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Immunotherapy has significantly improved the clinical outcome of patients with cancer.
However, the immune response rate varies greatly, possibly due to lack of effective
biomarkers that can be used to distinguish responders from non-responders. Recently,
clinical studies have associated high tumor neoantigen burden (TNB) with improved
outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a
biomarker for immunotherapy and other types of therapy. In the present review, the
potential application of TNB as a biomarker was evaluated. The methods of neoantigen
prediction were summarized and the mechanisms involved in TNB were investigated. The
impact of high TNB and increased number of infiltrating immune cells on the efficacy of
immunotherapy was also addressed. Finally, the future challenges of TNB
were discussed.
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INTRODUCTION

Tumor immunotherapy aims to control tumor development by activating the immune system to
attack tumor cells. By selecting appropriate antigens, notably neoantigens produced by tumor-
specific mutations, an effective tumor-specific immune response can be mounted, and immune
tolerance can be minimized (1). Non-synonymous somatic mutations will produce altered peptides,
among which, some are processed and presented by the major histocompatibility complex (MHC)
in order to generate neoantigens. These molecules are the key factors required for successful
immunotherapy, including immune checkpoint inhibitors (ICIs), personalized tumor vaccines and
adoptive T cell transfer immunotherapy (2–4). These strategies have shown promise in the
treatment of solid tumors (5–7).

A higher number of DNA mutations are associated with higher number of candidate peptides,
and results in an increased probability of successfully presented neoantigens (8). The response to
immunotherapy correlates with tumor mutation burden (TMB) and mainly with the number of
mutations in the coding region of the genome (exome) of the tumor cells. It is usually reported as
the number of mutations present in a megabase of the genomic region by whole-exome sequencing
or large-scale next-generation sequencing (9–12). Similarly, the tumor neoantigen burden (TNB) is
defined by the number of neoantigens per megabase in the genome region (13, 14). Notably, TMB
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has become a biomarker for immunotherapy, assuming that
higher TMB will increase the probability of tumor neoantigens
and specific T-cell responses (15).

However, the role of TMB in immunotherapy remains
controversial (16–18), since not all mutations produce
neoantigens. Only a limited number of mutations can be
properly processed, presented on the surface of the MHC
complex and recognized by T cells (19). The TMB noted in
pediatric tumors is considerably low (20). However, in certain
tumors, such as pediatric medulloblastoma or acute
lymphoblastic leukemia, which exhibit minimal mutational
burden, a strong anti-tumor immune response can be induced
by high-quality neoantigens (21, 22).

TMB generates neoantigens and causes tumor immunogenicity.
This biomarker can be used as a valuable estimate of TNB to a
certain extent. A positive correlation has been noted between TMB
and TNB. However, TNB is directly used for neoantigen evaluation
andmay be considered an improved biomarker for immunotherapy
compared with TMB (23–25). High TNB was associated with
durable progression-free survival (PFS) in patients with non-small
cell lung cancer (NSCLC) treated with programmed death 1 (PD-1)
inhibitors (26). In addition, TNB correlated with clinical benefit in
patients with metastatic melanoma treated with cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) inhibitors (27).
Similarly, a phase I/II trial performed in patients with stage IV
melanoma demonstrated that their clinical benefit was associated
with a proposed immune activation signatures score. Among the
score items, high TMB and predicted TNB were significantly
associated with improved PFS and overall survival (28). The
present review investigated the application of TNB as a biomarker
in immunotherapy and other therapies and provided an in-depth
discussion of the mechanisms, clinical application and challenges of
this biomarker.
NEOANTIGEN PREDICTION

In general, in silico analysis on genome sequencing can aid the
selection of immunogenic neoantigen peptides. Neoantigen
prediction is usually performed prior to selecting immunogenic
neoantigens to reduce the burden of immunogenicity testing by
decreasing the number of candidate peptides. This is a necessary
step in developing personalized immunotherapy. Several
important steps are involved in neoantigen selection, including
intracellular processing and transportation, the stability and
affinity of peptide-MHC complex binding, the diversity of T
cell receptors (TCR) and the recognition by TCR. In addition, the
difference between the prediction algorithms is also important.
Neopepsee is a neoantigen prediction algorithm that
automatically extracts mutated peptide sequences and
expression levels, and combines multiple immunogenic
features to construct a machine-learning classifier (29). The
application of deep learning to the determination of large
human leukocyte antigen (HLA) peptides and genomic data
sets from various tumors can aid the development of a
computational model for neoantigen prediction (30). An
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additional prediction algorithm can determine the priority of
neoantigens and discover immune characteristics in cancer
immunotherapy by the classification of human neoantigen/
neopeptide data into three categories based on different
mutation positions (anchor mutation, MHC-contacting
position and TCR-contacting position) (31).

Several computational pipelines have been developed for
neoantigen prediction. However, the majority of them are
based on peptide affinity with MHC (32–34). Furthermore,
neoantigen prediction can be performed by prioritizing
predicted peptides based on mutant allele expression, mutation
clonality, MHC presentation, and T cell recognition, either alone
or in combination (35–38). A Cauchy-Schwarz index of
neoantigens score was proposed and the effects of both
clonality and MHC binding affinity were included in order to
accurately determine the concentration of neoantigens in truncal
mutations (39). An additional prediction model was developed
by integrating peptide presentation and recognition into
antigenic determinant immunogenicity via the use of
specific parameters.

To establish a global neoantigen prediction algorithm
standard, several institutions established the tumor epitope
selection alliance, which is a bioinformatics consortium with
scientists from well-respected neoantigen research groups. These
institutions independently mine the open database of tumor
sequencing, predict potential neoantigens and rank candidate
peptides. Different predictions may be collected and cross-
matched to reach a final optimized consensus. This integration
incorporates aspects of binding affinity, tumor abundance,
stability and peptide identification in addition to antigen
presentation. Therefore, higher precision would be expected (40).
THE MECHANISMS OF TNB FORMATION

Any form of genomic instability, including single -nucleotide
variation (SNV), frameshift mutations, splicing variations or
chromosome rearrangement, may result in TNB. The genomic
instability can result from abnormalities in either DNA
replication or mismatch repair (MMR) (41). The high-fidelity
process of DNA replication requires replicative DNA
polymerases, exonucleolytic proofreading and MMR.
Abnormalities that may occur in any of these parts contribute
to genetic instability. Inactivation of DNA polymerase leads to
excessive mutations, such as ultra-hypermutated phenotype.
Defective MMR (dMMR) leads to microsatellite instability
(MSI), which is an ultra-hypervariable phenotype of short
repetitive DNA sequences and SNV. Following exposure to
either exogenous (smoking, ultraviolet radiation, chemicals,
ionizing radiation) or endogenous (reactive oxygen species,
endocrine abnormalities) mutagens, dMMR/MSI facilitates
carcinogenicity and paradoxically increases TNB, which in
turn enhances immunogenicity (42–46).

Although TNB is a biomarker of immunotherapy, current
knowledge regarding its function is limited. Primarily, TNB
analysis was performed on SNV (47). However, other genetic
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aberrations may produce comparable or even more
immunogenic neoantigens (23). For example, neoantigens were
found from a data set of gene fusion-positive tumors (48). Splice
variants are also sources of neoantigens. High expression of PD-1
and programmed death-ligand 1 (PD-L1) were observed in
tumors with splice variants (49). In addition, a new class of
neoantigens was discovered, which was derived from intra- or
inter-chromosomal rearrangements (50).

Various studies have analyzed the frequency of specific
somatic mutations in multiple types of cancers, which
demonstrated that the frequency of non-synonymous
mutations varied greatly, ranging from ~0.001/Mb to higher
than 400/Mb. The mutation frequency was very prominent in
melanoma and lung cancer (20, 51). Notably, Samra Turajlic
et al. analyzed and compared the counts of Insertion-and-
deletion-derived tumor-specific neoantigens in pan-cancer,
both SNV-derived neoantigens and frameshift indel-derived
neoantigens in the study showed that melanoma, lung cancer,
bladder cancer, colon cancer, and head and neck cancer with
high TNB (47). Mutations in lung cancers can be attributed to
direct DNA damage from cigarette smoke carcinogens. A
significant dose-response association of smoking history with
genetic alterations has been noted in advanced non-small-cell
lung adenocarcinoma with regards to cancer-associated
pathways and their corresponding mutant antigens (52, 53).
Ultraviolet stimulation is the main factor leading to high TNB
in melanoma (54). In other common cancer types, such as
colorectal or endometrial cancer, which harbor DNA
polymerase epsilon mutations, increased TNB is attributed to
endogenous mutations (55, 56). However, in certain tumors,
such as bladder cancer, the mechanisms underlying the
formation of TNB are complex, including the apolipoprotein B
mRNA editing enzyme catalytic polypeptide family, smoking,
viral infection and genetic fusions (57).

A previous study dissected the genetic heterogeneity during
the evolution of a primary osteosarcoma tumor to its metastatic
variant. Metastases exhibited higher TNB compared with
primary tumors, possibly due to the accumulating mutations in
DNA damage response genes (58). Different mutational
landscapes exist between the primary and metastatic sites and
in the subclones noted inside different regions of a tumor (intra-
tumoral heterogeneity; ITH). The presence of ITH suggests that
the tumor cannot elicit equal immunity. Patients with tumors
exhibiting high TNB and low ITH are more likely to benefit from
immunotherapy (59, 60).
TNB CORRELATES WITH TUMOR-
INFILTRATING LYMPHOCYTES

Neoantigens alone are not sufficient to mount an effective
immune response and tumor-infiltrating lymphocytes (TILs)
are also required for this process (61, 62). High TNB can
promote the recognition and activation of T cells, which in
turn increase TILs and improve the immune response of cancer
patients to cancer cells (Figure 1). Colorectal tumors with
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dMMR exhibit neoantigen-stimulated lymphocyte infiltration
and increased levels of inflammatory cytokines. In the absence
of high TMB, high TNB alone correlates with the inflammatory
microenvironment (63). Moreover, lung adenocarcinoma
patients with high TMB presented with enhanced infiltration
of activated CD4+ and CD8+ T cells, while the mutations
detected could accurately predict the increased TNB and T cell
infiltration. In addition, TNB was significantly associated with
the expression levels of M1 polarized macrophage genes, namely
PD-1, PD-L1, interferon-g (IFNg), Granzyme B FAS ligand and
other immune-associated genes (64). The correlation between
TNB and TILs has been verified in multiple studies (64–66).

High TNB correlates with the abundance of TCR clonality
and the infiltration of activated CD4+ and CD8+ T cells (50, 67).
This may be mediated by the elevated expression of chemokines
induced by IFN-g, such as chemokine (C-X-C motif) ligand
(CXCL) 9, and by the recruitment of T cells or myeloid dendritic
cells (45, 68, 69). In the majority of the cases, high TNB can
predict inflammatory microenvironment and optimal immune
response. The infiltration of different immune cell subgroups is
commonly noted in a special spatial compartment termed
tertiary lymphoid structure (TLS). The mechanism by which
TLS responds to the tumor microenvironment is actively studied.
A previous report indicated that transforming growth factor b1
induced co-expression of CXCL13 and CD103 in CD8+ T cells,
providing a potential link between CD8+ T cell activation and B
cell migration (70, 71).
THE ROLE OF TNB IN TUMOR
IMMUNOTHERAPY AND OTHER
THERAPIES

Tumor Vaccine and T Cell Therapy
The use of individualized neoantigen vaccines and neoantigen-
specific T cell therapy is actively explored. This topic has been
well described in previous review articles (72–76) and will not be
covered in the present review. It should be noted that
individualized vaccines against a single neoantigen
demonstrated limited efficacy. The use of a complete tumor
lysate vaccine or a personalized vaccine containing multiple
neoantigens can improve patient outcomes (6, 77). The
dendritic cells were pulsed with oxidized autologous whole-
tumor cell lysate, which was proved as an effective vaccine in
patients with ovarian cancer. This vaccine amplified T cell
responses against recognized neoepitopes and elicited de novo
responses for previously unrecognized neoepitopes (78). An
additional study tested the efficacy of an adenoviral vaccine
consisting of multiple neoantigens. This vaccine facilitated T
cell infiltration and expanded the breadth and efficacy of the TCR
repertoire following ICI treatment (79). Tumor cell lysates differ
in their efficiency as vaccines. A direct comparison of 2
autologous tumor cell lysate (with different TMB) vaccines
demonstrated that the lysates with lower TMB inhibited tumor
growth more efficiently. Thus, it may be considered that the
neoantigen quality outranked the quantity (80).
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Radiotherapy and Chemotherapy
Radiotherapy or chemotherapy can facilitate immunotherapy
and is possibly attributed to increased exposure of neoantigens
(81) (Figure 1). In addition to direct tumoricidal effects,
radiotherapy converts the irradiated tumor cells into an in situ
vaccine (82, 83). In locally advanced rectal cancer, neoadjuvant
chemoradiotherapy induced new neoantigen epitopes and
altered the immune function of the hosts (84). Similarly,
patients with relapsed anal squamous cell carcinoma exhibited
high TNB following radiochemotherapy and indicated objective
responses to PD-1 inhibitors (85). In bladder cancer, dual poly
(ADP-ribose) polymerase and PD/PD-L1 inhibition is used to
improve disease prognosis (86). The standard treatment for
high-grade serous ovarian carcinoma is surgery and/or
chemotherapy. However, only dismal results are obtained,
whereas in a subgroup of patients harboring high TNB, an
improved prognosis was achieved. Moreover, an additional
study demonstrated that TNB could be used to determine the
prognosis of patients with clear cell renal cell carcinoma who
received either surgery alone or surgery combined with adjuvant
therapies (87–89).

The more important aspect is that pediatric tumors exhibit
low TMB at diagnosis, whereas the levels of this biomarker
increase when the tumor is exposed to chemoradiotherapy,
resulting in neoantigen targets (90, 91). The majority of the
pediatric tumors have less TIL and low MHC expression. In
Frontiers in Oncology | www.frontiersin.org 4
addition, the immune system of the children is immature.
Consequently, the current immunotherapy alone is not
sufficient to treat pediatric tumors efficiently. The combination
of immunotherapy with conventional radio- and chemotherapy
can achieve an improved survival benefit (92, 93).

TNB and Responses to ICIs
High TNB produces neoantigens, contributing to an
inflammatory microenvironment, which ultimately leads to
improved outcomes following ICI therapy (Figure 1). A
previous study performed in patients with NSCLC, who
exhibited high TMB or genetic defects in the DNA repair
pathway, demonstrated that they benefited from ICI treatment.
At least in one responder, neoantigen-specific CD8+ T cell
responses paralleled with tumor regression (26). It has also
been shown that patients with melanoma, who are treated with
CTLA4 inhibitors, demonstrated a significant association of
TMB, TNB and cytolytic marker expression with clinical
benefit (27). Recently, a model of immunotherapy score (ITS)
mutation was proposed for predicting the response of patients
with melanoma to ICI treatment. Patients with high TMB and
TNB exhibited higher ITS scores and immunotherapy sensitive
features (94).

A scoring system based on neoantigen concentration
combined with clonality and MHC binding affinity predicted
responses to ICIs and the prognosis of patients with melanoma,
FIGURE 1 | The use of TNB in personalized immunotherapy for patients with cancer. Tumor tissues from patients with cancer were obtained for DNA sequencing
and bioinformatics prediction of TNB. Subsequently, the TCR-T, CAR-T and the cancer vaccines were designed based on TNB for personalized treatment. Finally,
the patients exhibited an immune response to cancer cells. In addition, high TMB in patients with cancer can produce high TNB, which will promote T cell activation
and immune cell infiltration, thereby causing an immune response in these patients. It is interesting to note that chemotherapy, radiotherapy or targeted therapy can
promote the release of cancer antigens in patients with high TNB, which in turn can enhance the therapeutic effects of ICI-based treatment. This type of treatment
will activate T cells, increase immune infiltration and produce immune responses. TNB, tumor neoantigen burden; TCR-T, neoantigen-specific T cell receptor
engineered-T cell; CAR-T, chimeric antigen receptor-T cell; ICI, immune checkpoint inhibitor.
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lung and kidney cancers (39). Neoantigen concentration levels
were prognostic factors for patients with melanoma and chronic
lymphocytic leukemia treated with ICIs (29). However,
paradoxical results were reported, indicating inferior PFS with
high TNB in patients with multiple myeloma. The possible
explanation for these findings was that the disease progression
caused reduced efficiency of T cell recruitment (24).

The diversity and clonality of neoantigen-responsive TCR are
also potential biomarkers for immunotherapy (95, 96).
Additional research studies in this topic will aid the successful
application of immunotherapy.
CHALLENGES AND PERSPECTIVES

The rapid development of immunology and bioinformatics has
enabled the successful prediction of neoantigens. However, the
standard pipeline for neoantigen prediction and the optimized
cut-off value for TNB are unknown, since it is an emerging
biomarker. In addition, the presence of specific mutations
causing ITH should be taken into consideration (97).
Heterogeneity exists not only locally but also between primary
lesions and their successive metastases (98). Neoantigen
prediction is currently hindered by the difficulty in exploring
the entire tumor through a partial biopsy (99).

Several obstacles hinder the patient immune response, such as
the loss of HLA (100–103). Failure of successful HLA
presentation renders the candidate neoantigens ineffective in
Frontiers in Oncology | www.frontiersin.org 5
vivo. Therefore, TNB alone cannot accurately predict the
immune response. Currently, the personalized detection of
circulating tumor DNA is considered a powerful tool for the
dynamic monitoring of TNB (16, 80, 104). However, the clinical
application of TNB is still limited. Previous evidence has shown
that the quality of neoantigens may be more important, since
high-quality neoantigens can confer higher immunogenicity
(105). According to our opinion, the real-time status of the
high-quality neoantigen burden can monitor the treatment
response more effectively. The construction of a neoantigen
vaccine library and a neoantigen-responsive T cell receptor
repertoire can provide a more comprehensive and personalized
antitumor treatment. Future studies should focus on assessing
the quality of TNB.
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