-based association studies.  

3.5. Entropy-Based QTL Mapping 

 Quantitative trait loci (QTL) mapping has been a power-
ful tool in elucidating the genetic basis of complex traits 
[35]. In a typical QTL mapping study, all samples are uti-
lized following a particular genetic design in plants and ani-
mals, or in a family- or population-based human genetic 
study. Due to various issues for sample collection, selective 
genotyping provides a cost-saving solution. Under this strat-
egy, one tests the differences of allele frequencies between 
an upper tail and a lower tail in a mapping population. Thus, 
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the non-linear transformation of allele frequencies via Shan-
non entropy can be applied to boost the mapping signal. Li  
[36] extended the entropy-based test to an association analy-
sis by embedding the test statistic of Zhao  [23] in the sce-
nario of extreme individuals of a population. A potential ap-
plication of this strategy is in eQTL mapping in which selec-
tive transcript profiling is often conducted due to high cost.  

3.6. Entropy-Based Gene-Gene and Gene-Environment 
Interaction Studies 

 It is commonly recognized that gene-gene (G G) interac-
tion or epistasis, and gene-environment (G E) interaction 
play key roles in determining the risk of complex human 
diseases [37, 38]. The presence of epistasis among suscepti-
ble disease loci may lead to the detection of causal variants 
or else undiscovered [37], while taking G E interaction into 
account can gain additional insight into the etiology of com-
plex diseases. For a comprehensive review of G G interac-
tion in the context of human genetic association studies, 
readers are referred to Cordell [39]. 

 From an information content perspective, Moore  [40] 
developed a general multistep strategy to investigate the epi-
stasis in complex disease studies. They evaluated the infor-
mation gain through entropy measure in order to choose a 
subset of appealing SNPs, and then simplify the subset into 
single attribute that seizes the nonlinear interaction infor-
mation among multiple SNPs. Dong  [41] defined disease 
entropy in the form of, 

  

where  and  are the proportions of cases and con-

trols in a sample, respectively. Then the disease entropy con-

dition on a SNP can be calculated by adding the sub-entropy 

corresponding to all the possible genotypes. This approach 

not only can discover the G G interaction effects by a pack-

age called ESNP2-S as most of the other method did on epi-

stasis, but also can identify the optimal model from all two-

locus genetic interaction models. For a case-only design, 

Kang  [42] developed an entropy-based test statistic for in-

teraction analysis on multiple loci. The new test is biologi-

cally more attractive in the sense of detecting causal loci 

associated with a clinical phenotype.  

 For the study of G E interaction, Wu  [43] investigated 

the performance of the mutual information-based test statis-

tic in G E interaction studies, assuming independence be-

tween a gene and environment variable. They developed the 

global test statistic  to test gene-environment interaction, 

and  to test the genotype and environment interaction. 

They showed that the information theoretic approach is more 

powerful than the logistic regression approach. They found 

that p-values calculated from  are smaller than those ob-

tained by  in general, which is due to the difference in 

the amount of information used by  and . This evalu-

ation provides a new framework for the study of G E inter-

action and could be extended to a genome-wide association 

analysis. Fan  [25] proposed entropy-based information gain 

test statistics to detect and characterize G G and G E inter-

actions of complex diseases. The authors proposed one-

dimensional test statistics for testing three-way and higher 

order interactions. Their study indicates that the information 

gain based test statistics have similar or higher power com-

pared to naïve chi-square test and are more robust.  

3.7. Detecting Synergistic Effect with Information Theory 

 To identify a set of variants in a gene, a gene set or a 
pathway associated with complex diseases, one needs to 
model the joint effect of those variants as a system. Synergy 
analysis provides a novel strategy for this purpose. The biva-
riate synergy between two SNPs  and  with regard to 
the phenotype  is defined as,  

      (6) 

It quantifies the additional information conveyed by the co-
operative effects of the two SNPs with respect to the infor-
mation conveyed by the two separately. Positive synergy 
indicates the existence of the synergistic effect or the interac-
tions of all the SNPs in a genetic system, while negative syn-
ergy indicates information redundancy, hence joint analysis 
may not be preferred. Schneidman  [44] defined zero syner-
gy as information independence. Synergy also quantifies the 
mutual information gain of two SNPs to a phenotype, thus 
Eq. (6) can be rewritten as, 

          (7) 

If the quantities and  are zero, then the 

relations between  and  are defined as conditional inde-

pendence and activity independence, respectively [44]. Note 

that the information independence can hold without the con-

ditional and activity independence when  and 

are equal. Schneidman  [44] systematically exam-

ined the interrelated framework of the three measures of in-

dependence and correlation. Varadan  [45] later on extended 

the synergy definition to a set of multiple SNPs 

 and a phenotype  as, 

 

where the partition is denoted as  and 

. The generalization from bivariate synergy to mul-

tivariate synergy is consistent with the intuitive idea that 

synergy is the extra information conveyed to the phenotype 

by comparing the information contribution between the en-

tire set and the maximum information partition of the entire 

set.  

 Anastassiou [46] elaborated the synergy tree and showed 
it is connected to the pathway analysis. The positive synergy 
in this scenario implies the interaction among pathways. The 
main advantage of the synergistic analysis lies in pinpointing 
the pathway structures related to the genotype. The sets of 
interacting genes can be identified without the biological 
knowledge which is needed afterwards to verify the consist-
ence between the identified genes and known pathways. The 
author also pointed out two restrictions of analysis of syner-
gy, the incapability to locate the causal high synergy sets to 
the phenotype, and the limitation to identify the overlapping 
pathway structures because of the disjoint sets after partition.  



570    Current Genomics, 2012, Vol. 13, No. 7 Wu et al.  

 The synergy analysis opens an alternative framework for 
the evaluation of G G interaction. Under the gene-based 
association analysis (e.g., [15]), all variants within a gene or 
a gene set are included to define a gene signal. This, howev-
er, has great limitations when noisy variants are not properly 
taken care of in the defined entropy statistics. They could 
inflate the degree of freedom for a test statistic and conse-
quently affect testing power. An optimal strategy is to do a 
two-stage selection in which one can select potential SNPs 
by evaluating their synergy. Also one can assess the joint 
synergy to determine whether to implement a gene- or set-
based association test. If the joint synergy is less than zero, it 
implies that the joint analysis does not give much additional 
information, hence a single SNP-based analysis may be pre-
ferred.  

4. TAG SNP SELECTION USING ENTROPY 

 SNPs are the most abundant genetic variants in human 
genome. The emergence of the high-throughput genotyping 
technology has made the fast genome-wide SNP association 
analysis possible. The genotyping cost is no longer prohibi-
tively high with the advancement of the high throughput 
genotyping techniques. Nevertheless, serious multiple testing 
problems are triggered when all recognized SNPs are geno-
typed. Recent studies have revealed that SNPs in the human 
genome are distributed as block like patterns [47, 48]. SNPs 
within each block are strongly correlated due to high linkage 
disequilibrium (LD). Thus, haplotype diversity within a 
block can be well explained by a small number of SNPs, 
called tag SNPs (tSNPs) [48-50]. The existence of these 
tSNPs implies the un-necessity to associate a disease with all 
SNPs in the genome to understand its genetic etiology. On 
the other hand, focusing only on these representative tSNPs 
can greatly facilitate genetic association study with reduced 
cost and false negatives (by alleviating the multiple testing 
burden). Thus, the selection of tSNPs becomes critically im-
portant both in cost and statistical inference for association 
analysis. 

 Halldórsson  [51] commented that methods for selecting 
tSNPs should consist of three major steps: (1) determining 
the structure of the predictive genomic regions; (2) Evaluate 
the quality of the tSNP subsets; and (3) Reduce the number 
of tSNPs to the lowest possible level. A number of algo-
rithms have been developed to identify tSNPs (e.g., [52-54]). 
However, many existing algorithms step-wisely add SNPs to 
a subset and have not well taken the 3rd step into considera-
tion. For example, those summarized in (Table 1) of Weale  
[55] select tSNPs according to certain criteria without 
providing the guidance on how to sensibly choose minimal 
number of tSNPs. 

 Commonly used criteria for evaluating tSNP subsets 

within a haplotype block includes: the ratio of the haplotype 

diversity explained by the subset, and the association be-

tween the complete set and the tagging set, which is meas-

ured by , the coefficient of determination [55]. The second 

criterion examines the performance of the subset in terms of 

predicting the untagged SNPs, hence statistically more ap-

pealing. Nothnagel  [56] first time introduced information 

theory to extend the classical pairwise LD measure to multi-

locus version. They proposed the normalized entropy differ-

ence, , to measure the LD strength among multiple loci and 

locate haplotype blocks. A similar measure was proposed by 

Zhao  [57] based on the likelihood theory. Liu and Lin [58] 

claimed that the performance of  under two loci case cannot 

be compared with the traditional pairwise LD measures due 

to the incapacity of  to attain the upper bound, and this  

metric may not detect haplotype blocks with limited number 

of SNPs. Defining  as a random variable of haplotype and 

 as a random variable of allele at the th SNP, Liu and Lin 

[58] proposed an entropy-based criterion to weight a normal-

ized haplotype diversity measure by 

 

and a normalized LD measure by 

 , 

 

where  and  are the joint entropy of the subset 
and the complete set, respectively; and  is the relative 
entropy. It has been shown that  successfully captures 
the pattern of complete LD. In contrast to the above two 
measures which estimate the LD pattern across a whole 
chromosome region, Zhang  [59] developed the metric MIR 
to infer the pattern between two arbitrary genomic regions 
and asserted that this metric outperforms pairwise and other 
multilocus metrics in terms of detecting haplotype blocks 
and selecting tSNPs.  

 In addition to the above mentioned tSNP selection 
methods using information theory, several other works 
have also shown the benefit of using entropy in tSNP selec-
tion. Hampe  [60] fused the SNP diversity, distribution and 
the corresponding haplotype structure into a single utility 
metric to choose informative SNPs. They showed the use-
fulness of the entropy-based metric in selecting tSNPs, 
even when the location and frequency of the disease allele 
is not available. Su  [61] derived cost functions with infor-
mation measures based on the genome-wide haplotype 
block structure. The authors devised an iterative partition-
inference (IPI) algorithm to parse haplotype blocks and 
infer missing SNPs simultaneously, whereas the threshold 
of partitioning blocks is determined by an entropy map.  

 Although informative SNP selection based on haplotype 
block structure has been intensively studied, Halldórsson  
[62] argued that the agreement on defining haplotype block 
boundaries and assessing the block quality has not been 
reached. The latent LD in a sample cannot be fully captured 
by the block structure and the block-to-block LD is disre-
garded. To overcome those drawbacks, Halldórsson  [62] 
developed a block-free method, called K-MIS, which tre-
mendously reduces the number of tSNPs compared to the 
block dependent methods. Liu  [63] later on designed an 
entropy based iterative Cross Entropy Monte Carlo 
(CEMC) algorithm to select tSNPs, which has been shown 
to be superior over K-MIS algorithm. Even though the in-
formation-based tSNP selection methods have not been the 
major player in real application, they do show relative mer-
it in certain special cases and deserve more investigation.  
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5. APPLICATIONS OF THEORETIC INFORMATION 
CRITERIA ON GENE CLUSTERING AND NET-
WORK INFERENCE 

 Information theory has also been applied in a number of 
other applications in genetics and genomics study. For gene 
clustering analysis, Zhou  [64] proposed a mutual infor-
mation minimization algorithm by minimizing the sum of 
pairwise mutual information (PMI) between arbitrary two 
groups for the purpose to construct gene regulatory networks 
from expression data. The authors later on improved their 
clustering algorithm by combining metric of mutual infor-
mation and fuzzy membership and achieved best perfor-
mance [65]. The methods utilize the property that mutual 
information can measure dependence among gene random 
variables.  

 For network inference, Margolin  [66] designed an algo-
rithm for the reconstruction of accurate cellular networks 
(ARACNE), which first time used the data processing ine-
quality (DPI) from the information theory to significantly 
reduce potential false positive interactions in network de-
convolution. Qiu  [67] later on dramatically improved the 
efficiency of the pairwise mutual information calculation in 
ARACNE. Considering the limitation of mutual information 
in gene-gene interaction analysis, Zhao  [68] proposed a 
conditional mutual information (CMI) measure to infer in-
teractions among genes and further constructed gene regula-
tory networks. The algorithms they proposed can reduce the 
false positive connectivity rate. In particular, one of the algo-
rithms is able to produce connectivity confidence by direct 
connectivity metric (DCM), instead of examining the dichot-
omous states of presence or absence of connections. Liang 
and Wang [69] proposed a conditional mutual information 
estimator using both discrete and continuous variables tar-
geting networks containing both co-regulated and interac-
tively regulated genes. As genes function in networks, con-
struction of gene networks could shed novel insight into the 
function of genetic variants. Method development using the-
oretic information criteria in this area deserves more atten-
tion and investigation.  

6. CONCLUSION AND PROSPECT 

 Last decades has visualized the great success in genome-
wide association studies with common SNP markers. Asso-
ciation analysis in an information content framework has 
achieved large success and caught researchers’ attention in 
the past. Its applications in a variety of areas in genetic and 
genomic studies have led to the advancement of our 
knowledge about the genetic machinery of complex diseases. 
With the next wave of genetic association studies in gene-
sets or pathway levels, more novel variants are expected to 
be discovered and insightful interpretation of disease signals 
could be reached. However, how to deal with the every-
increasing dimension of SNP variants and extend them to the 
gene- and/or pathway-based analysis represents daunting 
challenges. We have recently developed an efficient ap-
proach in selecting potential SNP variants and further incor-
porated them into a gene- or pathway-based analysis [70]. 
This selection process is different from the traditional tSNP 
selection discussed in section 4 since we incorporated the 
disease status information into the selection process. The 

selection procedure eliminates potential noisy SNPs having 
little or no contribution to a disease status, hence greatly im-
proves the testing power for a gene- or pathway-based analy-
sis. 

 The recent breakthrough in next-generation sequencing 
technology has made it possible to identify even more dense 
SNPs with a much larger range of MAF, especially small 
MAFs. These so called rare variants stimulate another wave 
of association analysis aimed to detect genome-wide rare 
variants contributing to common diseases [71]. With the 
demonstrated power and computational efficiency in analysis 
from an information theory perspective, more investigations 
and methodology development in related areas should be 
greatly encouraged. 
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