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Bacterial and algal floc formation was induced by inoculating three species of

wastewater-derived bacteria (Melaminivora jejuensis, Comamonas flocculans, and

Escherichia coli) into algal cultures (Chlorella sorokiniana). Bacterial and algal flocs formed

in algal cultures inoculated with M. jejuensis and C. flocculans, and these flocs showed

higher sedimentation rates than pure algal culture. The floc formed by M. jejuensis

(4988.46± 2589.81µm) was 10-fold larger than the floc formed byC. flocculans (488.60

± 226.22µm), with a three-fold higher sedimentation rate (M. jejuensis, 91.08 ± 2.32%

andC. flocculans, 32.55± 6.33%). Biomass and lipid productivity were improved withM.

jejuensis inoculation [biomass, 102.25 ± 0.35 mg/(L·day) and 57.80 ± 0.20 mg/(L·day)]

compared with the productivity obtained under pure algal culture conditions [biomass,

78.00± 3.89 mg/(L·day) and lipids, 42.26± 2.11 mg/(L·day)]. Furthermore, the fatty acid

composition of the biomass produced under pure algal culture conditions was mainly

composed of C16 :0 (43.67%) and C18 :2 (45.99%), whereas the fatty acid composition

of the biomass produced by M. jejuensis was mainly C16 :0 (31.80%), C16 :1 (24.45%),

C18 : 1 (20.23%), and C18 :2 (16.11%). These results suggest the possibility of developing

an efficient method for harvesting microalgae using M. jejuensis and provide information

on how to improve biomass productivity using floc-forming bacteria.

Keywords: Chlorella sorokiniana, flocculation, Melaminivora jejuensis, sedimentation, biomass harvesting

INTRODUCTION

Microalgae are a source of bioenergy rawmaterial that can be used to produce biofuels. This unique
bioresource has been proposed as a solution to combat energy shortages and alleviate problems
associated with global warming (Morales et al., 2019; Tan et al., 2019). Compared to terrestrial
plants, microalgae have greater potential as a bioenergy rawmaterial (Chen et al., 2020) with greater
biomass productivity (Cooney et al., 2009; Chen et al., 2020). Typically, 10–20% of the biomass
derived from microalgae consists of fatty acids that can be used as raw materials for bioenergy
(Sajjadi et al., 2018). However, some limitations for industrial applications of microalgae bioenergy
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remain (Lee, 2001). The biomass produced through microalgae
cultivation is harvested using processes such as centrifugation
and filtration (Dassey and Theegala, 2013; Farooq et al., 2013).
Significant losses and production costs are incurred during
harvest (Dassey and Theegala, 2013; Farooq et al., 2013).
Therefore, solutions to reduce the losses and production costs
associated with harvesting processes are essential (Jonker and
Faaij, 2013).

To reduce microalgae biomass production costs, methods
have been developed to utilize wastewater to culture strains with
high sedimentation rates (Cheng et al., 2019; Leite and Daniel,
2020). Multicellular strains with high sedimentation rates, such
as those belonging to the Pediastrum genus, were proposed
for this application (DA LUZ et al., 2002); however, culturing
Pediastrum requires more time than that required for unicellular
strains with lower sedimentation rates and biomass productivity,
such as members of the Chlorella genus (Duygu et al., 2019;
Stone et al., 2019). In addition, while the sedimentation rates
of multicellular strains are relatively high, it takes a long time
to harvest the sedimented biomass (Su et al., 2012). As a
result of these sedimentation rate limitations, wastewater-based
cultivation methods have also been investigated in an attempt to
reduce the production costs associated with cultivation (Cheng
et al., 2019). Wastewater contains inorganic materials required
formicroalgal growth such as nitrogen and phosphorous (Benítez
et al., 2019). To purify wastewater, nitrogen, and phosphorous
must be removed; thus, the cultivation of microalgae using
wastewater can be used to simultaneously purify wastewater
and produce biomass at a low cost (Benítez et al., 2019; Cheng
et al., 2019). Furthermore, bacteria can be cultured together
with microalgae during cultivation with wastewater (Kwon et al.,
2019). Depending on the characteristics of the bacteria being
cultured, bacteria-derived floc can often form. This bacteria-
derived floc that forms contains microalgal cells, and the
sedimentation properties of this floc are greater than those of the
pure microalgal biomass. Therefore, the floc formed by bacteria
can be applied tomicroalgal biomass harvesting (Wieczorek et al.,
2015).

In this study, three bacterial strains [Melaminivora
jejuensis, Korean Collection for Type Cultures (KCTC)
32230; Comamonas flocculans, KCTC 62943; Escherichia coli,
DH5α] were inoculated into medium to form a floc with the
microalgal strain Chlorella sorokiniana KNUA114. The floc-
forming abilities of the inoculated strains were investigated
and the sedimentation rates of the resulting biomass were
compared. Gas chromatography/mass spectrometry (GC/MS)
was used to determine the composition of fatty acid in biomass
contained within each floc as a bioenergy raw material. Here,
we demonstrated the application of floc-forming bacteria
in microalgal harvesting and established the benefits for
bioenergy development.

MATERIALS AND METHODS

Whole Genome Analysis
The whole-genome analysis was applied to confirm the
composition of bacterial floc-forming-related genes and the

distribution of EPS genes that are expected to be related to
flocculation with microalgae (Lee et al., 2013). Melaminivora
jejuensis KCTC 32230 whole-genome sequencing data were
assembled with PacBio SMRT Link 7.0.1 using the HGAP4
protocol (Pacific Biosciences, USA). PacBio RS II sequencing
data were assembled with SMRT Portal 2.3.0 using the HGAP2
protocol (Pacific Biosciences, USA). The resulting contigs were
circularized using Circlator 1.4.0 (Sanger Institute). Gene-
finding and functional annotation pipeline of whole-genome
assemblies were performed using the EzBioCloud genome
database. Protein-coding sequences (CDSs) were predicted by
Prodigal 2.6.2 (Hyatt et al., 2010). The CDSs were classified
based on their roles, with reference to orthologous groups
(EggNOG 4.5; http://eggnogdb.embl.de) (Powell et al., 2014). For
more functional annotation, the predicted CDSs were compared
with the Swissprot (Consortium, 2015), KEGG (Kanehisa et al.,
2014), and SEED (Overbeek et al., 2005) databases using the
UBLAST program (Edgar, 2010). The whole-genome shotgun
BioProject accession number is PRJNA663428 with the locus tag
prefix IDM45 (https://www.ncbi.nlm.nih.gov/bioproject/?term=
txid1267217[Organism:~noexp]).

Collection and Screening of Floc-Forming
Bacterial Strains
Based on a previous study, we tried to select floc-forming
bacteria, which are expected to form floc with microalgae,
among strains derived from wastewater (Jimoh et al., 2019;
Petrini et al., 2020). C. flocculans KCTC 62943 was isolated
from a livestock wastewater treatment plant wastewater sample
(52-109, Gyebaek-ro 499beon-gil, Chaeun-myeon, Nonsan-si,
Chungcheongnam-do, 36◦10′ 36.6′′ N, 127◦03′ 10.4′′ E; Kim
et al., 2019, 2020). Melaminivora jejuensis KCTC 32230, which
was originally isolated from swine waste on Jeju Island, Republic
of Korea (Kim et al., 2018), was obtained from the KCTC at
the Korea Research Institute of Bioscience and Biotechnology,
Korea. The isolation process was performed by streaking using
R2A medium agar plates (with 15 g/L agarose; Reasoner and
Geldreich, 1985). The isolated strains were identified using 16S
rRNA gene sequencing (Wang andQian, 2009). The floc-forming
ability of the identified strains was screened; the flocs formed
were observed andmeasured using an optical microscope (model
BX53F; Olympus).

Strains and Culture Conditions
Melaminivora jejuensis KCTC 32230 (Kim et al., 2018) and C.
flocculans KCTC 62943 (Kim et al., 2019, 2020), which were
clearly observed to form floc, were selected as the experimental
strains. E. coli, which is related to floc and biofilm, was selected
as the control strain. Three flocculation bacterial strains (M.
jejuensis KCTC 32230, C. flocculans KCTC 62943, and E. coli,
dh5α) and the microalgal strain C. sorokiniana KNUA114
were prepared. C. sorokiniana KNUA114 was isolated from
Okcheon Stream in Ulleung, Korea (Okcheon Stream, Ulleung-
eup, Ulleung-gun, Gyeongsangbuk-do; 37◦28′ 24.0′′ N, 130◦53′

06.8′′ E; Yun et al., 2020). The bacterial and algal strains
were maintained at 30◦C on R2A agar plates composed of the
following: proteose peptone, 0.5 g/L; casamino acid, 0.5 g/L; yeast
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extract, 0.5 g/L; dextrose, 0.5 g/L; soluble starch, 0.5 g/L; sodium
pyruvate, 0.3 g/L; K2HPO4, 0.3 g/L; and MgSO4·7H2O, 0.05 g/L.
For the experiments, each strain was cultured in R2Amedium for
4 days at 30◦C on an orbital shaker at 160 rpm in an incubation
room. Cells were collected by centrifugation (4,000 rpm, 10min)
and washed three times with sterile distilled water. The initial
cell density of the C. sorokiniana culture was set to an OD of
0.3 at 680 nm (OD680). Bacterial seeds were resuspended in fresh
R2A medium (OD600 = 0.3). Each prepared cell sample (15mL)
was inoculated into 150mL fresh R2A medium in a 250mL flask.
To compare the algal yields to bacterial flocs, six experimental
groups (M,M. jejuensis only; C, C. flocculans only; E, E. coli only;
MC, M. jejuensis and C. sorokiniana; CC, C. flocculans and C.
sorokiniana; and EC, E. coli and C. sorokiniana) and one control
group (N, C. sorokiniana only) were prepared. The experimental
groups were cultured in heterotrophic conditions for 4 days at
30◦C on an orbital shaker at 160 rpm in an incubation room.

Flocs Size and Sedimentation Analysis
Floc size and its relationship to sedimentation rate were
measured. The sizes of the floc colonies formed in the
culture medium were measured using an optical microscope
(model BX53F; Olympus). Samples were collected from 4-
day-old cultures; 20 floc colonies were measured for each
experimental condition.

To overcome the limitations of the existing sedimentation
measurement using an Imhoff cone, the dry weight was used
compared to separating the supernatant and the sediment
(Sojka et al., 1992). For the sedimentation rate analysis, 4-day-
old samples from each experimental condition were prepared,
and 100mL of each prepared sample were transferred to
a glass container. The samples were shaken by hand until
thoroughly mixed, and then 80mL of supernatant was removed
to obtain the lower 20mL layer containing the sediment. The
weight of cells contained in the supernatant and sediment
was measured using the dry weight method (Yoo et al.,
2010). In brief, a cell pellet was obtained using a pre-
weighed glass-fiber filter and then dried in a drying oven
at 105◦C for 1 day before weighing (Yoo et al., 2010). This
process was repeated for each experimental condition and
measurement time.

Biomass Collection and Lipid Content
Analysis
Four-day-old cells were harvested by centrifugation at 4,000 rpm
for 10min. The collected cells were freeze-dried for 7 days,
then ground using a mortar. The sulfo-phospho-vanillin reaction
method was used to determine the total lipid content of each
sample by mixing 10mg of ground sample with 1mL distilled
water (Mishra et al., 2014). Different volumes of the mixture
(10, 20, 30, 40, and 50 µL) were transferred to glass tubes and
distilled water was added to achieve a total volume of 100 µL
in each tube. Sulfuric acid (2mL) was added to each of the
glass tubes, which were then heated in a water bath at 100◦C
for 5min. The tubes were allowed to cool to room temperature.
Once cool, 5mL phospho-vanillin reagent was added to each
of the glass tubes, which were then shaken at 200 rpm in an

TABLE 1 | General characteristics of M. jejuensis, C. flocculans, and E. coli,

including flocculation-related genes.

Property M. jejuensis C. flocculans E. coli

Genome assembly

Assembly method PacBio SMRT Link

7.0.1, SMRT

Portal 2.3.0

RS HGAP

Assembly version

3.0

M13 Janus

shotgun

strategy

Genome coverage 195.39X 364X –

Genome features

Genome size 3,754,826 3,333,437 4,641,652

G+C content 67.5 68.04 50.8

No. of contig 2 1 0

Total genes 3,472 3,197 4,583

Protein-coding genes 3,380 3,079 4,242

Pseudogenes 30 57 147

rRNA genes 9 9 22

tRNA genes 53 49 86

Aminopeptidase 8 5 7

Polysaccharide synthesis 17 7 3

EPS synthesis protein 2 1 1

Glycosyltransferase 9 8 5

References Kim et al., 2019 Blattner et al.,

1997

incubator at 37◦C for 15min. The OD530 values of the mixtures
weremeasured and total lipid content was calculated using canola
oil as a reference standard (Mishra et al., 2014). To compare the
fatty acid compositions between culture conditions, fatty acids
were extracted from 30mg of ground sample using a mixture of
chloroform andmethanol (1:1) (Yeo et al., 2011). The chloroform
was removed from the fatty acid extract using an evaporator and
methanol and potassium hydroxide were added to the mixture
to facilitate transesterification of any lipids. Hexane was added to
the extracted fatty acid mixture to isolate fatty acid methyl esters
(FAMEs). The separated mixture was heated in a water bath at
70◦C for 3 h. A gas chromatograph (model 6890N, Agilent) was
used to analyze the FAME composition of the pre-treated samples
(Furuhashi and Weckwerth, 2013).

Statistical Analysis
We expressed the ratio of biomass present and the fatty acids
contents, which we defined as 100%. We compared individual
data points using Student’s t-test, and a P-value of < 0.05
was considered statistically significant. All experiments were
performed at least in triplicate, and the general microbiology test
data were expressed as mean± standard deviation (SD) (n= 3).

RESULTS AND DISCUSSION

Whole-Genome Sequencing and Expected
Genes for Flocculation
The characteristics of M. jejuensis are described in Tables 1, 2,
and Supplementary Figure 1. The complete genome of M.
jejuensis was comprised of a 3,754,826-bp chromosome, genome
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TABLE 2 | List of predicted aminopeptidase and polysaccharide synthesis genes related to flocculation in M. jejuensis, C. flocculans, and E. coli.

Strain Gene group Gene name Product Function EggNOG no/.

accession no.

M. jejuensis Aminopeptidase map Methionyl aminopeptidase Aminopeptidase; hydrolase; metal-binding; protease J:COG0024

map Methionyl aminopeptidase Aminopeptidase; hydrolase; metal-binding; protease J:COG0024

pepN Membrane alanyl aminopeptidase Aminopeptidase; hydrolase; metal-binding;

metalloprotease; protease; zinc

E:COG0308

dmpA|dap D-stereospecific aminopeptidase Aminopeptidase; cell membrane; hydrolase; membrane;

protease; transmembrane; transmembrane helix

EQ:COG3191

ywaD Aminopeptidase B Carboxypeptidase; glycoprotein; hydrolase; protease;

secreted; signal; virulence

E:COG2866

CARP|pepA Leucyl aminopeptidase Aminopeptidase; cytoplasm; hydrolase; manganese;

metal-binding; protease

E:COG0260

pip Prolyl aminopeptidase Aminopeptidase; cytoplasm; hydrolase; protease E:ENOG410XPKQ

pepP Xaa-Pro aminopeptidase Aminopeptidase; cytoplasm; hydrolase; manganese;

metal-binding; metalloprotease; protease

E:COG0006

Polysaccharide

synthesis

lpxL|htrB Kdo(2)-lipid IV(A) lauroyltransferase Acyltransferase; cell inner membrane; cell membrane;

lipopolysaccharide biosynthesis; membrane; stress

response; transferase; transmembrane; transmembrane

helix

M:COG1560

lpxL|htrB Kdo(2)-lipid IV(A) lauroyltransferase Acyltransferase; cell inner membrane; cell membrane;

lipopolysaccharide biosynthesis; membrane; stress

response; transferase; transmembrane; transmembrane

helix

M:COG1560

UGP2|galU|galF UTP–glucose-1-phosphate

uridylyltransferase

Capsule biogenesis/degradation; EPS synthesis;

nucleotidyltransferase; Transferase

M:COG1210

UGP2|galU|galF UTP–glucose-1-phosphate

uridylyltransferase

Capsule biogenesis/degradation; EPS synthesis;

nucleotidyltransferase; Transferase

M:COG1210

kdsB 3-Deoxy-manno-octulosonate

cytidylyltransferase

Cytoplasm; lipopolysaccharide biosynthesis;

nucleotidyltransferase; transferase

M:COG1212

OXCT 3-Oxoacid CoA-transferase Lipopolysaccharide biosynthesis; transferase I:COG2057

— Lipopolysaccharide assembly protein Cell inner membrane; Cell membrane; iron; membrane;

metal-binding; Repeat; TPR repeat; transmembrane;

transmembrane helix

G:COG2956

eptA|pmrC Lipid A phosphoethanolamine transferase Antibiotic resistance; cell inner membrane; cell

membrane; lipid a biosynthesis; lipid biosynthesis; lipid

metabolism; lipopolysaccharide biosynthesis;

membrane; transferase; transmembrane;

transmembrane helix

S:COG2194

kdsA 3-Deoxy-8-phosphooctulonate synthase Cytoplasm; lipopolysaccharide biosynthesis; transferase M:COG2877

waaE|kdtX Lipopolysaccharide core biosynthesis

glycosyltransferase KdtX

Glycosyltransferase; lipopolysaccharide biosynthesis;

transferase

M:COG0463

kdsC 3-Deoxy-manno-octulosonate-8-

phosphatase

Hydrolase; lipopolysaccharide biosynthesis; magnesium;

metal-binding.

S:COG1778

rfbA|rffH Glucose-1-phosphate

thymidylyltransferase

Lipopolysaccharide biosynthesis; magnesium;

metal-binding; nucleotide-binding;

nucleotidyltransferase; transferase

M:COG1209

rfbG CDP-glucose 4,6-dehydratase Lipopolysaccharide biosynthesis; lyase; NAD M:COG0451

per|rfbE GDP-perosamine synthase Aminotransferase; lipopolysaccharide biosynthesis;

pyridoxal phosphate; transferase

E:COG0399

rfbD|rmlD dTDP-4-dehydrorhamnose reductase Lipopolysaccharide biosynthesis; magnesium;

metal-binding; NADP; oxidoreductase

M:COG1091

rfbA|rffH Glucose-1-phosphate

thymidylyltransferase

Lipopolysaccharide biosynthesis; magnesium;

metal-binding; nucleotidyltransferase; transferase

M:COG1209

rfbC|rmlC dTDP-4-dehydrorhamnose 3,5-epimerase Isomerase; lipopolysaccharide biosynthesis M:COG1898

C. flocculans Aminopeptidase — Putative aminopeptidase Peptidase s58 dmpa COG3191

pepA Cytosol aminopeptidase Presumably involved in the processing and regular

turnover of intracellular proteins; catalyzes the removal of

unsubstituted N-terminal amino acids from various

peptides (by similarity)

COG0260

(Continued)
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TABLE 2 | Continued

Strain Gene group Gene name Product Function EggNOG no/.

accession no.

pepP Xaa-Pro aminopeptidase Peptidase M24 COG0006

map Methionine aminopeptidase Removes the N-terminal methionine from nascent

proteins (by similarity)

COG0024

pepN Aminopeptidase N Aminopeptidase COG0308

Polysaccharide

synthesis

lapB_1 Lipopolysaccharide assembly protein B Tetratricopeptide repeat protein COG2956

fepE Ferric enterobactin transport protein FepE Lipopolysaccharide biosynthetic process COG3765

– Oligosaccharide flippase family protein Polysaccharide biosynthesis protein COG2244

capD UDP-glucose 4-epimerase Polysaccharide biosynthesis protein COG1086

pglF UDP-N-acetyl-alpha-D-glucosamine C6

dehydratase

Polysaccharide biosynthesis protein COG1086

lapB_2 Lipopolysaccharide assembly protein B Type IV pilus biogenesis stability protein PilW COG3063

gtaB UTP–glucose-1-phosphate

uridylyltransferase

UTP–glucose-1-phosphate uridylyltransferase COG1210

E. coli Aminopeptidase map Methionine aminopeptidase — NC_000913.3

pepN Aminopeptidase N — NC_000913.3

ypdE Broad-specificity exoaminopeptidase — NC_000913.3

ypdF Aminopeptidase — NC_000913.3

pepB Aminopeptidase B — NC_000913.3

pepP Proline aminopeptidase P II — NC_000913.3

pepA Aminopeptidase A/I — NC_000913.3

Polysaccharide

synthesis

wbbK Putative lipopolysaccharide biosynthesis

protein

— NC_000913.3

waaZ Lipopolysaccharide core biosynthesis

protein WaaZ

— NC_000913.3

waaS Lipopolysaccharide core biosynthesis

protein

— NC_000913.3

galF UTP:glucose-1-phosphate

uridylyltransferase, low activity

— NC_000913.3

Unclassified gene names and functions are replaced with an em-dash (—).

coverage was 195.39X, and G+C content was 67.5%. The
genome contained 3,472 genes, including 3,380 protein-coding
genes (CDSs), 30 pseudogenes, nine rRNA genes, and 53
tRNA genes. Total CDSs were matched to the EggNOG
database (Powell et al., 2014). The M. jejuensis genome
included eight aminopeptidase-coding genes, among which
there was one ywaD gene (a leucyl aminopeptidase coding
gene), which has been shown to control flocculation (Table 2;
Geesey and Van Ommen Kloeke, 2004; Zhao et al., 2018).
The genome also contained 17 polysaccharide biosynthesis
protein-coding genes, including two UTP–glucose-1-phosphate
uridylyltransferases (Table 2), which synthesize the EPS that
form floc (Degeest and De Vuyst, 2000). Conversely, C. flocculans
and E. coli each possessed only one UTP–glucose-1-phosphate
uridylyltransferase-coding gene and no flocculation-controlling
ywaD genes.

Based on the whole-genome sequencing results, M. jejuensis
(aminopeptidase, eight genes; polysaccharide synthesis, 17 genes)
possesses more flocculation-related genes than C. flocculans
(aminopeptidase, five genes; polysaccharide synthesis, seven
genes; Kim et al., 2019) and E. coli (aminopeptidase, seven

genes; polysaccharide synthesis, three genes; Blattner et al.,
1997). Furthermore, the gene expected to regulate flocculation,
i.e., the ywaD gene (leucyl aminopeptidase-coding gene), was
identified in M. jejuensis only. The UTP–glucose-1-phosphate
uridylyltransferase gene involved in EPS synthesis was more
abundant in M. jejuensis (two genes) than in C. flocculans (one
gene) and E. coli (one gene; Table 1). Therefore, we expect
rapid and efficient flocculation by M. jejuensis (Lee et al., 2013).
Based on these results, we suggest that M. jejuensis has the
potential to flocculate more efficiently than C. flocculans and
E. coli.

Flocculation and Sedimentation of
Bacterial and Algal Flocs
The co-culture of bacteria and algae resulted in the formation
of both bacterial and algal flocs in some culture conditions
(Figure 1). In the MC condition in which M. jejuensis and C.
sorokiniana were cultured together, a green-colored floc of a
visually recognizable size was observed; this floc was composed of
tightly connected bacteria and algae. A floc composed of bacteria
and algae also formed in the CC condition, where C. flocculans
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FIGURE 1 | Images of cultures and light microscopy images of floc. In co-culturing conditions (A), floc was formed in the MC and CC conditions, but no floc was

observed in the EC and N conditions. The floc formed in the MC (B) and CC (C) conditions contained bacteria and algae (scale bar, 10µm). The location of each

species is marked with an arrow. MC, M. jejuensis and C. sorokiniana; CC, C. flocculans and C. sorokiniana; EC, E. coli and C. sorokiniana; N, C. sorokiniana only,

control group. Marked characteristics are annotated in Supplementary Figure 1.

andC. sorokinianawere co-cultured. However, no flocs formed in
the EC condition, where E. coli and C. sorokiniana were cultured
together, or in the pure culture of C. sorokiniana (N condition).
Based on previous studies, the cause of the formation of floc
composed of microalgae and bacteria was expected to be from
bacteria-derived materials, including EPS, and it was suggested
that the difference in the material produced by each bacteria
would be involved in the formation and characteristic of floc
(Jimoh et al., 2019).

The supernatant in the MC condition became transparent
immediately after shaking, although no particular difference
between the turbidity of the supernatant and the lower layer
was observed in the cultures of the other conditions (CC, EC,
and N), demonstrating a greater biomass sedimentation ability in
the MC condition. To understand the improved sedimentation
ability observed in the MC condition, we measured the floc size
as a trait related to sedimentation (Stone and Krishnappan, 2003;
Bainbridge et al., 2012). The average floc size in theMC condition

(4988.46 ± 2589.81µm) was about 10 times larger than that in
the CC condition (488.60± 226.22µm). The size of floc obtained
from MC and CC conditions exceeded that of pure microalgae
cells, and this size was expected to have a large influence on
sedimentation (Cheng et al., 2011; Baroni et al., 2019; Zhang et al.,
2019).

Furthermore, we evaluated the biomass sedimentation ability
of each culture (Figure 2). Considering the biomass of the whole
culture, we compared the distribution of the sedimented biomass
and the biomass contained in the supernatant. The highest
sedimentation rates were observed in the MC condition (91.08
± 2.32%). Although floc formed in the CC condition (32.55 ±

6.33%), there was no remarkable difference in the sedimentation
rate compared to that in the EC condition (22.36 ± 19.52%) and
the N condition (25.80 ± 10.53%). Our results demonstrate that
the co-culture of bacteria and algae resulted in floc formation,
and the highest biomass sedimentation rate was associated with
large floc size. Therefore, it is expected that the sedimentation

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 December 2020 | Volume 8 | Article 588210

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Kim et al. The Efficient Production of Biomass Through the Co-culture of Bacteria and Algae

FIGURE 2 | Biomass sedimentation ability was evaluated for each of the

culture condition. N (A), MC (B), M. jejuensis (C), CC (D), C. flocculans (E),

EC (F), and E. coli (G). MC, M. jejuensis and C. sorokiniana; CC, C. flocculans,

and C. sorokiniana; EC, E. coli and C. sorokiniana; N, C. sorokiniana only,

control group. Marked characteristics are annotated in

Supplementary Figure 1. We herein expressed the ratio of biomass present,

which we defined as 100%.

ability of the biomass produced by co-culturing the bacterial
strain M. jejuensis KCTC 32230 with C. sorokiniana KNUA114
will be improved.

The floc formation by bacteria and algae improved
sedimentation ability and reduced turbidity in a short period
(Figure 2). Floc size is one of the main contributing factors
affecting sedimentation ability (Stone and Krishnappan, 2003;
Bainbridge et al., 2012). We also observed that the settleability
improved in proportion to the floc size. In the MC condition,
the sedimentation rate was 50 to 60% higher than in the CC
condition. In addition, the floc-forming CC condition had a
higher sedimentation rate (32.55± 6.33%) than the EC condition
(22.36 ± 19.52%) and N condition (25.80 ± 10.53%), in which
floc was not formed. Furthermore, when comparing the EC and
N conditions, algae (C. sorokiniana), which has a larger cell size
than bacteria (E. coli), exhibited a relatively high sedimentation
ability. Based on the measured sedimentation ability and rate, we
confirmed that floc formation affected biomass sedimentation.
Therefore, our results suggest that biomass sedimentation
efficiency can be improved by co-culturing bacteria and algae.
Furthermore, our results support the potential application of
M. jejuensis KCTC 32230, which formed the largest floc, for
biomass production.

Pure Culture and Co-culture Growth
Comparison
The growth patterns of co-culture and pure culture are
summarized in Figure 3. The highest dry weight was measured
in the MC condition (409.00 ± 1.41 mg/L). The CC condition
(381.00 ± 1.41 mg/L) also had a higher dry weight than the N
condition (327.00 ± 20.09 mg/L), but the EC condition (163.87
± 16.48 mg/L) did not. Additionally, the pure algae culture (N
condition) had a higher dry weight than all pure bacteria cultures
(M. jejuensis, 280.00 ± 30.99 mg/L; C. flocculans, 265.00 ± 21.79
mg/L; and E. coli, 161.3 ± 10.74 mg/L). The time taken to reach
the stationary phase was the shortest in the EC condition (1
day) and pure E. coli culture (1 day). The stationary phase was
reached in 2 to 3 days in the rest of the conditions and strains (M.
jejuensis, 2 days; C. flocculans, 3 days; N condition, 3–4 days; MC
condition, 3–4 days; and CC condition, 3–4 days). These results
revealed that the co-culture of bacteria and algae had higher
growth than pure bacterial and algal cultures.

Recently, studies have reported the application of
heterotrophic cultivation methods for Chlorella (Fan et al.,
2020). Studies have described microalgal species with high
sedimentation andmethods for improvingmicroalgae harvesting
efficiency through flocculation (Demir et al., 2020). Our research
was conducted with wastewater and heterotrophic cultivation
approaches in mind. Thus, we tried to induce microalgae
floc using wastewater-derived or -related bacteria. Chlorella
was selected as an experimental microalgal strain due to its
smaller cell size than other microalgae, contributing to low
sedimentation rates (Cheng and Liu, 2020; Demir et al., 2020;
Potocar et al., 2020). Low sedimentation rate is the main
limitation for biomass production from Chlorella (Cheng and
Liu, 2020; Demir et al., 2020; Potocar et al., 2020); therefore,
improving sedimentation can increase the usefulness of
Chlorella. Various approaches to improving sedimentation
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FIGURE 3 | The growth pattern of each culture condition was visualized using

dry weight. MC, M. jejuensis and C. sorokiniana; CC, C. flocculans and C.

sorokiniana; EC, E. coli and C. sorokiniana; N, C. sorokiniana only, control

group. Marked characteristics are annotated in Supplementary Figure 1.

have been attempted (Cheng and Liu, 2020; Demir et al., 2020;
Potocar et al., 2020). Furthermore, industrial-scale facilities,
such as wastewater treatment plants, require floc-forming and
pollutant removal capabilities to remove pollutants. Sludge
can be separated efficiently through floc-forming, and water
can be purified through the ability of microalgae to remove
nitrogen and adsorb heavy metals. Therefore, the floc-forming
ability of bacteria and algae is important for the application of
industrial-scale facilities (Chatsungnoen and Chisti, 2019; Sajana
et al., 2019; Kim and Kwak, 2020; Zhou et al., 2020).

Comparing the growth trends of bacteria and algae co-
cultures to pure cultures, better results were observed in all
co-cultures, except E. coli (Figure 3). The fact that both MC
and CC conditions reached a higher dry weight than the
N condition suggests that co-culturing enables more efficient
biomass production than algae alone cultured in the same
conditions (Cho et al., 2015). However, based on the E.
coli co-culture results, not all strains are suitable for co-
culture. These growth-related results support improved growth
by co-culture of M. jejuensis and C. flocculans with C.
sorokiniana; M. jejuensis has the greatest potential to produce
biomass efficiently.

Co-culture Effects on Biomass Productivity
and Lipid Quality
Biomass productivity was enhanced through the co-culture of
bacteria and algae; the measurement results are summarized in
Figure 4A. Among the tested conditions, MC had the highest
biomass productivity [102.25 ± 0.35 mg/(L·day)]. The biomass
productivity of the CC and N conditions was 95.25 ± 0.35
and 78.00 ± 3.89 mg/(L·day), respectively. Unlike the MC
and CC co-cultures, which had enhanced biomass productivity
compared to the N condition, the EC co-culture produced the
lowest biomass of 40.25 ± 1.41 mg/(L·day). Furthermore, co-
culturing improved not only biomass productivity, but also lipid
productivity (Figure 4A). The MC condition showed the highest
lipid productivity [57.80 ± 0.20 mg/(L·day)] in addition to the

FIGURE 4 | Productivity and fatty acid composition in each culture condition.

The productivity of biomass and lipid content in each culture condition was

measured (A). Through fatty acid composition analysis, we confirmed the

quality of lipids that were produced in each condition (B). MC, M. jejuensis and

C. sorokiniana; CC, C. flocculans and C. sorokiniana; EC, E. coli and C.

sorokiniana; N, C. sorokiniana only, control group. We herein expressed the

fatty acids contents, which we defined as 100%.

highest biomass productivity. Conversely, in the CC condition,
which showed improved biomass productivity compared to
that of the N condition, lipid productivity was inhibited [CC
condition, 38.63 ± 0.14 mg/(L·day); N condition, 42.26 ± 2.11
mg/(L·day)]. The EC condition had the lowest lipid productivity
at 22.75 ± 0.80 mg/(L·day). Therefore, the MC co-culture
was the only condition in which both biomass and lipid
productivity improved.

Additionally, we measured the changes in biomass lipid
composition after improved productivity (Figure 4B). The
biomass lipids obtained from co-culture (in MC and CC
conditions) consisted mainly of C16:0 (MC condition, 31.80%;
CC condition, 36.66%), C16:1 (MC condition, 24.45%; CC
condition, 18.00%), C18:1 (MC condition, 20.23%; CC condition,
18.6%), and C18:2 (MC condition, 16.11%; CC condition,
17.14%). The biomass lipids obtained from the pure algal culture
(N condition) consisted mainly of C16:0 (43.67%) and C18:2
(45.99%). Notably, the biomass lipids in the EC condition were
mainly C16:0 (40.83%), C17:0 (18.80%), and C18:1 (16.57%); the
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composition was similar to that of pure E. coli (C16:0, 39.37%;
C17:0, 17.05%; C18:1, 18.36%). Furthermore, when comparing
the experimental groups (MC and CC conditions) to the
respective pure bacterial biomass (M. jejuensis and C. flocculans)
composed mainly of C16:0 (M. jejuensis, 30.01%; C. flocculans,
38.46%), C16:1 (M. jejuensis, 40.35%; C. flocculans, 41.51%),
and C18:1 (M. jejuensis, 16.90%; C. flocculans, 6.74%), C16:1
increased and C18:1 and C18:2 decreased in the experimental
group. Thus, the lipids in the co-cultured biomass showed
the intermediate characteristics of the pure bacterial and algal
lipid compositions.

In heterotrophic conditions, where the cultures were
completely dependent on the organic carbon source in the media,
a larger amount of biomass was produced in the co-culture than
in the pure algal culture (Figure 4A). This phenomenon is
contrary to previous reports of competition-induced growth
degradation caused by limited organic carbon sources (Yadav
and Archer, 1988). However, microorganisms are known to have
preferred organic carbon sources, and different types of organic
carbon are available depending on the environment (Brückner
and Titgemeyer, 2002; Abreu et al., 2012). In addition, some
studies suggest that the medium obtained by culturing certain
microbial species can be recycled (Loftus and Johnson, 2017;
Wang et al., 2018; Li et al., 2019). Therefore, it is expected that
there has been no competition to impede growth in the use of
organic carbon sources among species in conditions in which
higher biomass could be produced (Loftus and Johnson, 2017;
Wang et al., 2018; Li et al., 2019). Furthermore, improved lipid
productivity may be related to lipid accumulation due to nutrient
starvation (Chu et al., 2020; Poh et al., 2020). These results
suggest that, although bacteria and algae were competing for a
limited energy source, biomass production was more efficient
in the co-culture than the pure algal culture (Berthold et al.,
2019). However, the total lipid contents of the MC and CC
conditions, which showed enhanced biomass productivity, were
lower than that of the N condition. Nevertheless, the improved
lipid productivity in the MC condition could be attributed to
the increased biomass productivity, which improved enough to
overcome the lower total lipid contents, unlike the CC condition
(Figure 4A). Additionally, the co-culture biomass value was
between the total lipid contents of the pure bacteria and the
algae-derived biomass, which is presumed because the co-culture
biomass was composed of bacterial and algae-derived biomass
together (Berthold et al., 2019; Demir et al., 2020). Moreover,
the improvement of lipid productivity and biomass suggests that
high-quality biomass can be produced through the co-culture of
bacteria and algae. Considering the biomass lipid composition
results, we observed no extreme dominance between bacteria
and algae in co-culture (Figure 4B). The identified biomass
of the co-culture mainly consisted of C16:0, C16:1, C18:1,
and C18:2, which was similar to the lipid composition of the
biomass derived from pure bacteria (C16:0, C16:1, and C18:1)
and algae (C16:0 and C18:2) together. The main components
are expected to be derived from bacteria (C16:0, C16:1, and
C18:1) and algae (C16:0 and C18:2). However, improvement
in biomass and lipid productivity cannot be expected from all

bacteria (Safonova and Reisser, 2005). Among the tested strains,
the biomass and lipid productivity of E. coli in the EC condition
was the lowest among the measured values. Moreover, the lipid
composition of the EC condition was similar to that of pure
E. coli. Based on this fact, it is likely that the EC condition was
dominated by E. coli; we can assume that E. coli inhibited algal
growth and biomass productivity (Safonova and Reisser, 2005).
Therefore, to improve biomass and lipid productivity through
the co-culture of bacteria and algae, it is necessary to select
the appropriate species. Based on our experimental results, M.
jejuensis KCTC 32230 is the most suitable bacteria for co-culture
with C. sorokiniana KNUA114 among the strains tested here.
Furthermore, our research demonstrates the potential for
efficient biomass production through the co-culture of bacteria
and algae.

CONCLUSION

In this study, we demonstrated the value of bacterial- and algal-
derived biomass for improving the harvesting efficiency using
bacterial and algal floc. Among the bacterial strains tested, M.
jejuensisKCTC 32230 formed the largest floc with C. sorokiniana,
with the highest sedimentation ability. Furthermore, the M.
jejuensis KCTC 32230 co-culture improved biomass and lipid
productivity compared with the pure algal culture. However, co-
culturing with C. flocculans KCTC 62943 or E. coli dh5α did
not increase the productivity of biomass or lipids. Therefore,
M. jejuensis KCTC 32230 is the most suitable bacterial strain
for biomass production through the co-culturing of bacteria
and algae. Our research provides insights into the efficient
production and harvesting of biomass through the co-culture
of bacteria and algae and highlights the need for suitable
strain selection.
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