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Abstract: Osteogenesis imperfecta/Ehlers–Danlos (OI/EDS) overlap syndrome is a recently described
disorder of connective tissue, characterized by mutation of COL1A1 (17q21.33) or COL1A2 (7q21.3)
genes, that are involved in α-1 and α-2 chains of type 1 collagen synthesis. The clinical spectrum of
this new clinical entity is broad: patients could present a mixed phenotype that includes features
of both osteogenesis imperfecta (bone fragility, long bone fractures, blue sclerae, short stature) and
Ehlers–Danlos syndrome (joint hyperextensibility, soft and hyperextensible skin, abnormal wound
healing, easy bruising, vascular fragility). We reported the case of a young Caucasian girl with severe
short stature and a previous history of neuroblastoma, who displayed the compound phenotype of
OI/EDS. Next generation sequencing was applied to the proband and her parent genome. Our patient
presented a de novo heterozygous COL1A1 variant (c.3235G>A, p.Gly1079Ser), whose presence might
be indicative of diagnosis of OI/EDS overlap syndrome. We also hypothesize that the association
with the previous history of neuroblastoma could be influenced by the presence of COL1A1 mutation,
whose role has been already described in the behavior and progression of some cancers.

Keywords: osteogenesis imperfecta; Ehlers–Danlos syndrome; neuroblastoma; short stature; osteogenesis
imperfecta/Ehlers–Danlos overlap syndrome; genotype/phenotype correlation

1. Introduction

Osteogenesis imperfecta (OI) is an inherited and rare disorder of connective tissue
with a broad clinical spectrum, usually characterized by skeletal deformities, osteopenia,
blue sclerae, dentinogenesis imperfecta, and extremely fragile bones [1].

Between 85% and 90% of individuals with OI have autosomal dominant mutations of
COL1A1 and/or COL1A2 genes, that are involved in α-1 and α-2 chains of type 1 collagen
synthesis [2,3] the most abundant extracellular matrix (ECM) component in various tissues
and organs.

The OI Mutation Consortium has identified a large number of COL1A1/COL1A2
mutations are secondary to the substitution of glycine residues in the type 1 collagen
chain [4].
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The remaining cases (approximately 20%) are caused by autosomal recessive muta-
tions in genes involved in collagen-related metabolic pathways (such as post-translational
modification, folding and cross-linking, bone mineralization, and osteoblast differentiation)
or in cartilage-associated protein (CRTAP).

Recent nosology has classified OI into 20 types [5], that range from perinatal lethality
(as in type 2) to milder forms presenting only as a premature form of osteoporosis (type 1).

Bone biopsies from patients with OI revealed a continuous change in morphologic
appearance of the bone, from severe lethal perinatal forms to progressively deforming ones.
The more severe variants of OI were characterized by the persistence of woven bone and
immature structural patterns. Bone structure could appear normal in mild forms of OI, as
type I OI, or did not reach a fully compacted stage in progressive deforming variants [6].

Clinical examination requires a familiarity with the natural history and variation in clin-
ical presentation of OI and has an important role in recognition of children with suspected
disease. Sometimes, the evaluation for the disease starts from the recognition of clinical
signs—such as blue sclerae, conductive hearing loss, and dentinogenesis imperfecta—or
during the auxological follow up of a child with short stature/poor growth [7].

OI diagnosis depends on the determination of a reduced/abnormal synthesis of type
1 procollagen molecules by cultured fibroblast or could be based on the identification of a
mutation in COL1A1 or COL1A2, the two genes that encode the chains of type 1 collagen [7].

Different types of OI could exhibit similar clinical features, but the definitive diagnosis
is revealed by analyzing the genes involved in the background of the disease. Next- gener-
ation sequencing of common osteogenesis imperfecta-related genes COL1A1 or COL1A2
are used in clinical practice to confirm the diagnosis and contribute to the subclassification
of OI, especially in mild phenotypes [8].

Mutations in the gene encoding type 1 procollagen are also responsible for the rare
arthrocalasic subtype of Ehlers–Danlos syndrome (EDS) [9–11].

EDS includes a clinically varied and genetically heterogeneous group of soft connective
tissue disorders sharing the triad of joint hypermobility, skin hyperextensibility, and soft
tissue/vascular fragility. The 2017 international classification of EDS [12] identifies three
different types—classical EDS with arterial fragility, arthrocalasis EDS, and cardiac-valvular
EDS—associated with deleterious variants in genes encoding the α-1 and α-2 chains of
collagen I [13].

Arthrocalasis EDS is clinically characterized by severe generalized joint hypermobility,
congenital bilateral dislocation of the hip, recurrent join subluxations, skin hyperexten-
sibility, atrophic scarring, blue sclerae, and osteopenia without increased incidence of
fractures [7].

The clinical manifestations of EDS are broad and often overlap with closely related
disorders, such as some bone dysplasias, cutis laxa syndromes, hereditary myopathies, and
TGF β-related disorders.

Osteogenesis imperfecta (OI) could overlap in a different way [14].
The combination of EDS and OI is very rare (>1/1,000,000 according to Orphanet) and

this entity is not included in the current International classification of EDS: it is not clear
whether this phenotype might be considered as a forgotten type of EDS with an associated
molecular defect or if it is implicitly included in the OI nosology [13].

Recently, some authors considered the COL1A1-COL1A2 mutations related EDS and
osteogenesis imperfecta a distinct form from other EDS or OI variants, termed OI/EDS over-
lap, and deserving of appropriate genetic counseling and follow-up. These mutations are
responsible for a wide range of phenotypes including mild-to-lethal forms of osteogenesis
imperfecta and a restricted set of Ehlers–Danlos syndrome clinical manifestations [15].

In recent years, only a few cases of patients with OI and EDS have been described [1]:
most of them displayed a clinical phenotype resembling EDS, but they could not be entirely
classified as one of the three aforementioned subtypes, both in clinical spectrum and in the
underlying collagen protein defect [16].
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We described the case of a Caucasian young girl, followed in our Pediatric Endocrinol-
ogy Outpatient Clinic for severe short stature, who presented a de novo heterozygous
mutation c.3235G>A [p.(Gly1079Ser)] of COL1A1 gene associated with a history of neurob-
lastoma and a clinical phenotype compatible with a OI/EDS syndrome.

2. Materials and Methods
2.1. Study Design

For this study we have a case report on the clinical features and next generation
sequencing of a patient with clinical features compatible with OI/EDS overlap syndrome
and a previous history of neuroblastoma. The patient’s parents were also assessed in order
to confirm the results.

2.2. Case Description

The proband was a 10-year-old Caucasian girl, who came to our attention due to a
severe short stature.

Family history was unremarkable. She was born at 38 weeks of gestational age within
the lower limits of auxological birth parameters (birth length: −1.57 SDS and birth weight:
−1.48 SDS). During the first months of life, she presented feeding problems and needed
enteral nutrition via naso-gastric tube for 3 months.

A series of investigations were performed in order to exclude cystic fibrosis, urinary
tract infection, metabolic diseases, congenital heart malformations, celiac disease: sweat
test, urinalysis, serum and urinary amino acids dosage, echocardiogram, screening for
celiac disease, and sialotransferrin isoelectric focusing (IEF) were normal.

Conventional karyotyping and chromosomal microarray analysis did not show chro-
mosomal anomalies. Mutational analysis of SHOX gene was performed by MLPA analysis
followed by gene sequencing to exclude a frequent cause of short stature.

Imprinting disorders, particularly Silver–Russell syndrome and Prader–Willi syn-
drome were tested and excluded.

At the age of 11 months, she was diagnosed with stage 4 MYCN nonamplified neu-
roblastoma with left adrenal and bone marrow invasion, successfully treated with left
adrenalectomy followed by 6 chemotherapy courses of the carboplatin–etoposide associ-
ation. The tumoral response was complete and no further relapses were detected in the
following years.

Therefore, at the age of 9 years, due to a severe and worsening height deficit hormonal
causes of short stature (growth hormone deficit, hypothyroidism, hypercortisolism) were
investigated and then excluded; a brain MRI did not show median line alterations and only
the presence of arachnoidal cyst in the right temporo-polar region was detected.

Clinical examination at 10 years of age revealed a condition of severe short stature with
2 years delayed bone age: height was 119.5 cm (−3.06 SDS), weight 23.4 kg (−0.76 SDS)
and bone age 8.25 years. The child’s height was about 4 SDS lower than target height (TG
1.19 SDS), her height velocity during the last year was significantly reduced (−2.12 SDS)
and no signs of incipient pubertal development were detectable (B1/Ph1 according to
Tanner’s stage).

She had pale and mild hyperelastic skin, bilateral ectropion, and blue sclerae (Figure 1).
Joint hypermobility of large and of finger joints (Beighton score 7/9), scoliotic curvature of
the spine, tooth decay, and mild changes in tooth enamel were other prominent phenotypic
features. There was no abnormality in scarring and no muscular weakness.

Laboratory tests for complete blood count, hepatic and renal function, electrolytes,
thyroid hormones dosage, and also the evaluation of vitamin D and parathormone levels
were confirmed normal, similarly to growth hormone (GH) stimulated levels.

Audiometric examination and ocular evaluation were normal. Bone density study with
dual-energy X-ray absorption (DEXA) showed a markedly reduced bone mineralization
(femoral BMD Z score −4.3 SDS and lumbar Z-score −3.3 SDS) [17].
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Figure 1. Clinical feature of the subject with OI/EDS overlap syndrome: Proband’s photographs
showing blue sclerae.

Despite a negative history of fractures, the presence of joint hypermobility, short
stature, blue sclerae, and tooth enamel alterations led us to hypothesize an inherited
genetic condition, such as COL1-related overlap disorder. For this reason, and after genetic
counseling, a test was performed using next-generation sequencing (NGS) technology.

2.3. Samples

Patient’s genomic DNA, clinical data, and photographs were collected and analyzed
for both diagnosis and research purposes. Written informed consent was provided and
signed by both parents.

2.4. Next Generation Sequencing

Enrichment and parallel sequencing were performed on genomic DNA extracted from
circulating leukocytes of the affected subjects and unaffected parents. Library prepara-
tion was carried out by using a Twist Custom Panel (clinical exome—Twist Bioscience),
according to the manufacturer’s protocol, and sequenced on a NovaSeq6000 (Illumina)
platform. A short stature gene panel was assessed which included the following genes:
ACAN, AFF4, ANKRD11, BRD4, CASK, CCDC8, CLCN5, COL27A1, COL2A1, COMP, CUL 7,
FGD1, FGFR3, FLNB, GHSR, HDAC6, HMGA2, IGF1R, IHH, KDM6A, MAF, MATN3, NP
R2, OBSL1, ORC1, PCNT, PDE3A, PDE4D, PIK3R1, POC1A, PTPN11, BLM, SHOX, SHOX2,
SLC26A2, SMAD4, SRCAP, STAT3, TBX15, TRAIP, TRIM37, TRPS1, UBR1, XRCC4, COL
9A1, COL9A2, LTBP3, COL1A1, COL1A2, BMP1, CREB3L1, CRTAP, FKBP10, P3H1, PPIB,
SERPINF1, SERPINH1, SP7, SPARC, TMEM38B, WNT1, and IFITM5.

The BaseSpace pipeline (Illumina, San Diego, CA, USA, https://basespace.illumina.
com/, accessed on 15 September 2020) and the TGex software LifeMap Sciences, Walnut,
CA, USA, http://tgex.genecards.org/, accessed on 21 September 2020) were used for the
variant calling and annotating variants, respectively.

Sequencing data were aligned to the hg19 human reference genome. Based on the
guidelines of the American College of Medical Genetics and Genomics, a minimum depth
coverage of 30X was considered suitable for analysis.

Mutations identified as pathogenic were confirmed by Sanger sequencing, following a
standard protocol (BigDye Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems by
Life Technologies, Waltham, MA, USA).

3. Results

The exam showed a de novo missense heterozygous variant NM_000088.3: c.3235G>A,
p.(Gly1079Ser) of the COL1A1 gene.

This variant was not present in DNA samples of the parents. It was not reported in
the frequency database of the general population and was described in the literature in as-
sociation with OI [18,19] and could be classified as a pathogenic variant (class 5), according
to the American College of Medical Genetics and Genomics (ACMG) guidelines [20].

4. Discussion and Review of Literature

We described a case of a young girl with a de novo missense heterozygous mutation
c.3235G>A p.Gly1079Ser of COL1A1 gene, already described in the literature in association
with type I and IV OI [18,19], and a clinical phenotype compatible with a OI/EDS syndrome.

https://basespace.illumina.com/
https://basespace.illumina.com/
http://tgex.genecards.org/
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To the best of our knowledge, this is the first case of OI/EDS overlap syndrome
associated with this heterozygous COL1A1 variant.

According to Cabral et al. [21] and Malfait et al. [16], OI/EDS syndrome could be
defined as a generalized connective tissue disorder characterized by features of both
osteogenesis imperfecta (bone fragility, long bone fractures, blue sclerae, short stature) and
Ehlers–Danlos syndrome (joint hyperextensibility, soft and hyperextensible skin, abnormal
wound healing, easy bruising, vascular fragility).

Literature data about this complex and rare syndrome are very few. Most recent
reports, made by Morlino et al. [13], described clinical and molecular features of 21 indi-
viduals, firstly ascertained by a clinical suspicion of EDS, in whom a wide spectrum of
COL1A1 and COL1A2 heterozygous variants (that usually cause OI) were detected.

OI/EDS syndrome is clinically heterogeneous and no conventional criteria are still
available to define this condition. The identification of these patients is consequently
usually difficult: they are often classified within the variability of a broader definition of OI
or diagnosed with a form of EDS featuring some of the minor clinical manifestations of
OI [13].

The name of the syndrome has also been questioned and some authors proposed the
broad nomenclature of “COL1-related overlap disorder” (C1ROD) to indicate an interme-
diate/mixed phenotype at the between of EDS and OI. This entity is characterized by the
presence of causative variants in COL1A1 and COL1A2 genes in individuals with EDS
typical phenotype (associated or not with signs of mild-moderate OI) that does not strictly
coincide with a certain type of mutation of type I collagen gene [13].

The identification of causative variants in COL1A1 or COL1A2 genes is necessary for
confirming the diagnosis of C1ROD.

Morlino et al. [13] identified a number of major and minor diagnostic criteria for
C1ROD whose presence should be addressed to perform specific molecular testing.

Major criteria are represented by the presence of blue sclerae, flatfeet with valgus
deformity, generalized joint hypermobility according to age, and significantly soft and
doughy and/or hyperextensible skin.

Dolichostenomelia (arm span/height ratio > 1.05 in adult only); hearing loss; short
stature (<2 DS); two or more atrophic (non-papyraceous) scars; two or more fractures in
prepubertal age; two or more joint dislocations; and two or more injuries and/or ruptures
of ligaments, tendons, and/or muscle were reported by Morlino et al. as minor criteria.

Molecular testing in index patients with suspected C1ROD should be performed in
presence of three or four major criteria or two major criteria plus two or more minor criteria
or one major criterion and five or more minor criteria [12].

We hypothesize that our case could be considered as an unusual variant of OI/EDS syn-
drome because of the coexistence of typical elements of EDS arthrochalase (such as joint hy-
permobility and mildly hyperelastic skin) in addition to the aforementioned OI phenotype.

In our case, we identified the presence of three major criteria (blue sclerae, generalized
joint hypermobility according to age, and hyperextensible skin) and one minor criterion
(short stature), so we decided to include molecular testing for C1ROD with NGS technology
in our diagnostic workup.

NGS technology is considered a powerful approach to detect COL1A1 and COL1A2
mutations associated with connective tissue disorders, such as OI or EDS. Prior to its
application, biochemical collagen analysis of fibrillar collagen proteins was used to identify
the defect responsible for the phenotypical features observed in patients with suspected OI
or EDS. Testing sensitivity is high for both types of investigations, but it is not clear if the
sensitivity is additive [7].

To date, a combined approach with biochemical collagen analysis and NGS technolo-
gies could be considered in patients in whom the diagnosis in unclear, including those with
OI/EDS overlap syndrome [11].

The majority of OI/EDS overlap syndrome patients displayed a heterozygous variant
in the N-terminal part of the type I collagen helical region in either the α-1 or α-2 chain
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which affects—to some extent—proper processing of the N-propeptide [16,22], and results
in the formation of small and weak collagen fibrils with irregular contours [20]. Glycine
substitutions are frequently found in patients with a mixed OI/EDS phenotype [16] and
condition clinical presentation.

This glycine residue appears to be evolutionally highly conserved if this change
induces a small physicochemical difference between glycine and serine. Glycine residues
within the Gly-Xaa-Yaa repeats of the triple helix domain are required for the structure and
stability of fibrillar collagens [23–25]. Experimental studies show that this missense change
(p.Gly1079Ser) results in minor helix destabilization [26] at the C-terminal region. For these
reasons, this variant is classified as pathogenic.

Furthermore, as previously described [18], changes affecting glycine residues could be
responsible of an OI phenotype characterized by low bone mineral density, short stature,
dentinogenesis imperfecta, and scoliosis, as with our patient. On the other hand, EDS
features seem to be more evident in individuals with abnormal/delayed type I procol-
lagen N-propeptide processing, due to variants affecting the N-terminal of α-1 and α-2
procollagen [16].

In our case, the initial suspicion was about a mild form of OI. Additionally, the type
of mutation found—classified as pathogenic variant (class V)—has been already reported
to segregate with type I OI in several families [26–29]. First description was made in 1992
and interested Italian patients from the same family [26]. It has also been detected in many
individuals and families with OI types I, III, and IV [19,30–34].

To date, 23 individuals with this p.Gly1079Ser mutation of COL1A1 gene have been
described in literature [4,6,19,28,30,32] and all identified as OI subtypes: 8 patients were
diagnosed with type IV OI, 14 were classified as suffering from type I OI, and 1 case
remained undetermined. There are both sporadic and familial cases and a broad pheno-
typic variability has been observed, also among the same family members. This different
genotype–phenotype correlation is not clear and could be related to the influence of other
genes and environmental factors on clinical presentation [35].

Short stature was a prominent feature of our patient, however her stimulated GH
and basal IGF1 levels were normal and other endocrinological causes of short stature were
ruled out because of the normality of hormone dosages.

Severe short stature may be common, but it is a not well-studied feature in OI patients
which usually presents growth failure and compromised final height [36].

Growth impairment in OI patients usually starts since toddler age and is mainly due
to the absence of osteoanabolic stimuli, secondary to defects in collagen structure that
alter chondrocyte maturation and influence the so called “functional muscle-bone-unit”
activity [37–39].

The severity of growth failure is strictly dependent on the OI severity, so it is more
severe in patient with type 3 OI, who reach a final height of less than 100 cm [40].

This complex etiology could also explain the lack of effectiveness of attempts with GH
treatment [41], whose secretion rate is usually normal [41] and whose action on growth
velocity could depend probably on the underlying disease [42].

Short stature is rarely observed among EDS patients, excepting for the rare “Ehlers–
Danlos syndrome, spondylodysplastic form type 3”, secondary to recessive loss-of-function
variants in SLC39A13, a zinc transporter gene [43,44]; however, it has been described as a
common clinical feature among patients with “OI/EDS overlap syndrome” (Table 1).
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Table 1. Clinical features of patients with OI/EDS syndrome reported in literature.

References
No. of
Case

Described
Gene Nucleotide

Change

De Novo
(DN)/Familial

(F) Case

Blue
Sclerae

Hyper
Extensible

Skin

Positive
Beighton

Score

History of
Fractures

Altered
Bone

Density

Short
Stature

Cardiac
Valvular
Defects

Easy
Bruising

Hearing
Loss

Joint
Pain Other Features

Morlino et al.,
2020 21

COL1A1
(6 cases)

c.2073delT F + + + + - - + - - + Piezogenic papules
c.1243C>T F + + + + + - + - - + Flatfeet
c.670G>A F + + + + - + NA - - + Muscle ruptures

c.581G>C F + + + - - - NA - + + Microcornea
progressive scoliosis

c.326G>A F + + + - - - NA - - + Dystrophic scars

COL1A2
(15 cases)

c.577G>A

F

+ +/− + + + - + + + +

Chronic
periodontitis,

neonatal
hypotonia

c.432 + 5G>A + - + + NA - - - - - ---

c.335G>T + - + + - - NA - - + Flat feet, progressive
scoliosis

c.197G>A + + + + - - NA - - + Dental crowding,
high arched palate

c.432+ + 4_432 +
7delAGTA F + + + - - - + + - + Flatfeet

c133G>T F - + + + - - - + - - Myopia, gingival
fragility

c.316G>A F + - + + - + + + - + Myopia, high arched
palate

c.2755G>A DN + - + + - + NA + - + Flatfeet

Budsamongkol
et al., 2019 1 COL1A2 c.3296G>A DN + + + + + + NA - NA -

Brachydactyly,
malocclusion

dentinogenesis
imperfecta, skeletal

deformities

Lin et al.,
2019 1

COL1A1
COL5A1

c.2010delT
c.5335A>G F + - + + NA NA NA + - - Prominent ears,

atrophic scarring

Mackenroth
et al., 2016 1 COL1A1

TNXB

c.4006-1G>A
c.7774G>A
c.3637G>A

F - - + + + - - - - -

Severe muscular
weakness,

abnormally shaped
vertebra
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Table 1. Cont.

References
No. of
Case

Described
Gene Nucleotide

Change

De Novo
(DN)/Familial

(F) Case

Blue
Sclerae

Hyper
Extensible

Skin

Positive
Beighton

Score

History of
Fractures

Altered
Bone

Density

Short
Stature

Cardiac
Valvular
Defects

Easy
Bruising

Hearing
Loss

Joint
Pain Other Features

Malfait et al.,
2013 7

COL1A1

c.563G>A DN + + - + + + - + NA NA

Atrial septum
defect, muscular

hypotonia, arterial
rupture

c.607G>T DN + + + + + + - + NA NA

Aortic dilation,
inguinal hernia joint

dislocation,
kyphoscoliosis

COL1A2

c.324+4delA DN + + + + + + + + NA NA
Muscular hypotonia,

joint
dislocation

c.587G>T F + + NA - + NA - + NA NA Muscular hypotonia,
intracranial bleeding

c.432 + 4_432 +
7delAGTA DN + + + + + + - + NA NA Joint dislocations

c.587G>T DN + + + + + + - + NA NA Muscular
hypotonia

c.693+5G>A DN + + NA + + - NA + NA NA
Pes planus, mild

bowing of tibia and
fibula

Present
report 1 COL1A1 c.3235G>A DN + + + - + + - - - -

Changes in tooth
enamel, history of

neuroblastoma,
scoliosis

DN: de novo; F: familial; NA: not available.
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In our patient’s history, feeding problems had been a remarkable feature. In a cohort
of patients with OI/EDS overlap syndrome [13] a condition of neonatal hypotonia was
reported, but no mention of feeding problems was present. This element is increasingly
found among patients with several genetic diseases, and often its presence could be a signal
of a specific disease (e.g., Prader–Willi syndrome) [45].

We could not say whether in our girl this condition was related to neonatal hypotonia
or whether it was a direct consequence of her genetic defect.

Additionally, the incipient neuroblastoma could justify its presence.
The association with a past history of neuroblastoma is another important element in

our Case Report. Malignancies are rarely described among OI patients [46] and an alleged
biochemical resistance to cancer of these individuals was suggested [47].

Osteosarcoma is the most frequent malignancies among OI patients [48,49] and might
be probably secondary to the strong irradiation they are exposed to because of the great
number of diagnostic radiographs of fractured bones, as reported in previous studies.
Moreover, sporadic cases of tumors derived from breast, ovarian, colon, and gastric ep-
ithelium were described [45,50–55]. Furthermore, malignant tumors are also infrequent in
patients with EDS and no cases of neoplasms have been, until now, reported in patients
with OI/EDS syndrome.

NB is an embryonic developmental malignancy derived from sympathetic neural
crest cells that usually affects children less than 18 months of age. It presents different
phenotypes, that range from spontaneously regressive forms to metastatic and fatal disease,
especially children older than 18 months at the time of diagnosis [56,57].

Stage 4 NB affects patients less than 18 months of age and it is characterized by the
presence of metastasis to bone with or without manifestations in other metastatic sites [58].
Children with stage 4 nonamplified MYCN disease show a better outcome even with
reduced treatment [59].

Genetic predisposition to NB development has been associated with common and
rare genetic germline mutations [57]. At a somatic level, NB tumors show relatively few
recurrent alterations, with point mutations in ALK (8–10%) and in ATRX (1–2%) being the
most frequent [57]. A possible explanation for the association between COL1A1 mutation
and NB could be given by recent genomic analysis suggesting COL1A1 playing a role in
NB development. Indeed, our whole exome and deep sequencing study found somatic
pathogenic mutations occurring in collagen type family genes—including COL1A1—in
a subset of high-risk NBs [60]. While a cis-regulatory network analysis of NB reported
COL1A1 as a relevant gene regulated by a super enhancer involved in the modulation of
NB cell identity [61].

Moreover, COL1A1 is indicated as a predisposition gene in pediatric cancers [62].
Finally, COL1A1 seems to also play a role in initiation and progression of other cancers,
such as colon cancer [63], gastric cancer [64], esophageal cancer [65], and ovarian cancer [66].

We are not able to explain how the presence of COL1A1 mutation could influence NB
onset or progression in our patient. The link between both the diseases currently remains
only a hypothesis based on the observation of a single case and further studies are needed
to confirm our assumption.

5. Conclusions

The presence of COL1A1 c.3235G>A variant might be suggestive of a diagnosis of
OI/EDS overlap syndrome. We also could hypothesize that the observed association with
the previous history of neuroblastoma is not incidental, but it could be influenced by the
presence of COL1A1 mutation, whose role in some cancers behavior and progression has
been already described.
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