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Abstract: Three new polyoxygenated diterpenoids with a rare 4-isopropyl-1,5,8a-trimethylperhydrop-
henanthrane structure of the klysimplexane skeleton, briarols A-C (1-3), and one eunicellin-based
diterpenoid, briarol D (4), were isolated from Briareum violaceum, a gorgonian inhabiting Taiwanese
waters. The chemical structures of these compounds were determined by employing extensive
analyses of NMR and high-resolution electrospray ionization mass spectrometry (HRESIMS) data.
Metabolites 1-3 were found to possess the rarely found skeleton of the diterpenoid klysimplexin T.
All isolated compounds showed very weak cytotoxic activity against the growth of three cancer cell
lines. A plausible biosynthetic pathway for briarols A-C from the coexisting eunicellin diterpenoid
briarol D (4) was postulated.

Keywords: Briareum violaceum; klysimplexane; briarol; eunicellin; gorgonian

1. Introduction

Gorgonian corals belonging to genus Briareum (Cnidaria, Octocorallia, Briarei-
dae) inhabiting the western Pacific Ocean and Caribbean waters have been found
to be a rich source of diterpenoids [1,2] possessing fused bicarbocyclic structures of
briarane [3–7], eunicellin [8–11], and asbestinane [12–14] types, in addition to cem-
branoids [15,16]. Many of these metabolites exhibit a wide range of bioactivities,
including anti-inflammatory [3,11,17–20], cytotoxic [14,21–23], antiviral [14,21,24], anti-
malarial [8], antimicrobial [14], and analgesic [20] activities. Our previous study on the
chemical constituents of Briareum violaceum afforded the isolation of briarellins (2,9:3,16-
diepoxyeunicellins), which were shown to possess interesting structures generated from
intramolecular cyclization of corresponding cembranoids [10]. In our efforts to discover
new natural products from marine organisms, a continuous chemical investigation
of B. violaceum was carried out. The present study led to the discovery of four new
diterpenoids. Three of them, briarols A-C (1-3), were identified as compounds of a rare
(4-isopropyl-1,5,8a-trimethylperhydrophenanthrane) skeleton, which was discovered
for only one time as klysimplexin T in 2011 [25] and is herein denominated as the
klysimplexane skeleton (Figure 1). The structure elucidation of the new metabolites was
performed by extensive spectroscopic analyses, including two-dimensional (2D) NMR
correlation and high-resolution electrospray ionization mass spectroscopy (HRESIMS)
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analyses. A plausible biosynthetic pathway was suggested and the cytotoxicity of the
new compounds was evaluated.
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2. Results and Discussion

The lyophilized organism was extracted with ethyl acetate (EtOAc) followed by
chromatographic fractionation of solvent-free extract on silica (Si) gel. Fractions showing
1H NMR signals characteristic of polyoxygenated terpenoids were separated mainly by
a reverse-phase (RP) column and high-performance liquid chromatography (RP-HPLC),
yielding diterpenoids 1-4 (Figure 1). The spectra of these compounds are given in the
Supplementary Materials (Figures S4–S40). The IR absorption bands at νmax 3413–3464
cm−1 and the four 13C NMR signals, resonating at the region of δC 70.7 to 81.9 ppm,
disclosed the multi-hydroxylated pattern of the isolated compounds.

Briarol A (1) was obtained as a white powder with an optical rotation of [α]25
D = −101.9

(c 0.24, CHCl3). The sodiated ion peak at m/z 377.2300 [M + Na]+ in the HRESIMS estab-
lished a molecular formula of C20H34O5 for 1, appropriate for four degrees of unsaturation.
The IR absorption at νmax 3430 cm−1 revealed the presence of hydroxy functionality. As
the 1H NMR spectrum, measured in CDCl3, showed nine overlapped proton signals at δH
1.50–1.80 ppm, we remeasured 1 in C6D6 and acetone-d6 to allow better signal resolution
and to facilitate integrated 2D NMR correlation analyses (Figure 2 and Figures S2–S19).
The 13C NMR spectrum of 1, combined with distortionless enhancement by polarization
transfer (DEPT) and heteronuclear single quantum correlation (HSQC) spectra, displayed
20 sp3-hybridized carbon signals (δC 10.9–81.9 ppm) assignable for 5 methyl, 4 methylene,
7 methine, and 4 quaternary carbons (Table 1). Therefore, the four degrees of unsatura-
tion identified metabolite 1 as a tetracyclic diterpenoid. Analyzing proton homonuclear
correlation spectroscopy (1H-1H COSY) correlations revealed the presence of three partial
structures of consecutive proton systems extending from H-1 and H3-18 to H-6 through
to H-3, from H-8 to H-9, and from H3-20 to H2-13 through H-11 (Figure 2). The 2JCH and
3JCH correlations, as determined by the heteronuclear multiple bond correlation (HMBC)
experiments, established the connectivities of the partial structures, and hence the 6-6-6
tricarbocyclic framework of 1 (Figure 2). The four most downfield-shifted carbon signals in
the 13C NMR spectrum (δC 78.9–81.9) were attributable to four hydroxy-bearing carbons.
Thus, the remaining oxygen atom in the molecular formula of 1 together with the two
upfield-shifted oxycarbons (δC 70.9, C and 64.2, C) suggested the presence of a tetrasubsti-
tuted epoxy ring. Four 1H singlets (δH 4.54, 4.12, 2.94, and 2.32; Table 2), lacking HSQC
correlations, were assigned to the protons of four hydroxy groups. Two protons of these
(δH 4.12 and 4.54), exhibiting HMBC correlations with C-5 (δC 25.4, CH2) and C-9 (δC 79.8,
CH)/C-1 (δC 43.5, CH), were recognized as 6-OH and 10-OH, respectively (Figure 2). The
HMBC correlations from both H-1 and CH3-20 to C-10 (δC 78.9, C) confirmed the presence
of a hydroxy group at C-10. Moreover, the HMBC correlations observed for H3-19 (δH 1.09
3H, s) with the oxymethine carbons C-6 and C-8 together with the 1H-1H COSY correlation
H-8/H-9 are indicative of the hydroxy groups at C-8 and C-9, respectively (Figure 2).
Furthermore, the long-range connectivities from the protons of the tertiary methyls H3-16
and H3-17 (δH 1.08 and 0.97, each 3H, s) and from the angular methine proton H-1 (δH
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1.64, d, J = 12.0 Hz) to the oxycarbons C-14 (δC 70.9) and C-15 (δC 64.2) placed the epoxy
group at C-14/C-15. The above findings and other detailed 2D NMR correlation analyses
unambiguously established the planar structure of 1 (Figure 2).
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Table 1. 13C NMR spectroscopic data of compounds 1–4.

# 1 a 2 b 3 b 4 c

1 43.5 (CH)d) 41.6 (CH) 45.2 (CH) 50.1 (CH)
2 44.3 (CH) 45.6 (CH) 42.3 (CH) 125.5 (CH)
3 28.5 (CH) 144.1 (C) 27.9 (CH) 137.7 (C)
4 32.3 (CH2) 36.6 (CH2) 31.2 (CH2) 38.1 (CH2)
5 25.4 (CH2) 33.3 (CH2) 24.8 (CH2) 39.0 (CH2)
6 81.9 (CH) 81.5 (CH) 81.4 (CH) 76.2 (CH)
7 44.5 (C) 46.4 (C) 43.8 (CH) 162.8 (C)
8 80.2 (CH) 78.4 (CH) 79.8 (CH) 70.7 (CH)
9 79.8 (CH) 78.2 (CH) 78.8 (CH) 80.9 (CH)

10 78.9 (C) 76.0 (C) 77.2 (C) 78.3 (C)
11 32.9 (CH) 32.1 (CH) 32.3 (CH) 33.2 (CH)
12 30.6 (CH2) 33.6 (CH2) 33.8 (CH2) 33.8 (CH2)
13 25.8 (CH2) 22.0 (CH2) 25.3 (CH2) 26.1 (CH2)
14 70.9 (C) 43.9 (CH) 128.3 (C) 44.4 (CH)
15 64.2 (C) 28.5 (CH) 128.0 (C) 31.4 (CH)
16 23.6 (CH3) 23.3 (CH3) 20.9 (CH3) 22.0 (CH3)
17 20.8 (CH3) 21.9 (CH3) 20.4 (CH3) 22.5 (CH3)
18 17.2 (CH3) 111.8 (CH2) 15.2 (CH3) 18.3 (CH3)
19 10.9 (CH3) 9.2 (CH3) 9.9 (CH3) 113.8 (CH2)
20 17.9 (CH3) 17.2 (CH3) 17.1 (CH3) 17.8 (CH3)

Spectrum recorded at a 100 MHz in C6D6, b 125 MHz in CDCl3, and c 150 MHz in acetone-d6. d Attached protons
were deduced by distortionless enhancement by polarization transfer (DEPT) and heteronuclear single quantum
correlation (HSQC) experiments.

The relative configurations of the 10 chiral carbons in 1 were mostly deduced by ex-
amining nuclear Overhauser effect (NOE) correlations (Figure 3). The large 3JH–H value of
the ring juncture protons H-1 and H-2 (12.0 Hz) must be due to anti orientation of the two
axial protons, which were assumed to be on the β- and α-faces of the molecule, respectively.
Therefore, the key NOE interactions of H-1 with H3-18, H3-19, H-9, and 10-OH (red-colored
arrows) revealed these protons to be cofacial, indicating the α-oriented hydroxy group at
C-9 and hence the S*,R*,S*,R*, R*-configurations at C-1, C-3, C-7, C-9, and C-10, respectively.
Consequently, the NOE correlations found for H-3 with H-2, H-2 with H-6 and H-8, and
H-8 with H-11 (blue-colored arrows) designated the S*,S*,S*,R*-configurations at C-2, C-6,
C-8, and C-11, respectively. However, the NOE interaction of H-1 with H3-16 could not be
used for effective elucidation of the relative configuration at C-14. Fortunately, the NOE
correlations for H3-20/H-12β and H-12β/H3-17 were observed in the Nuclear Overhauser
Effect Spectroscopy NOESY spectra of 1, measured in both CDCl3 and acetone-d6, and estab-
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lished the α-orientation of the 14,15-epoxy group. Therefore, briarol A (1) could be defined as
(1S*,2S*,3R*,6S*,7S*,8S*,9R*,10R*,11R*,14R*)-14:15-epoxy-klysimplexan-6,8,9,10-tetrol.

Table 2. 1H NMR spectroscopic data of compounds 1–4.

No 1 a 2 b 3 b 4 c

1 1.64 d (12.0) d 2.08 m 2.81 d(7.5) 2.52 dd (10.0, 3.0)
2 1.23 dd (12.0, 3.6) 2.32 d (12.5) 1.62 m 5.35 d (10.0)
3 1.40 m - 1.54 m -

4α 1.21 m 2.23 dd (7.5, 5.0) 1.52 m 2.15 m
4β 1.28 m 2.00 m 1.52 m 2.26 m
5α 1.80 m 1.93 dd (12.0, 5.0) 1.61–1.64 m 1.91 m
5β 1.80 m 2.34 m 1.61-1.64 m 2.04 m
6 3.54 dd (8.0, 8.0) 3.80 dd (11.5, 5.0) 3.61 dd (11.0,4.5) 4.08 d (7.5)
8 3.44 d (11.2) 3.84 d (11.0) 3.64 d (11.0) 4.21 d (4.5)
9 3.49 d (11.2) 3.56 d (11.0) 3.66 d (11.0) 3.46 d (5.5)

11 1.79 m 1.99 m 2.14 m 1.89 m
12α 1.79 m 1.32 m 1.55 m 1.41 m
12β 1.81 m 1.54 m 1.14 m 1.46 m
13α 1.06 m 1.56 m 2.47 m 1.59 m
13β 1.22 m 1.56 m 1.64 m 1.59 m
14 - 1.73 m - 1.54 m
15 - 2.11 m - 1.25 m
16 1.08 3H, s 0.92 3H, d (6.5) 1.81 3H, s 0.82 3H, d (6.0)
17 0.94 3H, s 0.73 3H, d (6.5) 1.74 3H, s 0.81 3H, d (6.0)

18 0.68 3H, d (7.2) 5.02 s
4.81 s 0.80 3H, d (7.5) 1.57 3H, s

19 1.09 3H, s 0.93 3H, s 1.11 3H, s 5.43 d (1.2)
5.37 d (1.2)

20 1.28 3H, d (5.6) 1.04 3H, d (6.5) 1.07 3H, d (6.0) 0.92 3H, d (6.6)
6-OH 4.12, br s - 3.62 br s
8-OH 2.94, br s - 4.26 br d (4.5)
9-OH 2.32, br s 2.91 br s* 4.00 d (5.5)
10-OH 4.54, br s 3.18 br s* 3.57, s

Spectrum recorded at a 400 MHz in C6D6, b 500 MHz in CDCl3, and c 600 MHz in acetone-d6. d J values (Hz). * Exchangeable data.

Briarol B (2) was obtained as a white powder. It possessed the molecular formula of
C20H34O4 as indicated by the adduct ion peak at m/z 361.2348 [M + Na]+ in its HREIMS,
with 16 mass units fewer than that of 1. A comparison of the 13C and 1H NMR data of 2 with
those of 1 (Tables 1 and 2, respectively) revealed the presence of another klysimplexane-
based metabolite. However, the NMR spectroscopic data of 2 showed the appearance of
an olefinic double bond (δC 144.1, C and 111.8, CH2; δH 5.02 and 4.81, each 1H, s) and the
absence of the epoxy group. Thus, the two oxycarbons (δC 70.9 and 64.2, each C) and the
methylated methine carbons (δC 17.2, CH3 and 28.5, CH) in 1 were replaced by the carbons
of two methines (δC 43.9 and 28.5, each CH) and a 1,1-disubstituted double bond in 2,
respectively. These carbons were then assigned as C-14, C-15, C-3, and C-18, respectively,
from the 2D NMR correlation analyses of 2 (Figure 2). Therefore, the gross structure of
compound 2 was recognized as klysimplexan-3(18)-en-6,8,9,10-tetrol. The investigation of
NOE correlations of 2 (Figure 3) resulted in the same relative configurations at C-1, C-6,
C-7, C-8, C-9, C-10, and C-11 as those of 1. Furthermore, the NOE interactions found for the
β-oriented H-1 (δH 2.08, m) with H3-16 (δH 0.92, 3H, d, J = 6.5 Hz), H3-16 with one of the
exo-methylene protons (δH 4.81, s, H-18b), and H-18b with H-1 favored the β-orientation
for the 14-isopropyl group and thus the R* configuration at C-14. These findings together
with detailed 2D NMR correlations (Figures 2 and 3) unambiguously established compound
2 as (1S*,2R*,6S*,7S*,8S*,9R*,10R*,11R*,14R*)- klysimplexan-3(18)-en-6,8,9,10-tetrol.
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Briarol C (3) was also isolated as a white powder that gave a pseudomolecular ion
peak at 361.2347 [M + Na]+ in the HRESIMS, consistent with the molecular formula
C20H34O4 and four degrees of unsaturation, as with 2. The 13C NMR spectroscopic data
of 3 were found to be in accordance with those of 1 from C-1 to C-13 and C-16 to C-
20, except for the presence of a tetrasubstituted double bond (δC 128.3 and 128.0, each
C) instead of the tetrasubstituted epoxy group in 1 (Table 1). Thus, the 2JCH and 3JCH
correlations displayed by the two olefinic methyl protons (δH 1.81 and 1.74, each 3H, s)
with the olefinic carbons (δC 128.3 and 128.0, each C), which in turn were correlated with
H-1 (δH 2.81, d, J = 7.5 Hz), confirmed the presence of a 14,15-double bond (Figure 2).
The relative configuration of 2 was deduced from NOESY correlations, as illustrated in
Figure 3. Furthermore, it was found that the 13C NMR chemical shifts of C-1 to C-11 in 1
and 1H NMR data of H-6, H-8, and H-9 in 1 and 2 (Table 2) were analogous to those of 3,
reflecting the same β-orientation for H-1, 6-OH, 8-OH, 10-OH, H3-18, H3-19, and H3-20,
and the α-orientation for H-2 and 9-OH. Therefore, compound 3 was clearly identified as
(1R*,2S*,3R*,6S*,7S*,8S*,9R*,10R*,11R*)-klysimplexan-14(15)-en-6,8,9,10-tetrol.

Briarol D (4) was obtained as a white powder and gave a sodiated ion peak at m/z
361.2349 [M + Na]+ by HREIMS, appropriate for a molecular formula of C20H34O4 and
four degrees of unsaturation. The 13C NMR and DEPT spectra indicated the presence
of 20 carbon signals (Table 1) corresponding to 4 methyls, 5 methylenes (including 1
exomethylene), 8 methines (including 1 olefinic and 3 oxymethines), and 3 quaternary
carbons (2 olefinic and 1 oxycarbon) of a diterpenoid. The NMR spectroscopic data
(Tables 1 and 2) revealed the presence of a trisubstituted [δC 125.5, CH, 137.7, C; δH 5.35
(d, J = 10.0 Hz)] and an 1,1-substituted [δC 162.8, C, 113.8, CH2 and δH 5.43, 5.37 (each d,
J = 1.2 Hz)] double bond. The remaining two degrees of unsaturation were thus attributed
to a bicyclic structure for 4. This was further substantiated by the NMR data comparison of
4 with those of 1–3, which showed the substitution of one ring-juncture methine (2-CH)
with an olefinic methine [δH/δC 5.35 (d, J = 10.0 Hz)/125.5, CH] in 4. However, the 1H and
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13C NMR data pointed out the presence of three hydroxy-bearing methines [δH/δC 4.21 (d,
J = 4.5 Hz, H-8)/70.7; 4.08 (d, J = 7.5 Hz, H-6)/76.2; and 3.46 (d, J = 5.5 Hz, H-9)/80.9], as in
the case of compounds 1-3. Moreover, two protons resonating at δH 4.26 (d, J = 4.5 Hz) and
4.00 (d, J = 5.5 Hz) exhibited COSY correlations with H-8 and H-9 due to 8-OH and 9-OH,
respectively. The gross structure of 4 as a eunicellin-derived diterpenoid [26], including the
positions of the two olefinic bonds and the four hydroxy groups, was further resolved by
the study of the long-range proton–carbon correlations (Figure 2). In particular, the HMBC
correlations found from the only available ring-juncture proton (δH 2.52, dd, J = 10.0, 3.0 Hz,
H-1) to C-2 (δC 125.5, CH) and C-10 (δC 78.3, C), from the olefinic methyl protons (δH 1.57, s,
H3-18) to C-2, C-3 (δC 137.7, C), and C-4 (δC 38.1, CH2) and from the exomethylene protons
(δH 5.43, 5.37, each d, J = 1.2 Hz, H2-19) to C-6 (δC 76.2, CH), C-7 (δC 162.8, C), and C-8
(δC 70.7, CH), positioned the trisubstituted and 1,1-disubstituted double bonds at C-2/C-3
and C-7, respectively. Based on the above findings and detailed 2D NMR correlations
(Figure 2), the molecular framework of 4 was established.

An inspection of NOESY correlations (Figure 3) enabled us to assign the relative
configurations of the seven chiral carbons C-1, C-6, C-8, C-9, C-10, C-11, and C-14 in 4. The
NOE correlations observed for the β-oriented ring-juncture proton H-1 with the protons
of the 9-oxymethine and one of the 14-isopropyl methyls reflected the α-orientation of
H-14 and 9-OH. Furthermore, the NOE observed for H-1/H3-18 and H-2/H-4 combined
with upfield chemical shift (δC < 20 ppm) observed for C-18 (δC 18.3 ppm) determined
the E-geometry of the olefinic bond [27] at C-2/C-3. This finding placed the olefinic H-2
on the α-face of the molecule. Consequently, the NOE interactions found for H-2 with
H-8 and H-8 with both H-6 and H-11 revealed the β-orientation for H-6, H-8, H-10, and
H3-20. Compound 4 was thus unambiguously identified as (1S*,2E,6S*,8S*,9R*,10R*,11R*)-
eunicellin-2,7(19)-dien-6,8,9,10-tetrol.

Based on the above discoveries, it is proposed that compounds 1–4 can be derived
from the common eunicellin intermediate (b) after the 2,11-cyclization and 1,3-hydride
shift of a cembranoid cation (a). Oxidation of CH2-8, CH2-9, CH-10, and CH3-18 followed
by acid-catalyzed hydroxylation at the olefinic C-6 with a subsequent formation of an
exomethylene at C-7 in the intermediate 5 yields 4. Furthermore, the 6,7-epoxidation for the
intermediate b gives 6 as the intermediate of metabolite 4 and the tricarbocyclic carbonium
ion 7. Both 4 and 7 could be further converted into carbonium ion 8, as shown in Scheme 1.
Deprotonation at C-18 in 8 can produce 2, while reduction at C-3 and dehydrogenation
at C-14/C-15 in 8 gives 3. Subsequently, the epoxidation of the olefinic double bond in
metabolite 3 affords 1 (Scheme 1). To the best of our knowledge, the biosynthesis of the
klysimplexane- and eunicellin-type diterpenoids is limited to marine invertebrates, and
there are no analogous structures in terrestrial natural products.

The in vitro cytotoxicity of the new diterpenoid metabolites (1-4) was assessed against
the cancer cell lines of human colon cholangiocellular carcinoma (HuCC-T1), human colon
carcinoma (HT-29), and human colon adenocarcinoma (DLD-1). The results showed that all
compounds only exhibited very weak cytotoxicity against the tested cancer cells, with the
IC50 values ranging from 220.75 to 238.88 µM as compared to doxorubicin hydrochloride
(IC50 1.38 to 2.24 µM). Because of the low yield (< 2.5 mg) and the consumption of the
isolated metabolites in measurements of spectroscopic data and cytotoxicity, we suggest
that further investigation on other biological activities should be carried out once these
tetradroxylated diterpenoid molecules, in particular those with the rare klysimplexane
skeleton, can be obtained in sufficient quantities.
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3. Materials and Methods
3.1. General Experimental Procedures

IR spectra and optical rotations were measured on JASCO FT/IR-4100 spectropho-
tometer and JASCO P-1020 polarimeter (JASCO Corporation, Tokyo, Japan), respectively.
LRESIMS and HRESIMS spectra were measured on Bruker APEX II mass spectrometer
(Bruker, Bremen, Germany). 1H and 13C NMR spectra were measured on Varian Unity
INOVA 600 FT-NMR (or 500 or 400 FT-NMR) instruments (Varian Inc., Palo Alto, CA,
USA) at 600 MHz (or 500 or 400 MHz) for 1H and 150 MHz (or 125 or 100 MHz) for
13C in CDCl3 or CD3OD or acetone-d6. Silica (Si) gel (230–400 mesh) (Merck, Darmstadt,
Germany) and C18 reverse-phase Si gel (RP-18; 40–63 µM) (Parc-Technologique Blvd,
Quebec, Canada) were used for column chromatography. Thin-layer chromatography
(TLC) analyses were achieved using precoated Si gel (Kieselgel 60 F-254, 0.2 mm) plates
(Merck, Darmstadt, Germany). Further purification and the separation of compounds
were performed by reverse-phase high-performance liquid chromatography (RP-HPLC)
on a Hitachi L-2455 HPLC instrument with a Supelco C18 column (250 × 21.2 mm, 5 µm)
(Supelco Inc., Bellefonte, PA, USA).

3.2. Animal Material

The soft coral B. violaceum was collected from Jihui Fish Port, Taitung, Taiwan, identi-
fied, and extracted as described before [10]. A voucher specimen was taken and deposited
at the Department of Marine Biotechnology and Resources, National Sun Yat-sen (NSYSU)
University, Kaohsiung.

3.3. Extraction and Isolation

The lyophilized bodies of soft coral (500 g, wet weight) were crushed and extracted
with EtOAc. The EtOAc extract (3.9 g) was fractionated with Si gel column chromatography
(CC) using EtOAc-hexane (0:100 to 100:0, gradient). Polar fractions eluted with EtOAc-
hexane (10:1), which showed the diagnostic 1H NMR (methyl and oxymethine) signals
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of polyoxygenated terpenoids, were combined and subfractionated on Si gel CC using
acetone-hexane (1:2.5), affording the subfractions F1 and F5. Subfraction F4 was separated
on RP-18 Si gel CC using acetyl nitrite (CH3CN)-H2O (1.5:1 then 1.2:1) to give compounds
2 (1.5 mg), 3 (2.0 mg), and 4 (2.2 mg), respectively. Compound 1 (2.4 mg) was obtained
from subfraction F5 with a 3-step purification process with RP-18 Si gel CC using MeOH-
H2O (1.5:1 then 5:1), RP-HPLC using CH3CN-H2O (1:2), and then on Si gel CC using
acetone-hexane (1:5).

Briarol A (1). White powder; [α]25
D −101.9 (c 0.24, CHCl3); IR (neat) νmax 3430, 2927,

2853, and 1382 cm−1; 13C NMR (100 MHz, C6D6) and 1H NMR (400 MHz, C6D6). See
Tables 1 and 2, respectively. 13C NMR (100 MHz, CDCl3) δC 81.3 (CH, C-6), 79.3 (CH, C-8),
78.7 (CH, C-9), 78.3 (C, C-10), 70.4 (C, C-14), 64.1 (C, C-15), 43.7 (C, C-7), 43.7 (CH, C-2),
42.6 (CH, C-1), 32.0 (CH, C-11), 31.5 (CH2, C-4), 29.6 (CH2, C-12), 29.6 (CH3, C-17), 27.6
(CH, C-3), 25.1 (CH2, C-13), 24.2 (CH2, C-5), 23.2 (CH3, C-16), 17.0 (CH3, C-20), 16.6 (CH3,
C-18), 9.9 (CH3, C-19); 1H NMR (400 MHz, CDCl3) δH 4.33, 3.94, 3.23, and 2.65 (each 1H,
br s, 6-OH, 8-OH, 9-OH, and 10-OH), 3.64 (1H, d, J = 11.2 Hz, H-8), 3.61 (1H, dd, J = 10.4,
5.2 Hz, H-6), 3.56 (1H, d, J = 11.2 Hz, H-9), 2.16 (1H, m, H-11), 1.79 (1H, d, J = 6.0 Hz, H-1),
1.73 (1H, m, H-3), 1.72 (1H, m, H-5β), 1.69 (1H, m, H-12β), 1.68 (1H, m, H-5α), 1.67 (1H,
m, H-13β), 1.56 (2H, m, H2-4), 1.55 (1H, m, H-2), 1.54 (1H, m, H-12α), 1.45 (3H, s, H3-16),
1.39 (1H, m, H-13α), 1.33 (3H, s, H3-17), 1.15 (3H, d, J = 6.4 Hz, H3-20), 1.06 (3H, s, H3-19),
0.97 (3H, d, J = 7.6 Hz, H3-18); 13C NMR (100 MHz, acetone-d6) δC 81.9 (CH, C-6), 80.2
(CH, C-8), 79.0 (CH, C-9), 78.6 (C, C-10), 70.0 (C, C-14), 64.2 (C, C-15), 44.2 (C, C-7), 44.0
(CH, C-2), 43.5 (CH, C-1), 32.4 (CH, C-11), 31.7 (CH2, C-4), 30.5 (CH2, C-12), 28.2 (CH, C-3),
25.6 (CH2, C-13), 25.1 (CH2, C-5), 23.2 (CH3, C-16), 20.3 (CH3, C-17), 17.5 (CH3, C-20), 16.8
(CH3, C-18), 10.0 (CH3, C-19; 1H NMR (400 MHz, acetone-d6) δH 4.30 and 3.88 (each 1H, br
s, 8-OH and 9-OH), 4.19 (1H, br s, 6-OH), 4.11 (1H, br s, 10-OH), 3.66 (1H, m, H-6), 3.65
(1H, d, J = 11.2 Hz, H-8), 3.49 (1H, br d, J = 11.2 Hz, H-9), 2.25 (1H, m, H-11), 1.84 (1H, d,
J = 6.0 Hz, H-1), 1.79 (1H, m, H-3), 1.72 (1H, d, J = 6.8 Hz, H-2), 1.67 (1H, m, H-4β), 1.57
(1H, m, H-5β), 1.53 (1H, m, H-12β), 1.52 (1H, m, H-5α), 1.50 (1H, m, H-4α), 1.49 (1H, m,
H-12α), 1.48 (3H, s, H3-16), 1.41 (1H, m, H-13β), 1.37 (1H, m, H-13α), 1.365 (3H, s, H3-17),
1.16 (3H, d, J = 6.8 Hz, H3-20), 1.06 (3H, s, H3-19), 1.03 (3H, d, J = 6.8 Hz, H3-18). ESIMS m/z
377 [M + Na]+; HRESIMS m/z 377.2300 [M + Na]+ (calcd for C20H34O5Na, m/z 377.2299).

Briarol B (2). White powder; [α]25
D −32.0 (c 0.15, CHCl3); IR (neat) νmax 3464, 2923,

2854, and 1381 cm−1; 13C NMR (125 MHz, CDCl3) and 1H NMR (500 MHz, CDCl3). See
Tables 1 and 2, respectively. ESIMS m/z 361 [M + Na]+, 339 [M + H]+ HRESIMS m/z 361.2348
[M + Na]+ (calcd for C20H34O4Na, m/z 361.2349).

Briarol C (3). White powder; [α]25
D −21.3 (c 0.22, CHCl3); IR (neat) νmax 3413, 2925,

2858, and 1374 cm−1; 13C NMR (100 MHz, CDCl3) and 1H NMR (500 MHz, CDCl3). See
Tables 1 and 2, respectively. ESIMS m/z 361 [M + Na]+; HRESIMS m/z 361.2347 [M + Na]+

(calcd for C20H34O4Na, m/z 361.2349).
Briarol D (4). White powder; [α]25

D −29.7 (c 0.22, CHCl3); IR (neat) νmax 3418, 2923,
2853, and 1381 cm−1; 13C NMR (150 MHz, acetone-d6) and 1H NMR (600 MHz, acetone-d6),
see Tables 1 and 2, respectively. ESIMS m/z 361 [M + Na]+; HRESIMS m/z 361.2349 [M +
Na]+ (calcd for C20H34O4Na, m/z 361.2349).

3.4. Cytotoxicity Assay

Cancer cell lines (HT-29, HuCC-T1, and DLD-1) were obtained from the American
Type Culture Collection (ATCC). Compounds 1-4 were evaluated for the cytotoxic activity
using an Alamar blue assay as previously described [28,29]. The intensity of the produced
color was measured at 570 nm using an ELISA plate reader.

4. Conclusions

Three new polyoxygenated diterpenoids of the rare klysimplexane-skeleton, along
with a non-ether bridged eunicellin diterpenoid, were discovered from the gorgonian coral
Briareum violaceum and named briarols A-D, respectively. A possible biosynthetic pathway
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for briarols A-C from the coexisting eunicellin diterpenoid was postulated for the first
time. Although the compounds did not show potent cytotoxic activity against the tested
cancer lines, other possible bioactivities for these metabolites might be worthwhile for
further screening. It is noteworthy to mention that this is the first discovery of these rare
klysimplexane-type metabolites from a gorgonian coral since the isolation of klysimplexin
T from the cultured soft coral Klyxum simplex a decade ago.

Supplementary Materials: Figure S1. HRESIMS spectrum of 1; Figures S2–S7: 1D and 2D NMR
spectra of 1 in C6D6; Figures S8–S13. 1D and 2D NMR spectra of 1 in CDCl3; Figures S14–S19. 1D
and 2D NMR spectra of 1 in acetone-d6; Figure S20. HRESIMS spectrum of 2; Figures S21–S26. 1D
and 2D NMR spectra of 2 in CDCl3; Figure S27. HRESIMS spectrum of 3; Figures S28–S33. 1D and
2D NMR spectra of 3 in CDCl3; Figure S34. HRESIMS spectrum of 4; Figures S35–S40. 1D and 2D
NMR spectra of 4 in in acetone-d6.
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