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Abstract

One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the
advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite
difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with
different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to
quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis.
We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, §80%
of inversions located between segmental duplications are expected to go undetected by the most common sequencing
strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage
depth or the read length. Finally, we review the performance of three algorithms to detect inversions —SVDetect, GRIAL,
and VariationHunter—, identify common pitfalls, and reveal important differences in their breakpoint precisions. These
results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and
offer guidelines for the design of future genome sequencing projects.
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Introduction

In the last several years, genomic techniques have discovered an

unprecedented degree of structural variation (SV) in multiple

species, including humans [1–3]. This advance has spurred a

renovated interest in the study of all kinds of SV, both in normal

situations and in disease. Currently, one of the most used

techniques for SV detection is paired-end mapping (PEM), which

has been associated to high-throughput DNA sequencing methods

[4–7]. Millions of pairs of short reads of DNA are sequenced from

a DNA library of a target genome with a known length

distribution. The two reads in a pair are the sequenced ends of

a template molecule from the DNA library. When a pair of reads

are mapped to a reference genome, they are expected to lay at a

certain distance, and in a specific relative orientation. Deviations

from these expectations are then interpreted as structural

variations between the target and the reference genomes.

Several algorithms have been developed to translate the PEM

data into a list of structural variants (reviewed in [8,9]), and some

studies have successfully applied them to whole human genomes

[4,10–14]. However, the proportions of false positives produced by

PEM-based methods are high [4,15], if not unknown [13,16].

False negatives are also suspected to be many, especially in

repetitive regions of the genome analysed [17]. The most common

source of errors in PEM-based SV detection is probably

mismapping, that is, the spurious alignment of reads to non-

orthologous positions of the reference genome.

In principle, it is possible to analytically derive the probability of

detecting a structural variant as a function of the sequencing

strategy (e.g., template length, and sequencing effort; [18]), which

could be used to estimate the likelihood of a candidate structural

variant. However, these theoretical expectations are overly

optimistic because they do not take into account the repetitive

structure of the sequenced genome, nor the ambiguously mapped

reads. A more realistic alternative is to use genome-specific

simulations and empirical models of the SV-detection process.

Recently, genome-specific simulations are being used to evaluate

the performance of SV-detection software and to estimate rates of

false positives and false negatives [19–21]. Most of such

simulations lack a realistic distribution of sequencing errors, which

is essential when researching mapping-related issues. Furthermore,

simulated structural variation is either distributed randomly or

copied from known variants. Neither strategy represents the real,

unknown distribution of SV in the human genome. In particular,

the tendency of SV to happen in repetitive regions is elusive for the

most common detection methods, largely ignored by simulation

studies, and overlooked in databases.

One particular type of SV that is especially problematic is

chromosomal inversions, which simply change the orientation of a
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fragment of DNA. Polymorphic inversions have been studied in

the species of Drosophila for decades [22], and they are also known

to exist in human populations [23]. Interestingly, inversions could

have important consequences on the genome both through the

effect on nearby genes or the inhibition of recombination within

the inverted region in heterozygotes. As such, they have been

shown to be involved in phenotypic characteristics [24], suscep-

tibility to genetic disorders [23], and evolution [25]. Traditionally

inversions have been very difficult to detect and validate across a

whole genome in a high-throughput manner, and are one of the

less well characterized type of SV. PEM has the advantage of

being able to discover balanced or dosage-invariant rearrange-

ments, such as inversions and translocations, and has been used to

predict several hundreds of inversions in different human

individuals [4,10–14]. Nevertheless, as mentioned above, very

little is known about the proportion of inversions that are missed or

incorrectly predicted by different mapping and sequencing

methods, and current PEM predictions could be giving us an

inaccurate and incomplete view of the inversions in the human

genome.

Inversions are expected to produce a very specific and distinct

pattern of discordantly mapped reads, consisting on one of the

ends being mapped in the unexpected orientation. Because this

signature is known with absolute precision, in contrast with the

expected distance between two mapped reads across an insertion

or a deletion, inversions should be easier to detect by PEM

methods. However, inversions are frequently located where it is

most difficult to map reads uniquely. Inversions have been

proposed to originate by two main types of mechanisms: non-

homologous end-joining of random breaks in more or less simple

sequences, or non-allelic homologous recombination between

inverted repeats. Although each mechanism relative contribution

to inversion generation is discussed and varies depending on the

detection method [4,10,26], a big fraction of polymorphic

inversions in humans, especially the largest ones (w100 kb), are

flanked by highly identical segmental duplications [23]. Therefore,

many reads sequenced across inversion breakpoints are mapped

concordantly (Figure 1), and the power of PEM methods to detect

them is significantly reduced. As an example, the pilot study of the

1000 genomes project described several new big insertions and

deletions in human populations, but neglected inversions because

‘methods capable of discovering inversions […] in low coverage

data […] remain to be developed’ [27]. In a similar study, 80

individuals from natural populations of Arabidopsis thaliana were

sequenced to a depth of 10–20 each with paired-end reads, but

inversions were not reported yet [28].

In this study, we use computer simulations to estimate the

sensitivity and the specificity of different sequencing strategies in

detecting chromosomal inversions of different sizes and in different

sequence contexts. We use human chromosome 1 as a model of

the human genome, and we simulate realistic paired-end

sequencing experiments with meaningful base qualities, sequenc-

ing errors, and sequence divergence between the target and the

reference genomes. Simulated inversions are located either

randomly or between inverted repeats, in order to represent two

types of mechanisms of origin, either mediated by homology or

not. We explain why the discovery of inversions from PEM

experiments have had limited success, and make recommenda-

tions for future experiments. We also predict the expected levels of

false positives and false negatives for each kind of inversion, under

different strategies, and we compare the performance of three

different SV-detecting algorithms: SVDetect [29], VariationHun-

ter [16], and GRIAL (Martnez-Fundichely, S. Casillas, and M.

Cáceres, unpublished data).

Methods

Simulation of inversions
From the reference sequence of human chromosome 1 (hg19),

we simulated two target chromosomes: the inversionless chromo-

some, colinear to the reference, and the inversionful chromosome,

including 948 inversions. Gaps in the reference genome (9.6% of

its length) were substituted by random sequence of equivalent

length and composition in both simulated chromosomes. We then

introduced two main kinds of inversions: 424 randomly located

inversions, and 524 inversions located between inverted repeats

(Table 1). To generate the latter, we first identified all pairs of

inverted repeats not more than 200 kb apart present in

chromosome 1. We used three databases of such repeats:

segmental duplications, self-alignments, and repeat-masked se-

quences, all downloaded from the UCSC Genome Browser ftp

site. Inversions were distributed as evenly as possible between the

three kinds of inverted repeats, making sure that they did not

overlap and that they were separated by at least 50 kb. In all, 29

inversions were located between segmental duplications, 97

between other alignable regions, and 398 between repeat-masked

fragments of the same type (Table 1). The distribution of inversion

lengths is roughly linearly decreasing between 200 bp and 200 kb.

The breakpoints of inversions between segmental duplications

were located in the middle point of the longest tract of perfect

identity between them, which is a good approximation of real

inversions produced by non-allelic homologous recombination (M.

Cáceres, unpublished data). To determine what was the longest

tract of perfect identity between two copies, we performed either a

global exhaustive alignment, if possible, or a local heuristic

alignment with the program Exonerate and parsed the output.

The identity between the two copies was recorded as the number

of identical residues divided by the average length of the two

copies. Similarly, the breakpoints of inversions situated between

other alignable regions were chosen in the middle of the longest

Figure 1. Inversion between the reference and the target
genomes. The breakpoints (dashed lines) are located inside inverted
repeats (red or orange arrows). Four pairs of reads that span the
breakpoints are depicted in blue, with their sequenced ends in opposite
orientations. Yellow bands indicate the correct mappings in the
reference genome of ends located in unique sequences. The reads
sequenced from a repeat are erroneously mapped to the alternative
copy (pink bands), because concordant alignments are favored by the
aligner. The mapped reads at the bottom are displayed in dark blue if
correctly mapped or in light blue otherwise. The only discordant pair of
reads that report the inversion is shown in green.
doi:10.1371/journal.pone.0061292.g001

Detection of Inversions by Paired-End Sequencing
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block of ungapped alignment between the two copies. The length

of the chosen block and its percentage of identity were recorded.

For inversions between masked repeats, breakpoints were located

in the middle points of the copies. Their average length and the

percentage of identity between them were also recorded.

Sequencing
Because divergence between the sequenced and the reference

genomes affects the ability to map the reads, we also introduced a

non-trivial proportion of 0.005 mutations in the simulated copies

of human chromosome 1 (hg19), including point mutations (80%)

and indels (20%) of 1–4 bp. Several paired-end sequencing

experiments of the two target genomes were simulated with the

wgsim utility distributed with SAMtools [30]. To correct the

homogeneity of sequencing errors along the reads produced by

wgsim, we originally simulated the reads without any error, and

then used a custom perl script to assign stochastic base qualities

and add sequencing errors with a probability corresponding to the

assigned quality. Base qualities were distributed along each read

independently, according to a generalization of the empirical error

models available in the package MetaSim [31].

We simulated three different read lengths that are representative

of the available data in current and past paired-end genome

sequences generated by the most popular sequencing technologies:

36, 75, and 150 bp. These read lengths were combined with five

commonly used library template lengths from 250 bp to 40 kb

(except when the template was shorter than twice the read length),

generating 14 realistic sequencing experiments in each simulated

chromosome (Table 2). Standard deviations were proportional to

the template lengths, according to a linear regression estimated

from empirical data from different types of real DNA libraries

[4,10,27].

When sequencing the inversionless chromosome, the number of

simulated reads in each experiment was determined to generate an

expected sequencing depth of 20. When sequencing the inversion-

ful chromosome, though, we aimed at a sequencing depth of at

least 20 and to a physical coverage of at least 50 (Table 2). We call

‘physical coverage’ what others have called ‘clonal coverage’ [18]

or ‘span coverage’ [19], namely the number of times that a site lays

between the two sequenced ends of a pair. We define the expected

physical coverage as n:(t{2r)=g, where n is the number of

templates sequenced, t is the average template length, r is the read

length, and g is the genome size. This assumes that the length

needed to map the pair is not available to detect a breakpoint,

which lets us focus on the problem of detecting inversions by

different PEM strategies, and set aside the complementary

approach of detecting them by the use of split reads (but see

Discussion).

Mapping
We used Novoalign (http://www.novocraft.com) to map the

sequenced reads to the reference genome. We allowed for a score

difference of 5 (default) between alternative alignments to consider

the read ambiguously mapped, and we kept up to 100 alignments

for each ambiguously mapped read. The alignments were done in

paired-end mode, using the information of the expected distance

between the two ends of a pair to find the most likely mapping and

to determine if a pair is concordant or discordant. To favor

concordant mappings over discordant ones, we set an SV penalty,

which represents how much more likely a discordant mapping

must be, relative to its concordant alternative, for it to be preferred

(it is equivalent to the phred-scaled a priori probability of a

breakpoint being covered by a read). Higher values of SV-penalty

are expected to increase the specificity of SV detection and to

reduce the sensitivity. We tested SV-penalty values between 0 and

70.

Table 1. Characteristics of the inversions simulated in four sequence contexts.

Sequence context
Number of
inversions Inversion size (bp) Repeat length (bp) Repeat identity (%)

Random 424 61,756 (46,449) NA NA

Repeat-masked 399 75,544 (57,549) 347 (383) 81.6 (7.3)

Alignable 98 16,716 (39,069) 201 (131) 94.2 (4.4)

Segmental dup. 29 102,469 (65,558) 19,962 (29,027) 89.2 (15.0)

Number and average size of inversions simulated in each type of sequence context, and average length and average percentage of identity between the two inverted
copies flanking the breakpoints (repeat-masked and segmental duplications) or within their largest alignment blocks (alignable). The standard deviations are shown in
parentheses.
doi:10.1371/journal.pone.0061292.t001

Table 2. Sequencing strategies and sequencing efforts of the
inversionful chromosome.

Template
(bp) Read (bp) Num. reads Seq. depth Phys. cov.

250 (15) 36 70,014,219 20.22 50.00

250 (15) 75 124,625,311 75.00 50.00

450 (27) 36 69,236,284 20.00 105.00

450 (27) 75 41,541,770 25.00 50.00

450 (27) 150 83,083,540 100.00 50.00

2,500 (150) 36 69,236,284 20.00 674.44

2,500 (150) 75 33,233,416 20.00 313.33

2,500 (150) 150 16,616,708 20.00 146.67

10,000 (599) 36 69,236,284 20.00 2,757.78

10,000 (599) 75 33,233,416 20.00 1,313.33

10,000 (599) 150 16,616,708 20.00 646.67

40,000 (2394) 36 69,236,284 20.00 11,091.11

40,000 (2394) 75 33,233,416 20.00 5,313.33

40,000 (2394) 150 16,616,708 20.00 2,646.67

Sequencing strategies tested, defined by the template and read lengths.
Standard deviations of template lengths are shown in brackets. The number of
reads simulated from the inversionful chromosome and their corresponding
expected sequencing depth and physical coverage are shown.
doi:10.1371/journal.pone.0061292.t002
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SV-detection algorithms
Three SV-detection algorithms were used to identify common

difficulties in the post-mapping stage of PEM data analysis:

SVDetect [29], VariationHunter [16], and GRIAL (A. Martnez-

Fundichely, S. Casillas, and M. Cáceres, unpublished data), which

is available in http://grupsderecerca.uab.cat/cacereslab/grial.

Care was taken to offer the same paired ends mapped in

discordant orientation to all programs, while respecting their

specific requirements. Because there is a trade off between

template length and throughput of current sequencing technolo-

gies, we considered more realistic to downsample the reads from

experiments with an expected physical coverage larger than 50

(see Table 2). Thus, we evened up the physical coverage, rather

than the sequencing depth, across experiments before using the

SV-detection algorithms.

SVDetect uses a sliding-window approach to first identify pairs

of windows (links) connected by one or more discordant read.

Redundant links are purged and reads within them are filtered.

Finally, the program defines clusters of reads and identifies their

corresponding structural variation. We set the minimum number

of reads required to call a cluster to be 3, and followed the author’s

suggestion to set the lengths of both the window and its sliding step

in order to be able to detect large SVs [29]. A mapping quality

threshold of 20 was applied to the input reads, which proved to

reduce the number of false positives significantly. GRIAL only

predicts inversions. It relies on the average template length and on

its standard deviation to apply some geometric rules and define a

minimum range where the breakpoints must be (A. Martnez-

Fundichely, S. Casillas, and M. Cáceres, unpublished data). As

before, the minimum number of reads required to call a cluster

was also 3, and a mapping quality threshold of 20 was used. Both

GRIAL and SVDetect are hard-clustering algorithms, meaning

that they assume a unique mapping for each read. In contrast,

VariationHunter takes as input all possible mappings of each read,

being aware of their mapping qualities. It applies a sophisticated

algorithm to find the minimal set of compatible structural variants

collectively supported by all discordant reads, so that each read

only gives support to one variant [32]. Although VariationHunter

usually work with all the potential read mappings provided by its

companion aligner, MrFast [33], we instead parsed the SAM files

produced by Novoalign into VariationHunter’s native format,

including only up to 100 alternative mappings for each read.

All three programs produce a set of chromosomal intervals

where the breakpoints of the inversions are predicted to be.

Predictions other than inversions (or ‘inverted segments’ and the

like) were discarded. The length of the interval is the precision of

each breakpoint prediction. If any program produced overlapping

predictions, we merged them in one larger interval that included

all of them. This was necessary for 90% of predictions across

experiments by SVDetect, but infrequent for GRIAL (0.04%) or

VariationHunter (0.2%). Then, the predictions were compared

with the true locations of the breakpoints, and the numbers of true

positives, false positives and false negatives were recorded for each

program and sequencing strategy. The breakpoints predicted were

also compared among programs.

In order to determine if false breakpoints were predicted on

inverted repeats more often than expected, we counted the

overlaps between false breakpoints and all the inverted repeats

present in chromosome 1 (segmental duplications, repeat-masked

regions, and other alignable segments). Then, we counted all the

positions in the genome where a breakpoint prediction of certain

length would have overlapped with one, two… or any number of

repeats of each kind. From them, we determined the total

expected number of overlaps that false breakpoint predictions by

each program could have produced with each kind of repeat if

they were randomly located. Finally, we used this number as the l
parameter of the Poisson distribution to test if the number of

overlaps observed was higher or lower than the random

expectation.

Results

Sequencing and mapping
Two simulated target genomes were generated: the inversionless

and the inversionful (948 inversions of different types, see Table 1),

derived from human chromosome 1 in the hg19 assembly. Each of

them was paired-end sequenced 14 times, with different combi-

nations of template and read lengths (Table 2). After sequencing,

we mapped the reads to the reference genome using Novoalign. In

all the experiments *10% of the reads were not mappable, due to

the presence of gaps in the reference sequence.

Because the original positions of the reads from the inversionless

chromosome were known, we were able to measure their distances

to the mapped positions and evaluate the true quality of the

alignments. Table 3 shows some statistics of the performance of

the aligner in the different experiments. We counted as correct all

mappings within a distance to their expected position not larger

than the length of the sequenced end, in order to account for

potential deviations due to either small indels or alignment

clipping. Between 1 and 3% of all mapped reads had at least one

alternative mapping. In the majority of ambiguous mappings, the

primary alignment is incorrect (Table 3), and the true alignment is

to be found, if at all, among the secondary mappings.

Both the template length and the length of the reads have

positive effects on the mapping quality, with some nuances. It is

remarkable that when the length of the read is shorter than

150 bp, templates of 40 kb produce more mapping errors than

templates of 10 kb. This increase in the number of erroneously

mapped reads is paralleled by a similar decrease in the number of

unmapped reads. We interpret this as a result of the over-zealous

alignment of unmappable reads, the presence of gaps in the

reference genome, and the proportionality between the average

template length and its standard deviation (Table 2). Short reads

proceeding from regions not represented in the reference genome

are more likely to have spurious concordant alignments when the

length of the template is known with less precision.

The application of a mapping quality threshold of 20 (mapping

error probability v0:01), reduces the mapping error rate by about

2 orders of magnitude. Such an improvement in average mapping

quality comes at the cost of removing more well mapped reads

than erroneously mapped ones. Remarkably, all ambiguously

mapped reads, that is, all reads with at least two possible mappings

within 5 score points from each other, are removed by this filter.

Mapping specificity in inversion detection
Because we simulated Illumina reads, expected to map in

forward-reverse orientation, only reads with forward-forward or

reverse-reverse orientations are informative of the presence of

inversions. These discordant orientations may also arise from

mismapping. We used the inversionless chromosome to determine

the probability of finding spurious inversion-like orientations in

paired-end mappings to human chromosome 1, using different

combinations of template length and structural variation (SV)

penalty (see Methods).

If ends are mapped independently of each other (that is, with a

null SV penalty), about 2% of all pairs with 36 bp reads are

mapped in discordant orientations, suggesting the spurious

presence of inversions (data not shown). A positive SV penalty

Detection of Inversions by Paired-End Sequencing

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e61292



rapidly decreases this proportion, which asymptotically approach-

es 1:0|10{5 by SV-penalty 70. Different template lengths do not

significantly change this figure. Longer reads were mapped only

with an SV-penalty of 70.

Most of the discordant paired ends from the inversionless

chromosome are assigned a low mapping quality. If reads are

36 bp long, and only paired ends having both a mapping quality of

at least 20 are considered, around 95% of the orientation-

discordant mappings are removed, while only *5% of concordant

reads are affected by the filter. The effect of the mapping quality

threshold is equivalent for all values of SV penalty and template

length tested (data not shown). Overall, with 36 bp reads, the

combination of a mapping quality §20 and an SV penalty of 70

reduces the frequency of false orientation discordant paired-ends

about 5 orders of magnitude, to between 5:6|10{7 and

9:8|10{7. Longer reads from the inversionless chromosome,

with a mapping quality of at least 20 (and mapped with an SV-

penalty of 70), include proportions of orientation-discordant pairs

always lower than 2:0|10{7. If reads from the inversionful

chromosome have similar rates of mismapping, from a physical

coverage of 50 we expect between less than 1 (reads longer than

36 bp and templates longer than 250 bp) and 39 (36 bp reads,

250 bp templates) spurious orientation-discordant pairs with a

mapping quality of at least 20, that would suggest the presence of

false inversions.

Mapping sensitivity in inversion detection
To determine the ability of PEM experiments to detect

inversions, we computationally sequenced the inversionful chro-

mosome using different combinations of read and template lengths

(Table 2). Before the application of any SV-detection software, we

determined the performance of the alignment software at

providing evidence of the breakpoints. We applied an SV penalty

of 70, necessary to remove most false positives (see above). A pair

of ends sequenced from alternative sides of a breakpoint is

potentially informative of the existence of the breakpoint. For

every breakpoint, we counted the potentially informative pairs

obtained with each sequencing strategy, and how many of them

were mapped correctly, erroneously mapped and unmapped.

The informative physical coverage of a breakpoint depends on

the sequencing strategy and on the length of the inversion. The

expected informative physical coverage can be expressed as the

product of the total number of templates sequenced and the

probability that a template encompasses a single breakpoint

between its two sequenced ends. Assuming that, as it is the case in

our experiments, average template lengths are larger than twice

the read length, and inversions are larger than the reads, then:

E(c)~
min(t{2r,i{r)

g
:n ð1Þ

where c is the physical coverage, r is the length of the reads, t is the

average length of the templates, i is the length of the inversion, n is

the sequencing effort in number of templates sequenced, and g is

the length of the genome.

Equation 1 describes well the number of reads actually

sequenced across breakpoints. However, a variable portion of

those reads are either unmapped or, more often, erroneously

mapped. Figure 2 shows the average proportion of pairs of reads

sequenced across a breakpoint that are correctly mapped in each

experiment for inversions located in 4 different contexts: 1)

randomly, 2) between inverted repeat-masked sequences, 3)

between other inverted alignable regions, and 4) between inverted

segmental duplications. The rest are erroneously mapped

elsewhere, many as concordant (a small, and rather constant

fraction of unmapped reads are not counted there).

Table 3. Summary statistics of the mapping of reads from the inversionless chromosome.

Uniquely mapped (%) Ambiguously mapped (%)

MAPQ §20 MAPQ v20 (all MAPQ v20)

Read (bp)
Template
(bp)

Total
simulated correct wrong correct wrong correct wrong

unmapped
(%)

36 250 138,472,568 85.41 0.005 1.62 0.14 1.16 2.05 9.61

36 450 138,472,568 85.70 0.005 1.50 0.12 1.15 1.92 9.61

36 2,500 138,472,568 86.24 0.003 1.37 0.06 1.15 1.58 9.60

36 10,000 138,472,568 86.40 0.004 1.56 0.05 1.10 1.36 9.52

36 40,000 138,472,568 85.96 0.009 2.01 0.13 1.12 1.55 9.23

75 250 66,466,832 87.64 0.005 0.73 0.04 0.79 1.18 9.62

75 450 66,466,832 87.71 0.006 0.71 0.03 0.79 1.14 9.61

75 2,500 66,466,832 87.97 0.007 0.62 0.03 0.77 1.02 9.58

75 10,000 66,466,832 88.24 0.012 0.55 0.03 0.70 0.97 9.50

75 40,000 66,466,832 88.26 0.041 0.58 0.09 0.66 1.23 9.14

150 450 33,233,416 88.77 0.002 0.32 0.01 0.56 0.71 9.63

150 2,500 33,233,416 88.87 0.002 0.30 0.01 0.54 0.65 9.63

150 10,000 33,233,416 89.01 0.002 0.30 0.01 0.50 0.56 9.63

150 40,000 33,233,416 89.03 0.002 0.33 0.01 0.51 0.50 9.63

For each experiment, defined by the length of the reads and the average length of the templates, we show the total number of reads simulated from the inversionless
chromosome and the percentages thereof that have been: mapped uniquely or ambiguously, with a mapping quality (MAPQ) of at least 20 or lower, correctly mapped
or not, or unmapped. An ambiguous mapping is considered correct if the primary alignment is correct.
doi:10.1371/journal.pone.0061292.t003
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As shown in Figure 2, reads of 36 bp (green points) with

templates ƒ450 bp perform quite badly for all inversion types and

have a probability of being well mapped around inverted repeats

well below 0.6. It can also be seen that long templates are

instrumental to correctly map reads across repeats. While short

repeats, such as those identified by RepeatMasker and other

alignable regions, are effectively bypassed with 2500 bp-long

templates, most segmental duplications are challenging even for

40 kb-long templates.

The values shown in Figure 2 are averages across inversions.

For each inversion, we estimated the probability of mapping a pair

of ends correctly across one of its breakpoints, if at least 50 pairs

had been simulated covering its breakpoints. These probabilities

where then used to calculate the expected number of breakpoints

detected by at least 2 paired ends with a given physical coverage

and a given sequencing strategy (Figure 3). Our results show that

low physical coverages can detect very efficiently randomly

generated inversions. However, for inversions located between

inverted repeats, maximal inversion detection requires quite

different amounts of physical coverage depending on the PEM

conditions, and suboptimal sequencing strategies are predicted to

fail to detect a substantial amount of inversions located between

segmental duplications, irrespectively of the sequencing effort. In

particular, a physical coverage of *50 can achieve sensitivities

higher than 90% in all sequencing contexts, with average template

length of 40 kb and reads of 150 bp. Notice that such an

experiment would produce a sequence coverage (i.e. sequencing

depth) of only 0.4. In addition, easier to obtain libraries of 2.5 kb

perform also very well for most types of inversions, except those

mediated by segmental duplications.

The probability of correctly mapping a pair of reads across a

breakpoint is expected to depend on the characteristics of the

inverted repeats present around the breakpoints, if any. At least,

the length of the repeats and the similarity between them must

affect directly the fraction of templates spanning a breakpoint that

are mapped either discordantly or concordantly across the

breakpoint. The expected value of that proportion (discordant

over the sum of concordant and discordant) in a candidate

breakpoint would be useful to determine the likelihood of that

candidate. Thus, we attempted to fit a generalized linear model of

the proportion of templates sequenced across a breakpoint that are

mapped across that breakpoint either concordantly or discordant-

ly, using characteristics of the inversion and of the sequencing

strategy as predictors. We failed to correct the overdispersion

present in all the models that we tested. We suspect that the

specific distribution of mismatches along the alignment of the two

inverted copies, and the amount and distribution of gaps thereof,

which were not characterized, significantly affect the chances of a

read being mapped to the correct copy. In any case, we captured

part of the pattern of variation with two compound variables

(interactions) using the data from the 14 experiments (Figure 4).

First, the interaction between the length of the repeat and the

length of the template is apparent in Figure 1: only templates

longer than the repeats may have ends with unique sequences, that

can be correctly mapped. And second, the interaction between

inverted copies identity and the read length represents that longer

reads are more likely to contain a difference between repeat copies

than shorter reads from the same repeat. The logarithmic

transformation of all lengths and the squaring of the identity

improved the quality of the relationship.

Sensitivity, specificity and precision of SV-detecting
algorithms

The post-mapping analysis of PEM data to discover inversions

may introduce its own biases. We used three different algorithms

designed to detect inversions and other SV from PEM data to

identify common sources of false positives and false negatives:

SVDetect [29], VariationHunter [16], and GRIAL (A. Martnez-

Fundichely, S. Casillas, and M. Cáceres, unpublished data).

Figure 5 represents the percentage of breakpoints of each type of

inversion detected by each program with different sequencing

strategies. In this comparison, the physical coverage was kept at 50

across experiments, that is, longer templates entail fewer paired

ends sequenced (see Methods).

The sensitivity (proportion of true breakpoints correctly

predicted) of the three algorithms (Figure 5) is in general close

to, but sometimes lower than, what expected from the mappability

of the reads around breakpoints (Figure 3, for a physical coverage

of 50). As predicted by Figure 4, sensitivity of shorter template

libraries decreases with highly identical inverted repeats, especially

segmental duplications. In addition, templates of 40 kb recall

fewer breakpoints than 10 kb templates in most sequence contexts.

This is due to a higher proportion of inversions being shorter than

the template, and therefore receiving lower useful physical

coverage (see Equation 1), than if sequenced with shorter

templates. This effect is very pronounced in the case of inversions

located between alignable regions, because they are on average the

shortest (Table 1). If the number of paired ends sequenced or the

sequencing depth, instead of the physical coverage, was kept

constant across experiments, longer templates would always

outperform shorter ones, as suggested by Figure 3 (data not

shown).

Inversion detection for random and repeat-masked inversions

with VariationHunter and GRIAL is almost 100%. In contrast,

SVDetect does not reach the same sensitivity with short templates

(250 and 450 bp). A careful inspection of these cases showed that

SVDetect is calling inversion breakpoints some base pairs off the

true breakpoints, thus producing false positives (see below). On the

other hand, using 150 bp reads and 40 kb templates, GRIAL

detected 51/58 breakpoints within segmental duplications, while

SVDetect and VariationHunter detected 47/58 and 44/58,

respectively. According to Figure 3, 53.5 breakpoints were

expected to be detectable, on the bases of the mappability of the

reads. Across experiments, GRIAL was about 6% more sensitive

than SVDetect, and 0.4% more sensitive than VariationHunter.

We also measured the average precision attained by each

program in their breakpoint predictions. In all cases, the ranges of

positions where breakpoints are predicted to lay are larger than the

theoretical expectation derived by Bashir et al. [18] for large

inversions, assumed to be randomly located (Figure 6). As

expected, the breakpoints of inversions smaller than the template

length cannot be detected with a precision better than the

difference between the length of the template and the length of the

inversion. This reflects the fact that for a pair of ends to be

informative, the read sequenced from outside of a small inversion

must be at a certain distance, such that its partner is sequenced

from inside the inversion. For both size classes, but in particular

for big inversions, GRIAL achieves finer precision than the other

two programs, and VariationHunter offers the coarsest precision.

Note that both axes in Figure 6) are in logarithmic scale to

appreciate how substantial the differences are.

In addition to the true positives shown, all three programs

produce a number of false positives (Table 4), which in general are

higher for short templates. We compared the positions spanned by

the false predictions among the three programs (Figure 7). The
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false positives predicted by VariationHunter tend to be different

from those predicted by either GRIAL or SVDetect. We attribute

these differences to the fact that VariationHunter uses ambigu-

ously mapped reads with low mapping quality, that neither

GRIAL nor SVDetect use.

We carefully looked at the origin of false positives and

distinguished three different types. First, a small number of reads

originally colinear with the reference (no more than 50 per

experiment) were erroneously mapped in discordant orientation

and gave support to false breakpoints, at least in SVDetect and in

GRIAL (we could not keep track of what reads supported each

prediction from VariationHunter). This is in agreement with the

small number of false positives expected from erroneous mappings

(see section on the Mapping specificity in inversion detection). We

do not observe this kind of false positives when the template

lengths are at least 2500 bp long or if the reads are at least 150 bp

long. In principle, an SV-penalty higher than 70 during mapping

could also reduce the number of this kind of false positives (not

tested).

Second, truly discordant reads, originated across true break-

points and mapped in the correct (discordant) orientation, but to

an erroneous location, gave rise to false predictions. In the

experiment with reads of 75 bp and templates of 250 bp, GRIAL

predicted 10 false inversions (involving 17 false breakpoints, and 3

true breakpoints assigned to wrong inversions) and 7 of them are

also predicted by SVDetect. These common false inversions are

due to mismapped reads, and they are larger than 20 Mb. In

contrast, VariationHunter filters out inversion predictions larger

than 1 Mb, although it does predict individual, unpaired break-

points in other locations.

And third, there are correctly mapped reads that are not well

interpreted by the SV-detection algorithm, and give rise to ‘false’

breakpoints that do not overlap true breakpoints, but lay close.

Across experiments, 88% of SVDetect’s false breakpoints (see

Table 4 and Figure 7) lay within 50 bp of a true breakpoint, and

they predict inversions that do overlap with real inversions. Also

the two false positives predicted by GRIAL with reads of 150 bp

and template lengths of 10 kb and 40 kb are very close (at 23 and

62 bp, respectively) to real breakpoints. These two false positives

may be due to random departures from the expected template

lengths, upon which GRIAL predictions heavily depend (A.

Martnez-Fundichely, S. Casillas, and M. Cáceres, unpublished

data).

Just as inverted repeats are hotspots of false negatives (see

section on Mapping sensitivity in inversion detection), they can

also generate false positives, due to the possibility of mapping reads

to either copy. To understand better the origin of false positives,

we compared their positions with those of all the segmental

duplications, RepeatMasker-filtered regions and other alignable

regions present in chromosome 1. In all the experiments with

average template lengths of 250 or 450, the false breakpoints

predicted by GRIAL or by SVDetect overlap with either repeat-

Figure 2. Average portion of potentially informative reads that are correctly mapped across a breakpoint. Informative reads are
represented as a function of the template length for inversions located in four different sequence contexts. Colors represent the three read lengths:
green, 36 bp; blue, 75 bp; and red, 150 bp.
doi:10.1371/journal.pone.0061292.g002
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masked regions or with other alignable regions more often than

expected by chance; but they did not overlap segmental

duplications more frequently than expected (data not shown). In

contrast, the false positives predicted by VariationHunter in 4

experiments did overlap segmental duplications more often than

expected by chance (at 0.01 significance level, Poisson test), and

they also overlapped other alignable regions (not repeat-masked

segments) more often than expected by chance in some

experiments.

Discussion

Currently there is a great interest in the complete character-

ization of SV at a genome level, with multiple projects to sequence

whole genomes using different PEM strategies. However, it is not

clear to what extent these projects are giving us an adequate

picture of the SV present in the human genome. Therefore, it is

important to have quantitative estimates as realistic as possible of

the amount of variants that we may be missing or describing

incorrectly.

The mapping stage of PEM data analysis caps the sensitivity of

any SV-detection program. For well understood reasons, inver-

sions between segmental duplications may be undetectable, under

some experimental designs. Unfortunately, most PEM experi-

ments performed to date were done with very small templates (e.g.,

[11,12,27]; but see [10]) that are not suited to detect inversions

between inverted repeats (Figure 5). Around 90% of the paired-

end sequencing experiments (*80% of the reads) generated by the

1000 genomes project have template lengths below 500 bp

(according to the sequence indexes downloaded from their ftp

site on October 9th, 2012). These template lengths, combined with

modest coverages, are expected to miss more than 80% of the

inversions between segmental duplications and around 5–50% of

the inversions between repeat-masked or other alignable regions.

Neither an increase in coverage, nor an improvement in SV-

detection algorithms can prevent false negatives completely. It is

also important to note that our sensitivity estimates may be overly

optimistic, since we have simulated inversions between inverted

repeats with identities as low as 60%, whereas real inversions are

probably enriched in highly identical repeats. Thus, PEM studies

have been systematically missing most of the inversions present

between inverted repeats, and a similar problem may affect other

types of structural variants. The actual relative abundance of

inversions between inverted repeats is impossible to evaluate with

current data from massively parallel paired-end sequencing

studies, precisely due to the ascertainment bias against them.

It is known that longer templates improve the assembly in de novo

sequencing projects [34], and extend the range of insertions that

can be discovered by PEM [8]. However, little emphasis has been

put on the importance of template length for inversion discovery.

When detecting inversions, longer templates always improve

sensitivity (Figure 2) and specificity (Table 4). If longer templates

Figure 3. Relationship between physical coverage and the expected sensitivity of different sequencing strategies to detect
inversions. The expected sensitivity is based on the probability of correctly mapping paired ends across inversion breakpoints in four different
sequence contexts. Inversions are assumed to be longer than the templates. The sequencing strategy is defined by the read length: dotted lines,
36 bp; dashed lines, 75 bp; solid lines, 150 bp; and by the template length: green, 250 bp; blue, 450 bp; purple, 2.5 kb; red, 10 kb; and black, 40 kb.
Notice the different ranges of physical coverage among plots.
doi:10.1371/journal.pone.0061292.g003
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were used, the bias against inversions between inverted repeats

could be traded for a bias against short inversions, but only as long

as current technologies impose a trade off between the template

length and the throughput. When designing an experiment, one

could give priority to inversions between inverted repeats, and

choose first the longest average template length available and then,

the affordable sequencing effort. For example, Kidd et al. [10]

used average template lengths of *40 kb (fosmid genomic

libraries), and sequenced about 400 bp of each end. They reached

a sequencing depth of about 0.3 per individual, which, according

to Equation 1, implies that the breakpoints of inversions shorter

than 3 kb were expected to be physically covered less than once.

In addition, Bashir et al. [18] reported a trade-off between

detectability (template length) and breakpoint precision for large

inversions in random locations, and they recommended a mixture

of long and short template lengths to optimize both. Although this

trade-off progressively vanishes with increasing physical coverage,

it has an important corollary: the longer the templates, the higher

the proportion of inversions that are shorter than the templates. In

Figure 6, it can be seen that for a physical coverage of 50 the loss

of precision due to longer templates in large inversions is small

compared to that in inversions shorter than the templates. Thus, a

coarse precision may be the price to pay for the detection of

inversions between inverted repeats.

From our results (figures 2, 4, and 5), it is apparent that both

longer reads and longer templates improve inversion detectability.

In most of the genome, sequenced ends of 150 bp perform almost

as well as possible. The constant development of sequencing

technologies offers ever longer reads, going up to several kilobases

in the case of Pacific Biosciences or Illumina’s Moleculo

technology. Eventually, long enough reads with high enough

quality could override the need for paired-ends, and inversions

would be detected by direct sequencing. However, increasingly

longer reads will not help much for the detection of inversions

located between large segmental duplications, but longer DNA

libraries would. The breakpoints of an inversion located between

inverted repeats are virtually invisible at the sequence level within

the repeat, what renders split reads useless in this context. Longer

sequences could be useful to map reads more accurately in the two

inverted repeats, although in highly identical regions the mapping

would rely at most in a few base differences between copies. These

differences are known to vary between individual genomes and

make the mappings that are not based in unique or quite divergent

sequences unreliable.

In terms of sensitivity, the three programs tested perform

similarly (Figure 5), stressing the importance of the sequencing

design and the mapping stage. However, the programs differ

significantly in terms of precision, GRIAL being the program with

the most accurate breakpoints (Figure 6). In terms of false

positives, the apparently high false discovery rate by SVDetect

(Table 4, and Figure 7) is mostly due to the predictions missing the

actual breakpoints by a few base pairs. VariationHunter is the only

tested algorithm producing an excess of false positives in segmental

duplications, that we attribute to its usage of low quality,

secondary mappings. To avoid those false positives, either the

discordantly mapped reads must be further filtered, or their

mapping qualities should be more accurate.

Even low rates of false positives can produce high posterior

error probabilities if inversions are rare [35]. On the other hand, if

inversions (and maybe other kinds of SV) are frequent between the

target and the reference genomes, as in the case of cancer

genomes, the rate of false positives could be even higher. High

levels of SV could produce large numbers of false positives because

pairs of reads that span a breakpoint have a higher chance of being

mapped to a wrong location and in a discordant orientation than

those colinear to the reference. Thus, part of the false positives

Figure 4. Average proportion of pairs of reads mapped across a breakpoint that are correctly mapped as discordant. Correct
discordant read pairs are expressed relative to all reads mapped across the same breakpoint, as a function of the length of the repeat (relative to the
length of the template) and the identity between the copies (relative to the read length). Data from all 14 simulated paired-end sequencing
experiments are used. Cells may have different standard errors, due to differences in the total number of reads used to calculate the proportion of
discordant pairs in each situation.
doi:10.1371/journal.pone.0061292.g004
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Figure 5. Percentage of inversion breakpoints from each sequence context that are successfully detected by different programs.
Results from SVDetect (SVD, upper row), VariationHunter (VH, middle row), or GRIAL (bottom row) are plotted against the template length used.
Colors correspond to the length of the reads: green, 36 bp; blue, 75 bp; and red, 150 bp.
doi:10.1371/journal.pone.0061292.g005

Figure 6. Precision of breakpoint prediction plotted against the length of the template. The average size of the predicted range of a
breakpoint is represented separately for inversions smaller (left) or larger (right) than the template. Colors correspond to the programs used to
predict the breakpoints: green, VariationHunter; blue, SVDetect; and red, GRIAL. The dashed lines correspond to the theoretical expected precisions,
obtained either from equation 3 in reference [18] for large inversions, or from the average difference between the inversion size and the template
length for small inversions.
doi:10.1371/journal.pone.0061292.g006
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predicted here are due to pairs of reads sequenced across true

breakpoints and mismapped, and they could be considered an

artifact of the high density of the simulated inversions. Our results

suggest that false positives can be kept low by using a stringent SV-

penalty during mapping, filtering out low quality reads, choosing

an appropriate algorithm, and using templates of at least 2.5 kb

(Table 4). However, our simulations represent a best-case scenario,

any departure from which will make it more difficult to detect the

true inversions and to avoid the false ones. For example, the

presence of other types of SV, and especially the presence of

complex rearrangements, are expected to increase the rate of false

positives, as mentioned earlier.

Polymorphic inversions are more likely to be detected where

they are less likely to happen, namely in non-repetitive sequences;

and difficult to detect where they are more likely to be, that is,

between inverted repeats (Figure 5). As a result, the frequency of

polymorphic inversions in the human genome could be underes-

timated in one hand, and overestimated due to false positives in

the other. Supposedly simple tasks such as comparing the

frequency of inversions among chromosomes, or estimating the

total number of inversions in one genome, are not supported by

any SV-detection algorithm to date, because the unknown

numbers of false positives and false negatives would bias the

results. Yet, with the information contained in PEM data, it should

be easier to estimate the total number of inversions, than to

enumerate all of them. Thus, we think that SV-detection

algorithms will keep evolving to implement sound statistical

models with estimates of both false positives and false negatives.

One step in this direction is the recent appearance of GASVPro,

an SV-detection algorithm that implements a probabilistic model

to determine the most likely set of structural variants supported by

PEM data from one individual [36]. GASVPro uses multiple

possible alignments of discordant reads, and approximates the

posterior probabilities of the mappings. Although GASVPro does

not explicitly estimate the total number of SVs, nor it reports the

probability that a prediction is false, its probabilistic formulation

would allow such extensions. Instead, GASVPro follows the trend

of reporting a list of variants, biased as it may be. Therefore, it is

not surprising that even GASVPro has a very low rate of recall of

known inversions from two sequenced individuals, and apparently

high rates of false positives, just as all other programs tested by the

authors (Tables 2 and 3 in [36]). Other recent developments in

SV-detection algorithms tend to use evidence from both paired-

ends and split reads to improve the definition of breakpoints

[37,38]. These methods take the most of the data at hand and

improve the sensitivity and the specificity in some circumstances.

However, they fail to address the main concern raised by our

results, namely the overlooking of inversions between inverted

repeats, where split reads do not add any information.

In summary, current SV-detection algorithms fail to account for

the heterogeneous distribution of SV, and in particular of

inversions, along the genome; and they fail to account for the

also heterogeneous probability of false positives. In order to study

their mechanisms of origin and to perform population genetic

analyses of inversions, we need to estimate parameters of an

explicit model of SV distribution, rather than an incomplete and

biased list of differences between two genomes, and they will have

to pay attention to the genome-specific repetitive structure. Future

improvements of both algorithms and sequencing strategies are

expected to give us a better idea of the genomic landscape of SVs

in general, and inversions in particular.
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Figure 7. Comparison of the false breakpoints predicted by the
three programs. Templates of 250 bp and 75 bp reads were used. The
sharing of a breakpoint between two programs imply that their
predictions overlap in at least one base and are of the same kind,
namely, either the first or the second breakpoint of an inversion.
doi:10.1371/journal.pone.0061292.g007

Table 4. False inversion breakpoints called by three SV-
detection algorithms.

Read (bp) Template(bp) SVD VH GRIAL

36 250 67 (0.0418) 11 (0.0065) 10 (0.0062)

36 450 6 (0.0034) 10 (0.0055) 4 (0.0023)

36 2,500 1 (0.0006) 5 (0.0027) 0 (0.0000)

36 10,000 0 (0.0000) 3 (0.0017) 0 (0.0000)

36 40,000 1 (0.0006) 2 (0.0012) 0 (0.0000)

75 250 1,658 (0.5508) 13 (0.0072) 17 (0.0095)

75 450 215 (0.1080) 7 (0.0038) 4 (0.0022)

75 2,500 6 (0.0033) 3 (0.0016) 0 (0.0000)

75 10,000 5 (0.0028) 4 (0.0022) 0 (0.0000)

75 40,000 0 (0.0000) 6 (0.0036) 0 (0.0000)

150 450 1,527 (0.5591) 10 (0.0054) 13 (0.0071)

150 2,500 15 (0.0081) 12 (0.0064) 0 (0.0000)

150 10,000 17 (0.0093) 8 (0.0044) 1 (0.0005)

150 40,000 4 (0.0024) 8 (0.0047) 1 (0.0006)

Number of false inversion breakpoints predicted by SVDetect (SVD),
VariationHunter (VH) or GRIAL under each sequencing strategy, defined by the
template and the read lengths. In parentheses, the proportion that these false
positives represent among all the predictions.
doi:10.1371/journal.pone.0061292.t004
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structural variant discovery by integrated paired-end and split-read analysis.

Bioinformatics 28: i333–i339.

Detection of Inversions by Paired-End Sequencing

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e61292


