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Abstract

Objectives

IL-35 is a novel inhibitory cytokine. In this study, we investigate the serum levels of inhibitory

cytokines IL-35, IL-10 and TGF-β in both normal pregnancies and non-pregnant females,

and whether IL-35 is associated with the pathogenesis of recurrent spontaneous abortion.

We also try to elucidate the relationships of IL-35 with estrogen and alpha-fetoprotein

(AFP).

Methods

The levels of IL-35, IL-10, TGF-β, estradiol (E2), unconjugated estriol (uE3) and AFP were

analyzed in 120 normal pregnancies, 40 women suffering recurrent spontaneous abortion,

40 postpartum healthy women and 40 non-pregnant women by enzyme-linked immunosor-

bent assay (ELISA). The correlations between inhibitory cytokines, estrogen and AFP were

assessed with the Spearman rank correlation coefficient.

Results

Data are expressed as median and percentiles (Q1, Q3).The level of serum IL-35 in normal

pregnancies was significantly higher than that in non-pregnant women [333.6 (59.32, 1391)

pg/mL vs. 123.9 (8.763, 471.7) pg/mL; P< 0.001]. A significantly higher level of TGF-β was

observed in the first trimester only as compared to non-pregnant women [473.4 (398.0,

580.5) pg/mL vs. 379.7 (311.0, 441.3) pg/mL, P < 0.01]. The difference in serum IL-10 level

between pregnant women and non-pregnant women was not significant [8.602 (5.854,

12.89) pg/mL vs. 9.339 (5.691, 12.07) pg/mL; P > 0.05]. The level of serum IL-35 in recurrent

spontaneous abortion was significantly lower than that in normal early pregnancy [220.4

(4.951, 702.0) pg/mL vs. 386.5 (64.37, 1355) pg/mL; P< 0.05]. The higher IL-35 level in first

trimester pregnant women correlated with E2 (r = 0.3062, P < 0.01) and AFP (r = 0.3179,

P < 0.01).
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Conclusion

Serum levels of IL-35 increased in normal pregnancy and decreased in recurrent spontane-

ous abortion. Increased IL-35 correlated with estrogen and AFP levels in early pregnancy.

IL-35 is becoming recognized as an active player in the maintenance of a successful preg-

nancy, but this is not the case for IL-10 or TGF-β.

Introduction
Pregnancy is a major challenge for the maternal immune system. The foreign antigens express-
ed by the fetus can even stimulate the immune system. In this complex immunological dilem-
ma, the maternal immune system actively responds to fetal antigens with the help of endocrine
pathways [1,2].

Regulatory T cells (Treg) play an important role in maintaining immune tolerance, inhibit-
ing progression of autoimmune disease and preventing excessive inflammatory response [3].
Additionally, a specific role in the maintenance of fetal immune tolerance has been widely re-
ported for these cells in both humans and mice [4–15].

Cytokine pathways are considered to be the major mechanism for immunosuppression of
Tregs. Inhibitory cytokines include IL-10, TGF-β and IL-35. IL-35 is an inhibitory cytokine
first identified in 2007, which is produced primarily by CD4+Foxp3+Treg cells and required for
the suppressive activity of regulatory T-cell populations [16–18]. IL-35 is also produced by acti-
vated B cells, tolerogenic dendritic cells and to a lesser extent by activated endothelial cells,
smooth muscle cells, and monocytes [19–23].

Although IL-10, TGF-β and IL-35 are all inhibitory, the extent of their suppression, and of
their non-overlapping functions, needs further clarification [24,25]. There is a general consen-
sus that Tregs increase in decidual tissue, peripheral blood and lymphoid organs during preg-
nancy and mediate maternal tolerance to the fetus [4–15]. However, information on the level
of serum IL-35 and its potential role in pregnancy remains limited. In this study, we examined
the serum levels of inhibitory cytokines in normal pregnancy and recurrent spontaneous abor-
tion, and analyzed the correlation of IL-35 with estrogen and alpha-fetoprotein (AFP) levels.

Materials and Methods

Subjects
A total of 120 normal pregnancies, 40 women subject to recurrent spontaneous abortion, 40
postpartum healthy women and 40 non-pregnant women from the Obstetrics & Gynecology
Hospital of Fudan University, Shanghai, China, were enrolled in this study between October
2013 and December 2014. Normal pregnancies were divided into three groups: the first trimes-
ter covers weeks 0 through 12; the second trimester covers weeks 13 through 27; the third tri-
mester covers weeks 28 through the birth of the baby. Clinical diagnosis determined that the
cause of women undergoing recurrent spontaneous abortion was not due to anatomical, endo-
crine, or genetic factors. Blood was collected from the recurrent spontaneous abortion women
before the abortion happened, during the period of threatened abortion. Forty age-matched,
healthy, postpartum female donors and forty age-matched, healthy, non-pregnant female do-
nors (NP) served as controls. None of the participants suffered from autoimmune or inflam-
matory diseases, or were taking steroid hormones or antibiotics before samples were collected.
Before sample collection, approval was obtained from the Research Ethics Committee of the
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Obstetrics & Gynecology Hospital of Fudan University, and written consent was obtained
from all women in this study.

Serum samples
Five milliliters of peripheral blood were collected from participants. The peripheral blood was
collected in a serum separator tube and samples were allowed to clot for 30 min before centri-
fugation at 1000 × g for 15 min. All peripheral blood samples were processed within 2 h of col-
lection. Serum was removed and assayed immediately or aliquoted and stored at -20°C or
-80°C until analysis. Samples were only thawed once.

ELISA detection of the levels of serum cytokines
The serum levels of IL-35, IL-10 and TGF-β were detected quantitatively with enzyme-linked
immunosorbent assay (ELISA) kits (Westtang Bio-tech, Shanghai, China), used according to
the manufacturer’s instructions. The detection limits of IL-35, IL-10 and TGF-β were 15 pg/
mL, 1 pg/mL and 15 pg/mL, respectively. Both intra-assay and inter-assay coefficients of varia-
tion were<10%. Each sample was run in duplicate and the mean value was used.

Measurement of serum estrogen and AFP
Serum samples were analyzed for estradiol (E2), unconjugated estriol (uE3) and AFP using
Beckman Coulter instruments. The analytical performance of the measurements assessed with
control materials showed values within the recommended limits. E2 was measured by a com-
petitive enzyme immunoassay using the manufacturer’s reagents. This assay has a functional
sensitivity of 20 pg/mL, an analytical reporting range of 20 to 4800 pg/mL, and the coefficient
of variation was<12%. uE3 was measured on the same instrument with a functional sensitivity
of 0.017 ng/mL, an analytical reporting range of 0.017 to 6.9 ng/mL, and the coefficient of vari-
ation was<10%. AFP was measured by a two-site (sandwich) enzyme immunoassay using the
manufacturer’s reagents. The functional sensitivity of this assay was 0.50 ng/mL, the analytical
reporting range was 0.5 to 3000 ng/ml, and the coefficient of variation was<8%. Each sample
was run in duplicate and the mean value was used.

Statistical analysis
Data are expressed as median and percentiles (Q1, Q3). For data with normal distribution and
homogeneity of variance, an independent-sample t test was adopted to compare differences be-
tween two groups, and one-way ANOVA with Tukey’s post-hoc test was performed if there
were three or more means. For non-normally distributed data, differences between groups
were evaluated by the non-parametric Mann-Whitney U test, and association analysis was as-
sessed with a Spearman rank correlation coefficient. All statistical analyses were performed by
means of GraphPad Prism version 5.0 for Windows (GraphPad Software, USA) and P< 0.05
was considered a significant difference.

Results
Serum levels of IL-35, IL-10 and TGF-β were detected in all participants. Data are expressed as
median and percentiles (Q1, Q3). Fig 1 shows that the level of serum IL-35 in normal pregnan-
cies was significantly higher than that in non-pregnant women [333.6 (59.32, 1391) pg/mL vs.
123.9 (8.763, 471.7) pg/mL; P< 0.001]. The differences in serum IL-10 [8.602 (5.854, 12.89)
pg/mL vs. 9.339 (5.691, 12.07) pg/mL; P> 0.05] and TGF-β [364.4 (291.0, 448.4) pg/mL vs.
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379.7 (311.0, 441.3) pg/mL; P> 0.05] levels between pregnant women and non-pregnant
women were not significant.

Fig 2 shoes cytokine levels throughout the pregnancy cycle. The levels of serum IL-35 were
significantly increased in all stages of pregnancy [first trimester 386.5 (64.37, 1355) pg/mL, sec-
ond trimester 460.4 (45.38, 1508) pg/mL, third trimester 211.9 (63.3, 1393) pg/mL] compared
to the control groups [non-pregnant 123.9 (8.763, 471.7) pg/mL (P< 0.001), postpartum 95.74
(5.568, 385.9) pg/mL (P< 0.001)]. The difference in serum IL-10 level between pregnant
women and controls was not significant [first trimester 9.860 (7.258, 12.87) pg/mL, second tri-
mester 8.404 (5.570, 9.948) pg/mL, third trimester 8.456 (5.446, 13.68) pg/mL vs. non-pregnant
9.339 (5.691, 12.07) pg/mL (P> 0.05) and postpartum 8.514 (6.971, 13.84) pg/mL (P> 0.05)].
The levels of serum TGF-β were found to be increased in the early stages of pregnancy [first tri-
mester 473.4 (398.0, 580.5) pg/mL, second trimester 310.4 (258.4, 379.6) pg/mL, third trimester
325.1 (279.4, 371.5) pg/mL] compared to the control groups [non-pregnant 379.7 (311.0,
441.3) pg/mL, postpartum 298.9 (271.4, 394.9) pg/mL]. Thus, TGF-β was significantly in-
creased in the first trimester of pregnancy (P< 0.01), but the differences were not significant in
the second and third trimesters (P> 0.05).

Cytokine levels in women suffering recurrent spontaneous abortion are shown in Fig 3. The
level of serum IL-35 was significantly lower than that in normal early pregnancy [220.4 (4.951,
702.0) pg/mL vs. 386.5 (64.37, 1355) pg/mL; P< 0.05].

Fig 1. The serum levels of inhibitory cytokines (A) IL35, (B) IL10, and (C) TGF-β in pregnancy. These data showmedians and percentiles over all
patients throughout their pregnancies. NP: non-pregnant women; postpartum: postpartum healthy women; *** P < 0.001; ns: not significant.

doi:10.1371/journal.pone.0128219.g001

Fig 2. The serum levels of inhibitory cytokines (A) IL35, (B) IL10, and (C) TGF-β at different stages of pregnancy. 0–12 weeks: first trimester; 13–27
weeks: second trimester; 28–40 weeks: third trimester. NP: non-pregnant women; postpartum: postpartum healthy women; *P < 0.05; ** P < 0.01; ns:
not significant.

doi:10.1371/journal.pone.0128219.g002
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The immunological interaction between fetus and mother is a paradoxical communication,
which is regulated by fetal antigen presentation and by the recognition and reaction of the ma-
ternal immune system to these antigens [26]. AFP is one of the oncofetal antigens produced
during fetal development. During pregnancy, oncofetal antigens, produced in considerable
concentrations during fetal growth and differentiation, affect the maternal immune response
and generate maternal tolerance toward the embryo, in the manner of host defense in carcino-
genesis [27]. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone,
and others contribute to induction of immunologic tolerance at the beginning of gestation
[28]. Estrogen can influence the development, maturation and function of the female repro-
ductive tract. There are three major estrogen hormones: estrone, estradiol (E2), and estriol
(E3). E2 is the most important estrogen in non-pregnant females; E3 becomes the primary
form of estrogen in the body during pregnancy.

The consistency of increased serum estrogen, AFP and serum IL-35 levels in pregnancies
encouraged us to perform a correlation study. Our results showed that in the first trimester, in-
creased IL-35 was positively correlated with E2 (r = 0.3062, P< 0.01) and AFP (r = 0.3179,
P< 0.01). Increased IL-35 was correlated with uE3, but the correlations were not significant
(P> 0.05) (Fig 4).

Fig 3. The serum levels of IL-35 in women suffering recurrent spontaneous abortion. 0–12 weeks: first
trimester; RSA: recurrent spontaneous abortion; * P < 0.05; ns: not significant.

doi:10.1371/journal.pone.0128219.g003

Fig 4. The correlation of estrogen and AFP levels with IL-35 in early pregnancy. P < 0.01 represents a significant correlation using the
Spearmanmethod.

doi:10.1371/journal.pone.0128219.g004
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Discussion
The immunological relationship between mother and fetus is still mysterious. Many of the pa-
rameters involved in the maternal-fetal interaction have been clarified by molecular immunol-
ogy, such as that the maternal immune system is tightly regulated by hormone release and
cytokine action to protect the developing fetus [26, 28].

In this study, we investigated serum IL-35 levels in normal pregnancy and women suffering
recurrent spontaneous abortion compared to non-pregnant women and postpartum healthy
women. We also assessed the correlation of the IL-35 level with estrogen and AFP in early
pregnancy. We demonstrated that inhibitory cytokines IL-35, IL-10 and TGF-β were elevated
to different extents during pregnancy, and IL-35 plays an important role in maternal-fetal im-
mune tolerance. In the first trimester of pregnancy, the increased immunosuppressive factors
were mainly IL-35 and TGF-β; in the second and third trimesters of pregnancy the main im-
munosuppressive factor was IL-35. During recurrent spontaneous abortion, IL-35 decreased
significantly. In early pregnancy, the IL-35 level positively correlates with E2 and AFP levels.
This may be due to estrogen and AFP regulated proliferation of Tregs, which indirectly influ-
enced the secretion of inhibitory cytokines. To our knowledge, this is the first report to show
the correlation of IL-35 level with increased estrogen and AFP in pregnancy.

Tregs are essential for the maintenance of immune tolerance. In early pregnancy, maternal
tolerance is important to allow invasion of fetal trophoblasts to anchor the placenta. Previous
work showed that during early pregnancy, expansion of the Treg pool normally takes place; a
decrease in the amount and suppressive capacity of Tregs is accompanied by recurrent sponta-
neous abortions [1, 8, 11, 15, 29–32]. However, the mechanisms of Tregs mediating suppression
remain controversial. In this study, we first found that the level of inhibitory cytokine IL-35 was
significantly higher in normal pregnancy than in age-matched non-pregnant female donors.
Our results indicate that increased IL-35 in normal pregnancy may provide immune protection
for the fetus, and insufficient IL-35 is involved in the recurrent spontaneous abortion pathogen-
esis, so IL-35 associated with the establishment and maintenance of maternal-fetal tolerance
during a successful pregnancy. It has been reported that first-trimester human trophoblast cells
expressed and secreted IL-35, which might be of benefit to the suppressive capacity of maternal
immune cells [33]. In mouse models, IL-35 positive cells in the uterus showed significant differ-
ences in distribution after fetal implantation; they were mainly distributed in the luminal epithe-
lium and glandular epithelium of the mouse uterus from gestational day 1 to 2, and in the
glandular epithelium and stroma from gestational day 4 to 7 [34]. In women with history of idi-
opathic recurrent pregnancy loss, IL-35 was found to be significantly lower compared to fertile
controls [35]. Reduced IL-35 production in preeclamptic women may lead to lower cytokine in-
hibitory activity, which may account for the increased proteinuria and blood pressure [36]. IL-
35 as a recently identified member of the IL-12 family of cytokines offers potential as a target for
new therapies for autoimmune, inflammatory, and infectious diseases [22,23].

Some studies have found that levels of inhibitory cytokines IL-10 and TGF-β increased dur-
ing pregnancy [37]. In our work, we found that TGF-β significantly increased in the first tri-
mester only. Previous work from Clark and colleagues suggested that vaginal TGF-β promotes
a regulatory T-cell response enhancing the success of pregnancy [38]. Moreover, by depleting
Tregs in different pregnancy stages, Shima and colleagues showed that Tregs are important for
the implantation phase and early stage of pregnancy, but might not be necessary for mainte-
nance of the late pregnancy stages [39]. This may explain why we observed no significant
change in TGF-β levels relative to non-pregnant women during the latter stages of pregnancy.

In our work, we found the difference in serum IL-10 level between pregnant women and
controls was not significant, which is consistent with the previous study of Svensson et al. They
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point out that IL-10 and IL-4 deficient mice have normal pregnancies and neither of these cyto-
kines is crucial for fetal survival [40].

Our results are consistent with the conclusion that human Tregs express and require IL-35
for maximal suppressive capacity, as proposed by Collision et al. They found substantial up-
regulation of EBI3 and IL-12A, but not IL-10 or TGF-β, in activated Tregs compared with con-
ventional human T cells. Contact-independent Treg-mediated suppression was IL-35 depen-
dent but did not require IL-10 or TGF-β. Human Treg-mediated suppression led to the
conversion of Tconvs into iTr35 cells (an IL-35-induced Treg population), in an IL-35-
dependent manner. Thus, IL-35 contributes to human Treg-mediated suppression, and its con-
version of Tconv into iTr35 cells may contribute to maximal suppressive ability [41]. Humoral
immunity has also been shown to be suppressed by rIL-35, when it induced the conversion of
human B cells into regulatory B cells that produce IL-35 as well as IL-10 [19].

Hormonal changes during pregnancy have been shown to influence the generation, expan-
sion and suppressive capacity of Tregs. Hormonal modulation of the induction of adaptive and
constitutive Tregs appears to underlie and/or be one of the mechanisms of peripheral tolerance
to the fetus during pregnancy. AFP is one of the oncofetal antigens with intrinsic immunoregu-
latory properties [42,43]. Our results showed that the serum concentration of IL-35 was posi-
tively correlated with E2 and AFP in early pregnancy. Correlation does not prove causation,
but previous studies provide interesting clues to better understand the mechanisms of immu-
noregulation by estrogen and AFP. Shirshey and colleagues showed that estrogen, progesterone
and HCG increase Treg levels in PBMCs during pregnancy compared to non-pregnant women
[43]. Furthermore, estradiol at the doses found in pregnancy could induce expansion of Tregs,
enhance Treg function, and induce the phenotype of Tregs in activated responder T cells, in
both humans and mice [44–49]. Tai et al. found that E2 at physiological doses stimulated the
conversion of CD4+CD25-T cells into CD4+CD25+T cells in vitro. They also found that the es-
trogen receptor (ER) exists in CD4+CD25-T cells and E2 may directly act on CD4+CD25-T
cells via ER(s) [45]. Alisa et al. demonstrated that AFP may contain specific epitopes which ac-
tivate the expansion of inducible TGF-β producing regulatory T cells, leading to evasion of
tumor control [42]. Given that estrogen and AFP may contribute to the development of Tregs,
we suggest that estrogen and AFP may also contribute to the expression of inhibitory cytokines
produced by Tregs; our work supports this possibility. The increased estrogen and AFP levels
are not the direct reason for the elevation of IL-35. Further studies are necessary to elucidate
the mechanisms of IL-35 function in reproduction.

IL-35 as a potent anti-inflammatory cytokine, which has been reported required for the sup-
pressive activity of regulatory T-cell populations [16–18]. But the latest research proved that
Treg are not the only source of IL-35, regulatory B cells and tolerogenic dendritic cells also can
produce IL-35[19–21]. Cellular source of IL-35 was not determined is the limitations of our
study, further studies are necessary to elucidate cellular source of IL-35 in the maternal-fetal
immune tolerance by intracellular cytokine staining. The cellular source of IL-35 is uncertainly,
however there is a general consensus that IL-35 is required for optimal suppression of immune
responses. IL-35 suppresses the immune response by up-regulating regulatory T cells, inducing
the generation of the anti-inflammatory milieu via new Treg populations (iTreg, iTr1, and
iTr35 cells) or IL-35-producing B cells, and by inducing anti-inflammatory effects through in-
hibition of both Th1 and Th17 responses. The biological activities of IL-35 are improving our
expectations in therapies and strategies for intractable immune diseases [50–52].

Inhibitory cytokines as well as endocrine pathways and antigen-dependent mechanism
seem to contribute to Treg augmentation and functionality during pregnancy. The fundamen-
tal mechanisms of IL-35 function in reproduction are not entirely clear, but both antigens and
a hormonal input seem associated with the increase in IL-35 level. The persistence of IL-35
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during pregnancy indicates a potential and promising option in the treatment of infertility,
miscarriage, pregnancy complications, and in assisted reproductive techniques.

Conclusion
We confirmed that the serum level of IL-35 is elevated in normal pregnancy and correlates
with increased estrogen and AFP in early pregnancy. The IL-35 level is decreased in recurrent
spontaneous abortion. We provide convincing data that IL-35 is an active player in the mainte-
nance of a successful pregnancy, but this is not the case for IL-10 or TGF-β. Our data support
the application of IL-35 in the improvement of fertility therapy.
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