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Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image
reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large,
high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for
undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed
reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and
thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into
network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input,
RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the
implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization
problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR
scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and
textures from undersampled k-space measurements.

1. Introduction

Magnetic resonance imaging (MRI) is a noninvasive imaging
technology that can provide structural, functional, and ana-
tomical information for clinical diagnosis. However, its slow
imaging speed may result in motion artifacts and image qual-
ity degradation, as well as lead to patient discomfort. To accel-
erate MRI scans, researchers are seeking methods to increase
imaging speed by reducing the amount of acquired k-space
data without degrading the image reconstruction quality.

Accelerated MR image reconstruction from under-
sampled k-space measurements is, in essence, a highly under-
determined inverse problem. Reconstruction methods based
on signal processing have evolved rapidly over the past
decades and can now explore and utilize the prior informa-
tion about the desired MR image to achieve the reconstruc-
tion by using regularization methods under the premise of
ensuring the uniqueness and stability of the solution. Sparsity

is a commonly used prior information with the emerging
popularity of Compressed Sensing (CS) theory [1–3],
including fixed sparse transform (e.g., wavelet or/and gradi-
ent) [4–6] and more flexible adaptive sparse representation
(e.g., data-driven tight frame [7] and dictionary learning
[8–10]). High-resolution reference images obtained in
advance in practical application scenarios can also provide
prior information. They can provide structural similarity
for the target MR images and obtain more sparse difference
images [11–13]. In addition, the structured priors, such as
image support information [14–16] and structural sparsity
(e.g., group sparsity, block sparsity, and tree sparsity) [15,
17, 18], can be introduced into a reconstruction model based
on the union-of-subspace sampling theory [19], which has
been verified to be efficient in improving reconstruction
accuracy.

In recent years, deep learning has received a great deal of
attention in the field of medical imaging, especially for
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segmentation, denoising, classification, and acceleration of
MRI tasks [20]. MRI approaches based on deep learning
can be either data-driven or model-driven [21, 22]. Data-
driven approaches are aimed at learning the mapping from
undersampled k-space/images to fully sampled k-space/i-
mages [23–28]. Model-driven approaches start from MR
image reconstruction models and import the procedure of
iterative reconstruction algorithms into networks [29–32].
To ensure the quality of reconstruction performance, both
approaches require pre-training processes with the aid of
large, high-quality patient-based datasets. However, this is a
challenge in clinical applications because it is difficult to
obtain sufficient amounts of patient-based MR datasets due
to patient privacy concerns.

Recently, Ulyanov et al. proposed a Deep Image Prior
(DIP) framework [33], which demonstrates that convolutional
neural networks (CNNs) have the inherent ability to regularize
various ill-posed inverse problems without pretraining [34].
DIP can achieve satisfactory results by applying untrained
networks with random noise as the network input. DIP has
been used for denoising, inpainting, super-resolution recon-
struction [35–38], CS recovery [39], and medical imaging,
such as PET image reconstruction [34], CT reconstruction
[40], and dynamic MRI [41].

In this paper, we propose a novel deep learning-based
Reference-driven method using Wavelet Sparsity-
constrained DIP (RWS-DIP) for CS-based undersampled
MR image reconstruction, which can achieve improved per-
formance without any pre-training procedures. Our proposed
RWS-DIP method incorporates structure and sparsity priors
into a DIP framework and utilizes the priors to further
improve the efficiency of learning. It not only builds a bridge
between the constrained reconstruction method and deep
learning, but also largely reduces the dependence on patient-
based datasets and contributes to the expansion of clinical
applications. Experimental results have shown that the pro-
posed RWS-DIP method can obtain more accurate recon-
struction than traditional DIP, particularly in preserving
image textures and features. The main contributions of this
paper can be summarized as follows:

(1) The proposed RWS-DIP method utilizes both struc-
ture and sparsity priors of MR images. The former
is introduced by using a high-resolution reference
image obtained in advance as the input of CNN,
whose structure is similar to target MR images and
thereby incorporates structural information into net-
work. The latter is used by regularizing the l1 norm of
coefficients in a wavelet domain to further enrich the
implicit regularization of traditional DIP, which is
enforced by the fixed network structure. These priors
improve the efficiency and effectiveness of deep
learning and contribute to the improvement in
reconstruction performance

(2) The proposed RWS-DIP is a novel deep learning-
based MR image reconstruction method inspired by
traditional DIP and does not require any pre-
training. This advantage renders the training datasets

unnecessary, which has significance in clinical
applications

The remainder of this paper is organized as follows. Sec-
tion 2 presents details on the proposed RWS-DIP method, as
well as a review of traditional DIP. Section 3 includes exper-
imental results from in vivo MR scans and also includes
details about data acquisition, undersampled schemes, and
the experimental setup. Section 4 provides a summary of
the paper’s main points and its results.

2. Methodology

2.1. Traditional DIP for Undersampled MR Image
Reconstruction. Applying traditional DIP to undersampled
MR image reconstruction, the object function is

bθ = arg min
θ

y − Fu f θ ∣ zð Þk k22, ð1Þ

where y ∈ℂM×1 is the undersampled k-space measurements
of the desired MR image It ∈ℂN×N , Fu denotes an under-
sampled Fourier transform operator, and k∙k2 is the l2 norm.
f ðθ ∣ zÞ is an untrained deep CNN parameterized by θ, with
the random noise z as input.

The desired MR image can then be reconstructed by

Ît = f bθ ∣ z
� �

: ð2Þ

The training of the network parameters θ is performed by
solving the optimization problem in Equation (1) iteratively,
which is guided by the attempt to best match the network
output to the measurements in k-space. In DIP, no pre-
training procedure is needed and the network training, or
optimizing of network parameters, begins with an untrained
CNN initialized randomly.

2.2. Proposed Method. Figure 1 depicts an overview of our
proposed RWS-DIP method, in which the procedure of the
target MR image reconstruction can be achieved in three
steps: network training, MR image reconstruction, and data
correction. In the first step, we do not need high-quality
MR datasets and pre-training. The network parameters of
the untrained CNN are optimized by solving the proposed
constrained object function iteratively, which not only
restricts the data consistency and explores wavelet sparsity
but also introduces structural prior by using a similar refer-
ence image as the input of CNN. Next, the trained network
outputs the reconstructed MR image. In the third step, the
data correction process uses the prior measurements in k
-space to further improve the reconstruction accuracy. A fur-
ther explanation will be provided in the following sections.

2.2.1. Network Training with a Reference and Wavelet
Sparsity-Constrained DIP. Leveraging the concept of the tra-
ditional DIP framework, our proposed RWS-DIP method
uses a high-resolution reference MR image and the wavelet
sparsity to provide prior information for the target MR image
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reconstruction. Therefore, the objective function for network
parameter optimization is as follows:

bθ = arg min
θ

y − Fu f θ ∣ Irð Þk k22 + λ Ψf θ ∣ Irð Þk k1, ð3Þ

where Ir ∈ℂN×N denote a high-resolution referenceMR image
acquired in advance with similar anatomical structure to the
target image It ∈ℂN×N , Ψ is the wavelet transform operator,
and k∙k1 is the l1 norm. The regularization parameter λ > 0.

Our proposed objective function in Equation (3) consists
of the data fidelity term and the l1 regularization term. It is
aimed at finding the optimal network parameters that ensure
the sparsity of the target MR image in wavelet domain on the
premise of maintaining data consistency.

The data fidelity term restricts the data consistency
between the network output and k-space measurements.
We use the known reference MR image Ir as the network
input, instead of random noise in traditional DIP. This strat-
egy is capable of exploring and introducing the structural

prior of the target MR image into the network for learning
because of the high structural similarity between the refer-
ence and target images. The l1 regularization constrains the
sparsity of the target MR image in a wavelet domain, which
merges more prior information for efficient training of net-
work parameters.

Let α =Ψf ðθ ∣ IrÞ, Equation (3) becomes

bθ = argmin y − Fu f θ ∣ Irð Þk k22+λ αk k1
s:t: α =Ψf θ ∣ Irð Þ:

ð4Þ

The constrained optimization problem in Equation (4)
can be transformed into a penalty using the augmented
Lagrangian:

arg min
θ,α

y − Fu f θ ∣ Irð Þk k22 + λ αk k1 +
ρ

2
α −Ψf θ ∣ Irð Þ − μk k22:

ð5Þ
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Figure 1: Overview of the proposed RWS-DIP method: (a) overall process for ADMM-based reconstruction; (b) network architecture [33]
used in the proposed method.
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In the expression above, μ stands for the Lagrange multi-
plier vector and ρ is a penalty parameter.

To solve the problem in Equation (5), we use the alternat-
ing direction method of multipliers (ADMM) algorithm [42]
to update the three unknowns θ, α, and μ iteratively:

bθk
= arg min

θ
y − Fu f θ ∣ Irð Þk k22 +

ρ

2
αk−1 −Ψf θ ∣ Irð Þ − μk−1

��� ���2
2
,

ð6Þ

αk = arg min
α

λ αk k1 +
ρ

2
α −Ψf bθk ∣ Ir

� �
− μk−1

����
����2
2
, ð7Þ

μk = μk−1 + αk −Ψf bθk
∣ Ir

� �
: ð8Þ

(1) For the subproblem in Equation (6), this optimiza-
tion is close in spirit to that performed in traditional
DIP. However, we further modify the optimization
by a proximity regularization that forces Ψf ðθ ∣ IrÞ
to be close to ðαk−1 − μk−1Þ, which helps to provide
additional stabilization and robustness

(2) For the subproblem in Equation (7), the solution can
be written as

αk = Sλ
ρ

Ψf bθk
∣ Ir

� �
+ μk−1

� �
, ð9Þ

where Sλ/ρ is the soft thresholding operator defined as
[42]

Sκ bð Þ =
b − κ, b > κ,

0, bj j ≤ κ,

b + κ, b<−κ

8>><
>>: ð10Þ

2.2.2.MR Image Reconstruction.After the iterative update pro-
cedure of network parameters, we obtain the trained CNN

parameterized by bθMaxIt
(letMaxIt denote the maximum iter-

ation number of ADMM; then, bθMaxIt
is the parameter of the

Input:
MaxIt - the iteration number for ADMM;
SubIt - the iteration number for the update of network parameters;
ρ - the ADMM penalty parameter;
λ - the regularization parameter;
Ir - the reference MR image;
Ψ - the wavelet transform operator;
y - k-space measurement;

Output: The reconstructed target MR image, Ît;
1: Initialization: μ0 = 0, α0 =ΨFu−1y and set θ0 randomly;
2: k=1: MaxIt do
3: Update bθk

: Solve Eq.(6) using Adam and back-propagation for SubIt iterations;
4: Update αk: Apply Eq.(9) to obtain the solution of subproblem in Eq.(7);

5: Update μk: μk = μk−1 + αk −Ψf ðbθk ∣ IrÞ:
6: end for

7: Reconstruction: CNN output Îrec = f ðbθMaxIt
∣ IrÞ;

8: Data correction: ycor = CorðÎrecÞ = ðF̂IrecÞ �U ∪ y;
9: Ît = F−1ðycorÞ;

Algorithm 1: Algorithm for the proposed RWS-DIP method.

Brain A

(a) (b)

(c) (d)

(e) (f)

Brain B

Brain C

Figure 2: MR images used in the experiments: Brain A: the
reference image (a) and target image (b); Brain B: the reference
image (c) and target image (d); Brain C: the reference image (e)
and target image (f).
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final trained network). The output of the trained CNN is the
reconstructed MR image, which can be presented as

Îrec = f bθMaxIt
∣ Ir

� �
: ð11Þ

2.2.3. Data Correction. Performing data correction operator
Corð·Þ to CNN output Îrec in the last step below, we obtain cor-
rected k-space data ycor as follows:

ycor = Cor Îrec
� �

= F̂Irec
� �

�U
[

y, ð12Þ

where Fdenotes Fourier transform and y is the priori acquired
measurements of the target MR image, which are sampled at
the spatial locations corresponding to the undersampled mask
U in k-space. Let �U denote the complementary set of U. This

data correction strategy, defined in Equation (12), reserves
all the priori acquired measurements to enforce the k-space
data consistency, so that the reconstruction error will focus
only on the missing k-space data. The final reconstructed tar-
get MR image can then be achieved by performing an inverse
Fourier transform on ycor

Ît = F−1 ycorð Þ: ð13Þ

The algorithm flowchart of our proposed RWS-DIP
method is presented in Algorithm 1.

2.3. Network Architecture. The CNN architecture employed
in the proposed RWS-DIP method is summarized in
Figure 1(b), which is the same as that used in [33]. It is an
encoder-decoder (“hourglass”) architecture with skip

Table 1: Parameter settings for experiments.

Parameter
Images

Brain A Brain B Brain C

Network hyperparameters

Learning rate 0.01 0.01 0.01

L 6 6 6

nd [16, 32, 64, 64, 128, 128] [32, 32, 64, 128, 128, 128] [32, 32, 64, 128, 128, 128]

nu [16, 32, 64, 64, 128, 128] [32, 32, 64, 128, 128, 128] [32, 32, 64, 128, 128, 128]

ns [16,16,16,16,16,16] [16,16,16,16,16,16] [16,16,16,16,16,16]

kd [3,3,3,3,3,3] [3,3,3,3,3,3] [3,3,3,3,3,3]

ku [3,3,3,3,3,3] [3,3,3,3,3,3] [3,3,3,3,3,3]

ks [1,1,1,1,1,1] [1,1,1,1,1,1] [1,1,1,1,1,1]

Iteration number
MaxIt 50 50 50

SubIt 100 100 100

Wavelet parameters
Wavelet function Haar Haar Haar

Decomposition level 8 6 6

ρ 0.07 0.05 0.05

λ 0.0001 0.0001 0.0001

(a) (b) (c)

Figure 3: Undersampling masks used in the experiments: (a) Cartesian mask with a sampling rate of 20%; (b) radial mask with a sampling
rate of 20%; (c) variable density mask with sampling rate of 15%.
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connection. The encoding path (left side) and decoding path
(right side) are linked by the skip connections, marked by
yellow arrows, to integrate features from different resolu-
tions. The network consists of repetitive applications of the
convolutional (Conv) layer, batch normalization (BN) layer,
and leaky rectified linear unit (LeakyReLU) layer, downsam-
pling with stride and upsampling with bilinear interpolation.
The maximal depth of the network is L. nd½i�, nu½i�, and ns½i�
denote the number of filters at the ith depth for downsam-
pling, upsampling, and skip connections, respectively. kd½i�,
ku½i�, and ks½i� correspond to the respective kernel sizes.

3. Experimental Results

3.1. Experimental Setup. Experiments were conducted to eval-
uate the performance of our proposed RWS-DIP method. The
comparisons with the proposed RWS-DIP method included
zero-filling and traditional DIP [33]. To ensure a fair compar-
ison, the zero-filling reconstructions and corresponding k
-space measurements were used as inputs for all the methods,
and the same network architectures was employed for our
RWS-DIP method and traditional DIP.

We quantified the reconstruction quality using the met-
rics of relative error (RelErr), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM) [43]:

RelErr =
x̂ − xk k2
xk k2

, ð14Þ

Table 2: RelErr, PSNR, and SSIM values of reconstruction by different methods under Cartesian undersampled mask.

Images Methods
10% 20%

RelErr (%) PSNR (dB) SSIM RelErr (%) PSNR (dB) SSIM

Brain A

Zero-filling 21.63 21.6857 0.7101 15.26 24.7174 0.7695

DIP 16.49 24.1475 0.8263 5.45 33.6852 0.9617

RWS-DIP 6.92 31.5838 0.9486 3.21 38.2738 0.9836

Brain B

Zero-filling 35.26 20.2926 0.6391 18.74 25.7849 0.7608

DIP 33.08 20.8466 0.7212 11.31 30.1983 0.9361

RWS-DIP 15.96 27.1810 0.9000 7.59 33.6347 0.9694

Brain C

Zero-filling 32.53 21.3240 0.6600 15.99 27.4915 0.7860

DIP 30.78 21.8126 0.7353 11.74 30.1815 0.9297

RWS-DIP 18.09 26.4293 0.8744 8.41 33.0789 0.9635

Images Methods
30% 40%

RelErr (%) PSNR (dB) SSIM RelErr (%) PSNR (dB) SSIM

Brain A

Zero-filling 5.39 33.7439 0.8430 4.02 36.3000 0.8590

DIP 2.82 39.4789 0.9862 2.54 40.4871 0.9876

RWS-DIP 2.01 42.3201 0.9917 1.67 43.9822 0.9942

Brain B

Zero-filling 16.80 26.7302 0.7699 8.89 32.2654 0.8302

DIP 8.38 32.7954 0.9593 6.34 35.2549 0.9733

RWS-DIP 5.73 36.0731 0.9795 4.35 38.4773 0.9864

Brain C

Zero-filling 11.03 30.7196 0.8346 7.94 33.5719 0.8597

DIP 7.21 34.4198 0.9698 6.31 35.5848 0.9747

RWS-DIP 5.73 36.4088 0.9808 4.88 37.8079 0.9845

Target Image Zero-filling DIP RWS-DIP

(a)

Zero-filling DIP RWS-DIP
0.10

0.08

0.06

0.04

0.02

0.00

(b)

Target Image Zero-filling DIP RWS-DIP

(c)

Figure 4: Comparison of reconstructions of the target MR image in
Brain A using Cartesian undersampled mask with 20% sampling rate:
(a) the target image and reconstruction results, (b) the corresponding
error images, and (c) the corresponding zoom-in images.
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PSNR = 10 lg
NN MAXxð Þ2

∑N
i=1 ∑N

j=1 x̂ i, jð Þ − x i, jð Þ½ �
, ð15Þ

SSIM =
2μxμx̂ + c1ð Þ 2σxx̂ + c2ð Þ

μ2x + μ2x̂ + c1
� �

σ2x + σ2x̂ + c2
� � : ð16Þ

In the descriptions in Equations (14)–(16), the recon-
structed MR image x̂ and the ground truth x are the same size
of N ×N , and MAXx denotes the largest value in x. More-
over, for the SSIM shown in Equation (16), μx, μx̂ , σx, and
σx̂ represent the means and standard deviations of x and x̂,
respectively, and σxx̂ denotes the crosscovariance between x
and x̂, and constants c1 = 0:01 and c2 = 0:03.

3.1.1. Data Acquisition. To demonstrate the performance of
our RWS-DIP method, simulations were conducted on three
groups of invivo MR images. To simulate the data acquisi-
tion, we undersampled the 2D discrete Fourier transform of
the MR images from invivo MR scans, which were acquired
from a 3T Siemens MRI scanner. The imaging parameters
of the first group of scanned data (Brain A) were GR
sequence, flip angle = 70°, TR = 250ms, TE = 2:5ms, field of
view ðFOVÞ = 220mm × 220mm, and slice thickness = 5:0
mm. The reference and target images in Brain A were of size
512 × 512, as shown in Figures 2(a) and 2(b). The imaging
parameters of the second and third groups of scanned data
(Brain B and Brain C) were as follows: SE sequence, flip
angle = 120°, TR = 4000ms, TE = 91ms, FOV = 176mm ×
176mm, and slice thickness = 5:0mm. The MR images in
Brain B and Brain C were of size 256 × 256 and are shown
in Figures 2(c)–2(f), respectively.

3.1.2. Training Setting. We used the same CNN architecture
as the traditional DIP in [33], which is shown in detail in
Figure 1(b). The parameters used in the experiments, includ-
ing network hyperparameters, iteration number (MaxIt and
SubIt), wavelet (wavelet function and decomposition level),
ADMM penalty parameter ρ, and regularization parameter
λ, are shown in Table 1.

The models were implemented on the Ubuntu 16.04 LTS
(64 bit) operating system, running on an Intel Core i9-7920X
2.9GHz CPU and Nvidia GeForce GTX 1080Ti GPU with
11GB RAM in the PyTorch open framework with CUDA
and CUDNN support.

3.1.3. Undersampled Schemes. To compare the influence of
different undersampling masks to the performance of the
proposed RWS-DIP method, our experiments employed
three types of undersampling masks: Cartesian, variable den-
sity, and radial. Figure 3 depicts these three undersampling
masks.

3.2. Results

3.2.1. Reconstruction Performance Comparison

(1) Reconstruction under Different Sampling Rates. We dem-
onstrated the effectiveness of our RWS-DIP method at differ-
ent sampling rates under Cartesian mask. Table 2 shows the
quantitative performance of the proposed RWS-DIP method,

traditional DIP and zero-filling reconstructions in RelErr,
and PSNR and SSIM indexes at 10%, 20%, 30%, and 40%
sampling rates. Taking into account the randomness

Target Image Zero-filling DIP RWS-DIP

(a)

Zero-filling DIP RWS-DIP
0.10

0.08

0.06

0.04

0.02

0.00

(b)

Target Image Zero-filling DIP RWS-DIP

(c)

Figure 6: Comparison of reconstructions of the target MR image in
Brain C using Cartesian undersampled mask with 30% sampling
rate: (a) the target image and reconstruction results, (b) the
corresponding error images, and (c) the corresponding zoom-in
images.

Target Image Zero-filling DIP RWS-DIP

(a)

Zero-filling DIP RWS-DIP
0.10

0.08

0.06

0.04

0.02

0.00

(b)

Target Image Zero-filling DIP RWS-DIP

(c)

Figure 5: Comparison of reconstructions of the target MR image in
Brain B using Cartesian undersampled mask with 30% sampling
rate: (a) the target image and reconstruction results, (b) the
corresponding error images, and (c) the corresponding zoom-in
images.
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involved in the training procedure (random initialization of
network parameters in the proposed method; both random
initializations of the network input and network parameters

for traditional DIP), all the quantitative results were achieved
by averaging the indices after being run 10 times. It can be
seen that the proposed method has the lowest RelErr and

Table 3: RelErr, PSNR, and SSIM values of reconstruction by different methods under radial undersampled mask and variable density
undersampled mask.

Images Mask (undersampled rate) Methods RelErr (%) PSNR (dB) SSIM

Brain A

Radial (10%)

Zero-filling 10.15 28.2588 0.7601

DIP 6.25 33.6669 0.9408

RWS-DIP 3.52 37.4635 0.9780

Variable density (20%)

Zero-filling 7.93 30.3949 0.8483

DIP 3.35 38.0061 0.9798

RWS-DIP 2.57 40.2062 0.9859

Brain B

Radial (20%)

Zero-filling 15.35 27.5173 0.7928

DIP 8.20 32.9691 0.9610

RWS-DIP 5.76 36.0310 0.9786

Variable density (30%)

Zero-filling 16.99 26.6374 0.7596

DIP 6.38 35.1479 0.9708

RWS-DIP 4.75 37.7008 0.9827

Brain C

Radial (20%)

Zero-filling 12.80 29.4250 0.8256

DIP 8.04 33.4771 0.9623

RWS-DIP 6.02 35.9762 0.9775

Variable density (30%)

Zero-filling 14.34 28.4345 0.8038

DIP 7.03 34.6578 0.9692

RWS-DIP 5.18 37.2897 0.9811
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Figure 7: Comparison of reconstructions of the target MR image in
Brain B using the radial undersampled mask with 20% sampling
rate: (a) the target image and reconstruction results, (b) the
corresponding error images, and (c) the corresponding zoom-in
images.
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Figure 8: Comparison of reconstructions of the target MR image in
Brain C using the variable density undersampled mask with 30%
sampling rate: (a) the target image and reconstruction results, (b)
the corresponding error images, and (c) the corresponding zoom-
in images.
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the highest PSNR and SSIM values for all three groups of MR
data, which means that our proposed RWS-DIP method can
obtain more accurate reconstruction.

Figures 4–6 show the reconstructed MR images using the
proposed RWS-DIP method and the compared methods
under Cartesian undersampled mask with 20% and 30%
sampling rates. It is obvious that our RWS-DIP method has
the best performance in preserving more image textures
and features, especially from the zoom-in images. The corre-
sponding error images further show that the reconstruction
of our RWS-DIP method has the smallest differences and is
closest to the target MR image.

(2) Reconstruction with Different Undersampled Masks. The
reconstruction results were compared under radial and vari-

able density undersampled masks. The quantitative results
tabulated in Table 3 clearly indicate that the proposed
RWS-DIP method obtains more accurate reconstruction
than with the radial and variable density undersampled
masks. Comparisons of the reconstructed MR images are
shown in Figures 7 and 8. The corresponding error images
and zoom-in images demonstrate that our RWS-DIPmethod
outperforms the compared methods with less structural loss
and can preserve more details than the radial and variable
density undersampled masks.

3.2.2. Convergence Analysis. Convergence is an important
quality in applications of MRI methods based on deep learn-
ing. Therefore, we detected the convergence of the proposed
RWS-DIP method use error curves drawn by conducting
experiments on Brain A and Brain B under Cartesian
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Figure 9: RelErr curves of the proposed RWS-DIP method under Cartesian undersampled mask.
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Figure 10: PSNR values vs. regularization parameter λ for the reconstruction under Cartesian undersampled mask with different sampling
rates.
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undersampled mask. Figure 9 depicts the relative errors of
reconstruction at every ADMM iteration. It can be observed
that, as the number of iterations increases, the relative errors
gradually converge to a low value at different sampling rates.
Although there are slight fluctuations in the iteration proce-
dure, the overall trend maintains convergence.

3.2.3. Parameter Evaluation. We evaluated the sensitivity of
the proposed RWS-DIP method to parameter settings. The
main parameters evaluated were the ADMM penalty param-
eter ρ and the regularization parameter λ. We performed
experiments on the Brain C dataset under Cartesian under-
sampled mask and varied one parameter at a time while
keeping the rest as fixed values, as shown in Table 1.

Figures 10 and 11 show the plots of PSNR values as a
function of the ADMM penalty parameter ρ and the regular-
ization parameter λ. As can be seen from the curves, the opti-
mal numerical settings for ρ and λ (ρ = 0:05 and λ = 0:0001)
in the proposed RWS-DIP method under different sampling
rates are identical, which means that the RWS-DIP method
has robustness in the setting of parameters. In fact, although
the reconstructions have lower PSNR values than other
numerical settings for parameters ρ and λ, the difference is
not significant, and the reconstruction performance is
acceptable.

4. Conclusions

In this paper, we propose a novel reference-driven under-
sampled MR image reconstruction method using wavelet
sparsity-constrained deep image prior. Our RWS-DIP
method, which is based on the DIP framework, requires nei-
ther a pre-training procedure nor patient-based datasets,
which is of great significance for clinical applications. The
RWS-DIP method uses both structure and sparsity priors
to improve the efficiency of the learning. The structural prior

is introduced by employing a reference image as the net-
work input, and the sparsity prior is explored by regulariz-
ing the l1 norm of wavelet coefficients. Experimental results
on invivo MR scans show that the RWS-DIP method can
achieve improved reconstruction performance and outper-
forms traditional DIP in preserving texture details and
removing artifacts.

Two extensions can be made in order to improve the
proposed scheme: (1) mining and incorporating more
effective prior information may lead to a further boost in
performance, particularly in regard to strengthening the
use of structural prior information, and (2) further
research is needed for the regularization effect introduced
into DIP, which will guide the design of complementary
regularizations, so as to achieve a stronger effect and better
performance.
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