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Abstract

Systemic lupus erythematosus (SLE) is characterized by increased DNA demethylation in T cells, 

although it is unclear whether this occurs primarily in a subset of SLE T cells. The process driving 

the DNA demethylation and the consequences on overall gene expression are also poorly 

understood and whether this represents a secondary consequence of SLE or a primary contributing 

factor. Lupus-prone lpr mice accumulate large numbers of T cells with age because of a mutation 

in Fas (CD95). The accumulating T cells include an unusual population of CD4−CD8−TCR-αβ+ 

(DN) T cells that arise from CD8+ precursors and are also found in human SLE. We have 

previously observed that T cell accumulation in lpr mice is due to dysregulation of T cell 

homeostatic proliferation, which parallels an increased expression of numerous genes in the DN 

subset, including several proinflammatory molecules and checkpoint blockers. We thus determined 

the DNA methylome in lpr DN T cells compared with their CD8+ precursors. Our findings show 

that DN T cells manifest discrete sites of extensive demethylation throughout the genome, and 

these sites correspond to the location of a large proportion of the upregulated genes. Thus, 

dysregulated homeostatic proliferation in lpr mice and consequent epigenetic alterations may be a 

contributing factor to lupus pathogenesis.
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INTRODUCTION

T cells from patients with systemic lupus erythematosus (SLE) are known to manifest 

evidence of activation and autoreactivity (1, 2). They also contain increased levels of DNA 

demethylation, one of the main epigenetic regulators of gene expression (3–5). In addition, 

certain medications that are known to promote DNA demethylation, such as hydralazine and 

procainamide, can provoke autoreactivity of T cells and drug-induced lupus (6). However, 

the mechanism driving DNA demethylation in SLE remains obscure.

Lupus-prone lpr mice bear a retroposon disruption of the death receptor Fas (CD95) (7). 

This results in the accumulation of T cells that would ordinarily undergo programmed cell 

death during homeostatic proliferation (8). Among the accumulating T cells is a subset of 

polyclonal CD4−CD8−TCR-αβ+ (DN) T cells that derive from CD8+ precursors during 

homeostatic proliferation (9, 10). This subset is also present in human SLE and derives from 

CD8+ T cells (11–13). We have previously observed that compared with their CD8+ 

precursors, DN T cells from lpr mice have upregulated gene expression of numerous 

immune modulating molecules, including the cytolytic machinery of Fas-ligand, Granzyme 

B, and perforin, as well as inhibitory molecules such as PD-1, Lag3, and IL-10 (14). Initial 

analysis of one of these genes, Pdcd1 (PD-1), which is known to be regulated by DNA 

methylation (15), revealed extensive demethylation of the 5ʹ regulatory region in DN T cells 

compared with the CD8+ precursors subset (14). Based on these observations, we considered 

that DNA demethylation may occur more extensively in the genome of lpr DN T cells as 

part of the process of homeostatic proliferation. This might serve in part to explain the 

particular constellation of genes upregulated in these cells.

MATERIALS AND METHODS

Mice

Mice were bred and housed in the Association for Assessment and Accreditation of 

Laboratory Animal Care International–approved animal facilities of The University of 

Vermont. Original breeding pairs of B6.MRL-Faslpr/J (Faslpr/lpr) mice were obtained from 

The Jackson Laboratory (Bar Harbor, ME). All mice in these studies were on a C57BL/6 

background and were used between 10 and 13 wk of age. All animal studies were conducted 

in accordance with the policies of The University of Vermont’s Animal Care and Use 

Committee.

T cell subset purification

Single-cell suspensions of pooled inguinal, brachial, axillary, cervical, and popliteal lymph 

nodes were prepared in RPMI 1640 containing 25 mM HEPES, 5% v/v bovine calf serum 

(HyClone, Logan, UT), 5 × 10−5 M 2-ME, 100 U/ml penicillin, and 100 U/ml streptomycin. 

To isolate T cell subsets by negative selection, lymph node cells were incubated with the 

appropriate Abs (see below), washed, and then incubated by rocking with goat anti-rat and 

goat anti-mouse IgG-coated beads (QIAGEN). Ab-coated cells were removed by magnetic 

depletion. Cell suspensions were incubated with anti–MHC class II (3F12), anti-CD11b 

(M1/70), anti-NK1.1 (PK136), anti-κ (187.1), and anti-CD4 (GK1.5). To obtain CD8+ T 
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cells, anti-CD45R (B220 and RA3GB2) was also added. To isolate DN T cells, anti-CD8 

(Tib105) was also included. Purity of cell subsets was examined by flow cytometry in each 

preparation and was consistently >93%.

Reduced representation bisulfite sequencing

Genomic DNA was prepared using the Quick gDNA Micro Prep Kit (Zymo Research) 

according to the manufacturer’s instructions. Bisulfite sequencing libraries were generated 

as described previously using a custom adapter–primer combination (16, 17). Briefly, 

genomic DNA was digested separately with MspI and TaqI to enrich for CpG containing 

DNA and combined with methylated PhiX control DNA (New England Biolabs). The 

resulting DNA was used as input for the KAPA HyperPrep Kit (Roche Diagnostics) with the 

following modifications. Adapters for ligation contained fully methylated CpGs. Following 

ligation, adapter-ligated DNA was bisulfite treated using the EpiTect Bisulfite Kit 

(QIAGEN), and library amplification was performed using the KAPA HiFi HotStart Uracil+ 

polymerase (Roche Diagnostics) with custom indexing primers. Final libraries were quality 

checked on a Bioanalyzer 2100 (Agilent Technologies), pooled at equimolar ratio, and 

sequenced on an Illumina HiSeq1500/2500 RapidRun using a paired-end 2 × 75 Rapid Run 

flow cell at the Vermont Integrated Genomic Resource Core.

Reduced representation bisulfite sequencing analysis

The FASTQ files were quality checked using the Fastx Toolkit v0.0.14, adapter content 

trimmed using Cutadapt v1.12 (18), and data mapped to the mm10 version of the mouse 

genome using Bismark v0.13 (19). CpG methylation calls were computed using a custom R 

pipeline that is available upon request. Bisulfite conversion was assessed using the PhiX-

methylated spike in DNA, which showed >99% conversion efficiency for all samples. CpG 

covered with at least 10 reads in each group were used for all downstream analysis. 

Differentially methylated loci (DML) were determined using the DSS package (20) and CpG 

with a false discovery rate–corrected p value <0.05 and <20% change in methylation 

between groups were considered significant. CpG were annotated to the nearest gene 

transcription start site. To identify transcription factor binding motifs at demethylated DML 

the HOMER findMotifs-Genome.pl script was used with the -size 400 setting. All data 

visualization and downstream analysis were performed using custom R scripts that are 

available upon request. DNA methylation data are available from the Gene Expression 

Omnibus under accession https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE155293.

Meta-analysis with microarray data

To determine to what degree the most demethylated genes were part of the set of genes 

upregulated in DN T cells compared with CD8+ T cells, DNA methylation data were 

integrated with our previous microarray analysis (14). A total of 968 genes were both 

upregulated and demethylated DN T cells. With this set, Gene Ontology (GO) term 

enrichment and pathway analysis was conducted using Partek Genomics Suite, version 7.18 

(Partek, St. Louis, MO). In addition, functional cluster and pathway analysis was performed 

using both National Institutes of Health (NIH) Database for Annotation, Visualization, and 

Integrated Discovery (https://david.ncifcrf.gov) and Ingenuity Pathways Analysis (Ingenuity 
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Systems, www.ingenuity.com). The DML that mapped to the 968 upregulated genes was 

selected, resulting in 7649 CpG. Among those, 7267 DML were demethylated in the DN 

subset compared with the CD8+ subset.

Meta-analysis with assay for transposase-accessible chromatin sequencing data

To compute the overlap of DML and accessible chromatin regions, we analyzed previously 

defined assay for transposase-accessible chromatin sequencing (ATAC-seq) data (accession 

no. GSE83081) from unstimulated splenic naive CD8+ T cells and splenic effector CD8+ T 

cells at day 8 following lymphocytic choriomeningitis virus Armstrong infection (day 8 

effector) that were positive for the gp33, gp276, and np396 tetramers (21). A set of 

accessible regions was assembled by merging the peaks from naive and day 8 effector 

samples using the HOMER mergePeaks function and converted to a bed file using 

pos2bed.pl (22). Because the ATAC-seq data were mapped to the mm9 mouse genome, all 

DML coordinates were converted mm9 using the UCSC Genome Browser liftover tool (23). 

The overlap of DML and ATAC-seq regions was computed using the bedtools window 

function with -w as the indicated distance (24). To determine overlap significance, the 

ATAC-seq regions were randomly shuffled across the genome using the bedtools shuffle 

command 1000 times and overlap with DML calculated as above for each distance window. 

The p values were calculated as the number of times the permuted overlap was greater than 

the observed overlap divided by the number of permutations (1000), with p values <0.001 

resulting from zero permutations being greater than the observed overlap. For plotting 

ATAC-seq data, the mm9 bigWig tracks were converted to mm10 using the bwtool (25) and 

the mm9ToMm10.over.chain.gz UCSC Genome Browser chain file.

RESULTS

Discrete genome demethylation of lpr DN T cells

DNA from DN T cells and the precursor CD8+ T cells of B6-lpr mice were subjected to 

reduced representation bisulfite sequencing (RRBS) (17). B6-lpr mice were chosen over 

MRL-lpr mice, as B6-lpr mice develop only minimal if any lupus manifestations, allowing 

better separation of the epigenetic findings from potential confounding processes driven by 

autoimmune disease. Three separate purifications of both Tcell subsets were made using a 

pool of three mice in each purification. A total of 2,350,129 CpG with a 10× coverage across 

both groups of T cells was used for downstream analysis, representing 11% of the roughly 

22 million murine CpG. Analysis of the mean DNA methylation levels in each subset 

revealed that the DN subset had ~2.5% greater demethylation globally compared with the 

CD8+ T cell precursors (Fig. 1A, 1B).

Analysis of significant DML revealed 56,903 CpG (2.4% of total covered) that displayed 

>20% change in DNA methylation with a false discovery rate <0.05 (Supplemental Table I). 

Intriguingly, 54,500 (96%) of the DML between these two T cell subsets reflected a loss of 

DNA methylation in the DN subset, which was highly consistent and significant across the 

three separate experiments (Fig. 1C, 1D). Consistent with the change in distribution, many 

of the CpG were close to 100% methylated in all CD8+ T cell alleles and shifted to low-

intermediate levels of methylation in DN T cells. Of particular interest was that multiple 

Scharer et al. Page 4

Immunohorizons. Author manuscript; available in PMC 2021 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ingenuity.com


DML clustered at discrete genomic regions, suggesting the changes in DNA methylation 

were not random. For example, significant changes in DNA methylation along chromosome 

1 cluster when viewed at different base pair resolutions (Fig. 1E). Findings for all 

chromosomes are provided in Gene Expression Omnibus under accession GSE155293. 

These data demonstrate that DN T cells display wide-ranging DNA demethylation but at 

discrete loci.

Overlap of demethylation sites and upregulated genes in DN T cells

We previously performed gene expression profiling for DN T cells and CD8+ T cells from 

B6-lpr mice and noted 1646 genes that were significantly upregulated in DN T cells (14). 

Among the upregulated genes was Pdcd1, and the finding that this locus was also 

demethylated suggested there might be a wider correlation of DNA methylation changes and 

gene expression of other upregulated genes in DN T cells. Therefore, DML were assigned to 

genes by annotating to the nearest transcriptional start site. Strikingly, 968 of the 1646 

upregulated genes mapped to DML that lost DNA methylation in the DN subset (Fig. 2A). 

Given that many of these genes are upregulated in DN T cells, the change in gene expression 

was correlated with the change in DNA methylation for each DML that mapped to a gene 

with significant gene expression changes. Consistent with a repressive role for DNA 

methylation, this analysis revealed an inverse relationship between the two datasets, with the 

majority of the demethylated loci mapping to genes that gained gene expression (Fig. 2B, 

top left quadrant).

Several immune-related genes were both upregulated and located near demethylation sites, 

including Nfatc1, Nfatc2, Fyn, Eomes, Ifng, Il10, Fasl, Cxcr5, Pdcd1, Lag3, Slamf7, and 

Gzmb, among others (Fig. 3A). Indeed, multiple demethylated DML can be visualized in the 

DN subset within the loci for Fasl, Gzmb, Lag3, Ifng, Tbx21, Eomes, Cd8a, and Il17a (Fig. 

3B).

A GO term enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis 

was performed using this set of 968 upregulated genes to determine if there was an 

enrichment for specific cellular functions. Among the enriched GO terms were molecular 

mechanisms of cancer, PI3K signaling, PTEN signaling, and cell death and survival (Table 

I). The leading Kyoto Encyclopedia of Genes and Genomes pathway was TCR signaling 

(Supplemental Table I). This was of interest given that the DN T cells arise from CD8+ 

precursors during repeated rounds of homeostatic proliferation, which requires recurrent 

TCR stimulation by autologous MHC/peptide complexes (26). Additionally, the upregulated 

genes were ranked according to the number of demethylated DML mapping to each gene 

(Supplemental Table II). The gene with the most DML and highest ranking was Foxp1, 

which is a known regulator of quiescence in T cells (27, 28). This is consistent with earlier 

observations that lpr DN T cells are small senescent cells that do not proliferate when 

activated in vitro (29, 30).

DML occur near regions of accessible chromatin in effector CD8+ T cells

Analysis of the gene expression changes for DNA methyltransferases and demethylases 

revealed that only Dnmt3b was significantly different (Table II), suggesting other 
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mechanisms might explain the observed DNA methylation changes. Analogous to the 

development of DN T cells from CD8+ precursors during homeostatic proliferation, the 

differentiation of CD8+ T cells from naive to effector cells involves extensive remodeling of 

accessible chromatin and DNA methylation at cis-regulatory regions (21, 31). The observed 

clustering of DML and their proximity to genes that were remodeled during effector CD8+ T 

cell differentiation suggested that the DNA methylation changes may be associated with 

similar cis-regulatory elements. Therefore, using a range of distance windows, the overlap of 

each DML to a region of accessible chromatin in naive or day 8 effector CD8+ T cells 

responding to lymphocytic choriomeningitis virus from a previous study (21) was 

calculated. An increasing overlap of DML and accessible regions was observed, which was 

greater than a set of randomly shuffled sequences, with 16% within 500 bp and 54% within 

10 kb (Fig. 4A). Analysis of the accessibility in the 4 kb surrounding DML demonstrated a 

significant gain in accessibility in day 8 effector CD8+ T cells over naive CD8+ T cells (Fig. 

4B, 4C). For example, the Il10 and Pdcd1 (PD-1) loci contained DML that both overlapped 

and occurred in proximity to regions that gain accessibility in day 8 effector CD8+ T cells 

(Fig. 4D). Thus, DNA methylation occurs in proximity to cis-regulatory elements that gain 

accessibility in effector CD8+ T cells.

DML are enriched for AP-1, T-BET, and EGR transcription factor binding motifs

Regions that demonstrate dynamic DNA methylation during CD8+ T cell differentiation are 

enriched for transcription factor binding motifs that play important roles in CD8+ T cell fate 

and function (31). To determine if similar mechanisms occurred at the demethylated CpG in 

DN T cells, the surrounding 200 bp of each DML was searched for enriched transcription 

factor binding motifs using HOMER (22). As expected, the top two scoring enriched motifs 

contained sites for the MspI (CCGG) and TaqI (TCGA) restriction enzymes used in the 

RRBS assay (Fig. 5A). The next top scoring motifs were for the transcription factors AP-1, 

T-BET, and EGR2, all of which are involved in CD8+ T cell effector function (32–34). To 

further examine the epigenetic changes, the levels of DNA methylation and accessibility 

were computed for the 400 bp surrounding both AP-1 and T-BET motifs. Both motifs 

demonstrated a loss in DNA methylation in DN T cells versus CD8+ T cells (Fig. 5B). 

Consistent with this finding, each motif showed a higher level of accessibility in day 8 

effector compared with naive CD8+ T cells. These data suggest that DML in proximity to 

transcription factor binding sites drive an effector program as CD8+ T cells transition to DN 

T cells during homeostatic proliferation.

DISCUSSION

The current findings reveal an epigenetic program of global, yet highly selective, DNA 

demethylation accompanied by upregulation of numerous genes, both of which accompany 

T cell homeostatic proliferation in lpr mice. Unlike MRL-lpr mice, B6-lpr mice develop very 

little autoimmune disease with age. We thus intentionally performed these studies using B6-

lpr mice to separate the epigenetic changes that accompany T cell homeostatic proliferation 

from confounding factors that might be secondary to autoimmune disease. The findings 

therefore may be more broadly applicable to T cell homeostatic proliferation also in wild-

type mice. In fact, we have previously observed that successive rounds of T cell homeostatic 
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proliferation in B6 wild-type mice parallel gene expression changes nearly identical to B6-

lpr T cells, and a DN subset is also observed in B6 wild-type mice (14). Conceivably, 

epigenetic regulation of a similar constellation of genes may occur in wild-type mice during 

T cell homeostatic proliferation but are enhanced in lupus-prone mice.

T cells from SLE patients bear demethylated DNA (3–5), but the underlying cellular process 

regulating this was not fully defined. It was also not clear whether the demethylation 

occurred primarily in a subset of SLE T cells or globally in all T cells. Most of the studies 

on DNA methylation in lupus T cells have been conducted on CD4+ T cells, whereas the 

current study examined DNT cells and their precursor CD8+ Tcells. Nonetheless, there are 

remarkable similarities in upregulated gene expression between SLE CD4+ T cells and lpr 
DN T cells, including ITGAL (CD11a), CD40LG (CD40-ligand), IFNG (IFN-γ), RFR1 
(perforin), GADD45A, and CXCR3 (5), suggesting a possible common mechanism. 

Because DN T cells also occur in human SLE (2, 11), conceivably this subset in human SLE 

may also bear a substantial portion of the DNA demethylation in SLE T cells. Although 

most humans with SLE do not bear Fas gene mutations, it is possible that mechanisms 

operative in SLE might accelerate T cell homeostatic proliferation, resulting in a similar 

epigenetic program.

Recently, a study of PBMC from 17 monozygotic and dizygotic twin pairs discordant for 

SLE revealed extensive demethylation at 807 CpG sites corresponding to 49 genes in the 

affected twin compared with their healthy twin (35). This was not observed in 

twinsdiscordant forrheumatoid arthritis or diabetes mellitus. This study also found that the 

SLE patients had reduced mRNAlevels of the DNA methyltransferase, Dnmt3b, which we 

also observed to be decreased in lpr DN T cells (Table II). A further similarity is that several 

of the immune genes that were both demethylated and upregulated in the SLE twin study 

were also demethylated and upregulated in lpr DN T cells, including Il10, Grb10, Gfi1, 

Padi4, Cd9, and Aim2 (14, 35). In addition, DNA demethylation of a particular gene, Tnfsf7 
(CD70), has been observed in 16-wk autoimmune MRL-lpr mice compared with 5-wk mice 

prior to onset of autoimmunity (36). This was associated with a reduction in levels of 

DNMT1 (36).

The current findings also have striking similarities to our recent epigenetic and 

transcriptional analyses of B cells in human SLE (16). A subpopulation of IgD
−CD27−CXCR7−CD11c+ (DN2) B cells is expanded in SLE and has been linked to disease 

(37). DN2 B cells also share some similarity with autoantibody-associated B cells described 

in mice (18, 38). Interestingly, the AP-1, T-BET, and EGR transcription factor binding 

motifs that were observed in this study are also enriched in the SLE-specific accessible 

chromatin (16). Lpr DN T cells express high levels of the AP-1 complex (39) and manifest 

high levels of Ifng (14). Additionally, the gene expression profiling showed a parallel 

dysregulation of similar gene networks, among them regulation of cell cycling, glycolysis, 

oxidative phosphorylation, and apoptosis. This parallels the known high levels of both 

glycolysis and oxygen consumption by lpr DN T cells (40, 41). Additional common groups 

of upregulated genes included TCR signaling and protein phosphorylation. This is also 

consistent with the known constitutive phosphorylation of many signaling proteins in lpr DN 

Tcells, including several TCR signaling components, such as CD3ζ and Fyn (42, 43).
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In addition to the numerous upregulated genes related to cell cycling and cytokine 

production, both lpr DN T cells and SLE DN2 B cells also manifest upregulation of the cell 

cycle checkpoint blocker PD-1 (Pdcd1) and IL-10, and the sites of both genes correspond to 

sites of demethylation (16). It is of interest that homeostatically repopulating B cells 

following depletion with rituximab also express high levels of IL-10 (44). Collectively, these 

findings may suggest that lpr DN T cells, SLE DN2 B cells, and B cells following rituximab 

share a common epigenetic and transcriptional program linked to increased homeostatic 

proliferation.

A recent study showed that treatment of MRL-lpr mice with 5-azacytidine (5-Aza), a 

chemical analogue of cytidine that inhibits DNA methylation, enhanced autoimmunity, 

whereas targeting 5-Aza to only CD4+ or CD8 T cells alleviated disease (45). The reason for 

this seeming paradox was not fully explored, but 5-Aza also inhibits DNA replication, which 

could reduce the adenopathy of these mice when targeted to T cells, a feature not described 

in the study.

There may be several reasons for the progressive demethylation in lpr DN T cells. 

Expression of the DNA methyltransferase, Dnmt3b, is reduced in this subset compared with 

the CD8+ precursors, which could contribute to this genotype. An alternative is that rapidly 

proliferating cells can exceed the ability of DNA methyltransferases to keep pace with the 

rapid DNA replication rate (46). Consistent with this, we have previously observed that the 

lpr DN T cells have undergone very rapid proliferation in vivo, with up to 18% replicating 

during a single 24-h period, as defined by BrdU uptake (14, 26). An additional possibility is 

oxidative stress–induced demethylation. T cells from patients with active lupus manifest 

increased mitochondrial oxidative phosphorylation and reactive oxygen species (ROS) (47, 

48). Oxidative stress of CD4+ T cells results in decreased levels of DNMT1, DNA 

demethylation, and upregulation in expression of several genes (4). Moreover, adoptive 

transfer of oxidant-treated CD4+ T cells into syngeneic mice caused anti-dsDNA Ab and 

glomerulonephritis (49). Consistent with this, as noted earlier, lpr DN T cells manifest 

increased oxygen consumption compared with CD8+ precursor cells in part because of 

increased mitochondrial mass that parallels homeostatic proliferation (41).

Several of the demethylated and upregulated genes in lpr DN T cells are associated with 

inflammation (FasL, GzmB, Prf1, and Ifng) and immune exhaustion (Pdcd1 and Lag3). This 

might help explain the clinical immunology paradox of individuals with immunodeficiency 

syndromes either genetically, from chemotherapy, or because of HIV, which suddenly 

develop autoimmune syndromes. A dramatic example is the sudden onset of psoriasis and 

psoriatic arthritis in HIV+ individuals (50). Conceivably, the lymphopenia in these 

conditions could lead to accelerated T cell homeostatic proliferation with resulting 

upregulation of inflammatory molecules. Conversely, SLE patients, bearing a seemingly 

overactive immune system, are nonetheless prone to infections and often respond poorly to 

vaccinations (51). It is possible that upregulation of PD-1 and Lag3 in SLE T cells renders 

them less responsive to new activation.

In summary, homeostatic proliferation of T cells manifests a broad program of both genetic 

and metabolic changes that could influence immune function and inflammatory autoimmune 
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conditions. This includes the increased mitochondrial mass and size in T cells undergoing 

homeostatic proliferation (41). This contributes to high oxygen consumption rates, ROS 

production that can induce oligomerization of MAVS, and increased type I IFN (41, 52). 

ROS and cell proliferation may also contribute to DNA demethylation (4). The current 

studies, thus, expand our knowledge of functional modifications during T cell homeostatic 

proliferation to reveal an epigenetic program of DNA demethylation at selective sites 

throughout the genome, contributing to upregulation of several immune response genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Lpr DN T cells have a demethylated genome relative to precursor CD8+ T cells.
DN and CD8+ T cell subsets were purified from B6-lpr mice on three separate occasions, 

using three mice per purification. DNA was extracted and subjected to RRBS and processed 

as described in the Materials and Methods. (A) Violin plots showing the distribution of DNA 

methylation at all 2.35 × 106 CpG with ×10 coverage. For violin plot gray dots represent the 

mean and black bars the first and third interquartile ranges. (B) Density plots of the 

distribution of DNA methylation for each sample at the CpG from (A). (C) Heatmap of 

56,903 DML showing the percentage of DNA methylation for each sample. Ninety-six 

percentage of methylation differences reflect a loss of methylation in DN. (D) Volcano plot 

showing the change in DNA methylation versus significance for all DML from (B). (E) Plot 

showing the p values for all detected CpGs in lpr DN T cells compared with CD8+ T cells. 

Three different resolutions are shown for the indicated locations on chromosome 1. The x-

axis denotes the base pair coordinates of each window on chromosome 1.
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FIGURE 2. Overlap of upregulated genes in DN T cells with demethylation sites.
(A) The genome location of 1646 upregulated genes in lpr DN T cells overlayed with the 

sites of DNA demethylation. (B) Plot of change in DNA methylation for all DML (x-axis) 

versus the change in gene expression for genes in (A) upregulated in lpr DN T cells.
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FIGURE 3. DNA demethylation in DN T cells at sites of immune regulatory genes.
(A) List of immune regulatory genes that are both upregulated and demethylated in DN T 

cells. (B) Genome plot of the Fasl, Gzmb, Lag3, Ifng, and Eomes showing the location and 

percent DNA methylation of DML of CD8+ versus DN T cells for the indicated gene and 

surrounding genomic loci.
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FIGURE 4. DML in DN T cells are located proximal to accessible cis-regulatory elements in 
CD8+ T cells.
(A) Bar plots showing the number of DML of that map to a peak of accessible chromatin 

defined in naive or effector CD8+ T cells or a set of randomly shuffled regions of equal size 

at each indicated distance. The percentage of all DML that are matched at each distance is 

indicated. ATAC-seq data were previously described (21). *p < 0.001, based on 1000 

random permutations. (B) Histogram showing the accessibility in naive versus day 8 effector 

CD8+ T cells for 2 kb either side of DML. (C) Box plot quantitating the accessibility from 

(B). The p value was calculated by two-tailed Student t test. (D) Genome plot showing the 

location and percentage DNA methylation for DML of CD8+ versus DN T cells and ATAC-

seq signal in naive and day 8 effector CD8+ T cells for Il10 and Pdcd1 loci.
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FIGURE 5. Enrichment of effector transcription factors at demethylated DML of DN T cells.
(A) Table showing the enriched motif, p value, and matched transcription factor in the 200 

bp surrounding demethylated DML. (B) Histogram showing the percentage DNA 

methylation (left) in DN and CD8+ T cell subsets and chromatin accessibility (right) in naive 

and day 8 effector CD8+ T cells at the 200 bp either side of AP-1 and T-BET motifs.
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TABLE II.

Expression of DNA methyltransferases and demethylases in lpr DN compared with CD8+ T cells

Gene Log Fold Change (DN − CD8+) p Value

Dnmt1 −0.012 0.655

Dnmt3a 0.318 0.131

Dnmt3b −1.322 2.17 × 10−6

Tet1 0.261 0.257

Tet2 0.084 0.392
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