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Abstract: Peptides have a three-dimensional configuration that can adopt particular conformations
for binding to proteins, which are well suited to interact with larger contact surface areas on target
proteins. However, low cell permeability is a major challenge in the development of peptide-related
drugs. In recent years, backbone N-methylation has been a useful tool for manipulating the per-
meability of cyclic peptides/peptidomimetics. Backbone N-methylation permits the adjustment of
molecule’s conformational space. Several pathways are involved in the drug absorption pathway;
the relative importance of each N-methylation to total permeation is likely to differ with intrinsic
properties of cyclic peptide/peptidomimetic. Recent studies on the permeability of cyclic pep-
tides/peptidomimetics using the backbone N-methylation strategy and synthetic methodologies will
be presented in this review.
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1. Introduction

The development of drugs against protein-protein interactions (PPIs) is challenging
for small molecules [1,2]. It is a rule of thumb that, for PPIs, small molecules are not able
to bind to the large and flat binding sites with high affinity, as monoclonal antibodies
do. On the other hand, monoclonal antibodies with high affinity to proteins are generally
restricted to extracellular targets due to their limited cell membrane permeability. It is not
easy for biomolecule drugs to cross biological membranes and take action on intracellular
PPI targets. Specifically, peptide drugs, especially cyclic peptides and peptidomimetics
display more advantages than both small molecule drugs and monoclonal antibodies
on targeting PPIs, attributing to their appropriate molecular size and tunable molecular
properties [3]. The size of peptides is generally larger than that of conventional small
molecules, attributing them an antibody-like affinity for binding to flat PPI interfaces with
relatively smaller molecule weight comparing to antibodies. Additionally, the procurability
of structural diversity for peptides, using well-established synthetic chemistry methods,
also laid the foundation for thorough investigations into how to improve their permeabil-
ity [4–7]. With high molecular structural diversity, peptide and peptidomimetic skeleton
offer a particularly high potential to achieve enormous structural variations by simply
replacement or modifications of amino acid fragments (e.g., N-methylation). The synthesis
of peptides and peptidomimetics have been well documented [8] and it is easy to generate
a large number of molecules at low costs [9,10].

2. Cyclic Peptides in Drug Development
2.1. Peptides as Drugs

Targeting PPIs is an attractive therapeutic strategy for many kinds of diseases as PPIs
are central to all biological processes and are often dysregulated in diseases [11]. In recent
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years, the development of PPI inhibitors has attracted a lot of attention. However, unlike
the well-defined hydrophobic binding pockets for small molecule drugs, the interfaces
of PPIs are usually dynamic and typically flat, which have limited the application of
conventional small molecule on PPI targets. On the other hand, although biomolecules,
such as monoclonal antibodies, show good binding affinity to PPIs, they lack cell per-
meability. Poor cellular permeability has greatly retarded the ability of biomolecules to
be developed into drugs that target intracellular proteins. Compared to small-molecule
drugs and biomolecule drugs, the chemical space of peptides, especially cyclic peptides
and peptidomimetics, have greater potentials and are worthy of exploration. Peptides
have three-dimensional configurations that tend to be disk-shaped or spherical, which can
engage larger surface areas on targeted proteins. Peptides have higher targeting specificity
and affinity, thus are potential PPI modulators. Peptides, especially cyclic peptides, retain
several attributes of small molecules, such as stability and lower risk of an immune re-
sponse, which makes them a good resource for PPI targeted drug development. Currently,
more than sixty peptide drugs have been approved and are on the market for the treatment
of cancers and infective and inflammatory diseases [7].

2.2. Membrane Permeability of Peptides

Molecules move across the cell membrane through three pathways of transport include
transcellular diffusion, active carrier-mediated transportation, and transcytosis. Molecules
that can readily cross cell membranes are useful in modulating intracellular targets. In the
pharmaceutical industry, peptides are generally not considered as good drug candidates
against intracellular targets due to their limited cell membrane permeability. However, from
the literature precedents, we can find that peptides have more space for subtle adjustment
of the conformation to improve cell membrane permeability, comparing to small molecule
drugs and antibodies. Macrocyclization and backbone N-methylation have shown their
capacity to accelerate the peptides and peptidomimetics to cross the cell membrane.

Macrocyclization and N-methylation on backbone amide can make changes to steric
constraints, the number of hydrogen bond donors (HBDs), and molecular conforma-
tions [12]. The changes in physicochemical properties of molecules may have a bearing on
membrane penetration. Studies on the relationship between physicochemical properties
(e.g., polarity, lipophilicity, and octanol-water partition coefficient) and experimental per-
meability data can help building guidelines to filter out problematic molecules at the early
stages of drug discovery. The “outer limit“ in the cyclic peptide space can be delineated
by different molecular properties values (e.g., molecular weight, cLogP, number of hydro-
gen bond donor, number of hydrogen bond acceptor, polar surface area, and number of
rotatable bonds) [13–19]. Related tactics often operate synergistically; it is hard to identify
the individual influence of each property. Computational modeling, on the other hand,
can provide valuable insights into the fundamental physics of membrane penetration.
Computational methods for accurate prediction of cell permeability remain challenging,
but recent developments are promising for the future.

2.3. Advantages of Cyclic Peptides and Peptidomimetics on Cell Permeability

Macrocycles usually demonstrate more drug-like physicochemical properties that offer
the possibility of accessing intracellular proteins, including those involved in PPIs [20]. An
interesting and archetypal example is cyclosporin A (CsA). As a cyclic undecapeptide, CsA
was found to have high permeability [21,22]. CsA was approved as an immunosuppressant
agent in 1997, and it was found to have passive permeability and displayed satisfied oral
bioavailability (F = 29%). As a ‘beyond-Ro5′ (bRo5) molecule, the mechanism behind
CsA’s membrane permeability has been well studied. Structure conformation analysis
has revealed that CsA passes membranes by switching between “open-close” conforma-
tions [23–25]. In apolar solvent, e.g., chloroform, CsA exists as a closed conformation,
four intramolecular hydrogen bonds (IMHBs) were formed between Val5NH−Abu2CO,
Abu2NH−Val5CO, Ala7NH−MeVal11CO, and Ala8NH−MeLeu6CO (Figure 1b, IMHBs
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in purple), the amide bond at MeLeu9−MeLeu10 has a cis-conformation. Within this
elongated sharp IMHB, polar groups of CsA are shielded from the solvent, forming the
so-called apolar “closed”-conformation. In contrast, the “opened”-conformation is formed
in water (characterized as an aqueous complex that bounds with cyclophilin), with all
above IMHBs are broken and releasing the polar groups outward to enhance the interaction
with solvents and the protein substrates. Although both conformations share a similar
antiparallel β-sheet structure around residues 7–11, the amide bone at MeLeu9−MeLeu10

changes from a cis to a trans conformation and IMBH related amide protons bonded to
cyclophilin instead of forming IMNHs in this polar “open”-conformation. The ability to
switch from polar to apolar conformations is crucial for CsA to possess high permeability
and good bioavailability, which also opens a window for medicinal chemists to explore
the possibility of adjusting the membrane permeability of peptides and peptidomimet-
ics via conformational tuning through chemical modification of the backbone of some
macrocyclic peptides.
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Figure 1. Structure of cyclosporin A (a) and mechanisms of cell permeability (b).

Cyclization is the most widely applied modification to modulate peptide conforma-
tion, aiming to improve their pharmaceutical properties. Cyclization of a linear peptide
may reduce the number of intermolecular hydrogen bonds, adjust the lipophilicity, and
reduce the hydrodynamic size, thus leading to an increased membrane permeability com-
paring to its primary linear peptide [26–34]. Impacts of cyclization on the pharmacokinetic
properties of CsA analogs had been well studied [35]. Pfizer’s report disclosed a novel
cyclic CsA analog (Figure 2a) that showed virtually identical Papp values to CsA in Ralph
Russ canine kidney (RRCK) cells. To gain an insight into the cyclization effect on CsA
analog’s physicochemical profiles, an acyclic analog (Figure 2b) was also prepared. To
minimize the influences of structural changes on overall physicochemical profiles, a linear
peptide was designed and synthesized, which had equal total carbon, oxygen, and nitrogen
atoms. The macrocycle was disconnected at the amide bond between Val11 and Abu1, and
Abu1 was replaced with a propionic side-chain, and the Val11 carboxylic acid was masked
as N-methyl amide. Significantly reduced permeability of the acyclic analog was observed
in RRCK cells, which clearly showed the impact of cyclization on the membrane and cell
permeability of peptides with identical sequences but different conformations [35]. Many
more examples [36–38] have been reported that macrocyclic peptides have better pharma-
cokinetic properties compared to their linear counterparts, which have huge potential for
drug discovery.
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3. Backbone N-Methylation: Pivotal Roles to Improve the Permeability for Cyclic
Peptides and Peptidomimetics

Macrocyclic skeletons usually have advantages over their linear counterparts and
have attracted lots of attention from academics and industry. In the field of cyclic peptides
drug discovery, several kinds of structural modifications have been developed to improve
bioavailability, which has been well documented in other review articles [39].

α-Carbon modifications, N-methylation, and isosteres of the amide bond are fre-
quently used methods in the field of structural modifications of cyclic peptides. Of these
methods, the backbone N-methylation is a preferable strategy to fine-tune the structural
conformation of cyclic peptides [40,41]. Regiospecific N-methylation of backbone amide,
(i) introduces additional steric constraints, (ii) selectively blocks one hydrogen bond of
the original amide NH, and (iii) lowers the transforming energy of the amide bond from
a cis-configuration to a trans-form or vice versa. N-methylation of amides enables the
molecule to adopt cis conformations far more readily than standard unmethylated ones.
Selective backbone amide N-methylations allow peptide macrocycles to automatically
adopt specific conformations according to different circumstances in vitro or in vivo, which
play important roles in conserving the target molecules with improved membrane per-
meability. As being discussed in the case of CsA, with high levels of backbone amide
N-methylations, 7 of 11 amides in the backbone were methylated, N-methylations reduced
the number of hydrogen bonds, and helped the cyclic peptide to adopt a cis-conformation
at MeLeu9−MeLeu10.

Inspired by these natural products that are inherently methylated, N-methylation
of backbone amides has become an important method to improve the drugability and
pharmacokinetics of cyclic peptides as drug candidates [41,42]. In this review, we provide
an update on the latest reports in this field (please refer to refs [12,39,41,42] for previous
reviews on N-methylation of peptide). This paper will first introduce the methods that are
useful for the construction of N-methylated amides on the backbone of cyclic peptides and
peptidomimetics, followed by a discussion on the impacts of N-methylation of backbone
amides on membrane permeabilities of the desired substrates.

3.1. Chemical Synthesis of N-Methylated Cyclic Peptides

Methods elected to introduce N-methyl groups are usually determined by which
strategy will be applied to gain the final macrocyclic peptides or peptidomimetics. Solution-
phase synthesis of peptides usually employ N-methylated amino acids (NMAAs) as build-
ing blocks; these NMAAs are prepared in advance using different synthetic methods, while
for the solid-phase synthesis of peptides, it is more convenient to install a methyl group
on nitrogen of the amino acid moiety during the elongation of the peptide chain, which is
more region-specific and has high efficiency.
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3.1.1. Preparation of N-Methyl Amino Acids (NMAAs) as Building Blocks for
Solution-Phase Synthesis of Peptides

Chemists have established several reliable methods for the synthesis of NMAAs [43,44].
SN2 displacement of α-bromo acids was first performed by Fischer and Mechel (Scheme 1a),
providing the free NMAAs directly without additional protection and deprotection proce-
dures [43]. When optically active, α-bromo acids were treated with excess methylamine,
and the stereogenic center was reversed (for example, (R)-2-bromopropionic could easily
be transformed to N-methyl-L-Ala). The main drawbacks of this method are obvious; it
usually suffers from low yields and racemization. Although an alternative approach was
reported by the Effenberger group (Scheme 1b), employing triflate as the leaving group
made the reaction conditions milder and improved the optical purity of NMAAs [45],
and it complicated the preparation of starting materials, which limited its applications in
practical synthesis.

Mar. Drugs 2021, 19, x FOR PEER REVIEW 5 of 17 
 

 

3.1.1. Preparation of N-Methyl Amino Acids (NMAAs) as Building Blocks for Solution-

phase Synthesis of Peptides 

Chemists have established several reliable methods for the synthesis of NMAAs 

[43,44]. SN2 displacement of α-bromo acids was first performed by Fischer and Mechel 

(Scheme 1a), providing the free NMAAs directly without additional protection and depro-

tection procedures [43]. When optically active, α-bromo acids were treated with excess 

methylamine, and the stereogenic center was reversed (for example, (R)-2-bromopropi-

onic could easily be transformed to N-methyl-L-Ala). The main drawbacks of this method 

are obvious; it usually suffers from low yields and racemization. Although an alternative 

approach was reported by the Effenberger group (Scheme 1b), employing triflate as the 

leaving group made the reaction conditions milder and improved the optical purity of 

NMAAs [45], and it complicated the preparation of starting materials, which limited its 

applications in practical synthesis. 

 

Scheme 1. N-Methylation via SN2 substitution of α-bromo acid (a) or α-triflate esters (b). 

Selective N-alkylation of properly protected amino acids is one of the most used 

preparation technologies for NMAAs (Scheme 2). Sequentially protecting the amino 

group with electron-withdrawing groups (PEWGs, e.g., sulfonamides, carbamates, and am-

ides), and treatment the intermediate with methyl iodide, diazomethane, trimethyloxo-

nium tetrafluoroborate, and dimethyl sulfate with or without a combination of base or 

acid scavengers, the corresponding NMAAs can be prepared in good yields with the al-

pha-stereogenic center intact [43]. PEWGs are essential for these methodologies, which can 

enhance the acidity of the NH group and make it possible that the subsequent N-methyl-

ation happens in the presence of very mild bases or even acid scavengers. Methanol can 

also serve as a methyl group source when the Mitsunobu reaction condition is employed 

[46,47]. 

 

Scheme 2. Preparing N-methyl amino acid by alkylation on a protected amine. 

Reductive methylations can be categorized into two methods: (i) reduction of imine 

(Schiff base) and (ii) reduction of oxazolidine. Schiff’s base reduction can be performed 

using many kinds of reagents, for examples, borohydrides (sodium cyanoborohydride 

and triacetoxyborohydride), formic acid (Leuckart reaction), borane, or transition metal-

mediated reduction, of the intermediate formed by the condensation of formaldehyde 

with an amine group of amino acids (Scheme 3) [44,48].  

 

Scheme 3. Preparing N-methyl amino acid by Schiff’s base reduction. 

Ben-Ishai first noticed that oxazolidin-5-ones were susceptible to nucleophilic attack 

(Scheme 4a) [49]; the N-methylol amide could be easily transformed to N-methylated am-

ide via palladium-catalyzed hydrogenation [49] or reduction with triethylsilane/TFA 

Scheme 1. N-Methylation via SN2 substitution of α-bromo acid (a) or α-triflate esters (b).

Selective N-alkylation of properly protected amino acids is one of the most used prepa-
ration technologies for NMAAs (Scheme 2). Sequentially protecting the amino group with
electron-withdrawing groups (PEWGs, e.g., sulfonamides, carbamates, and amides), and
treatment the intermediate with methyl iodide, diazomethane, trimethyloxonium tetrafluo-
roborate, and dimethyl sulfate with or without a combination of base or acid scavengers,
the corresponding NMAAs can be prepared in good yields with the alpha-stereogenic
center intact [43]. PEWGs are essential for these methodologies, which can enhance the
acidity of the NH group and make it possible that the subsequent N-methylation happens
in the presence of very mild bases or even acid scavengers. Methanol can also serve as a
methyl group source when the Mitsunobu reaction condition is employed [46,47].
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Scheme 2. Preparing N-methyl amino acid by alkylation on a protected amine.

Reductive methylations can be categorized into two methods: (i) reduction of imine
(Schiff base) and (ii) reduction of oxazolidine. Schiff’s base reduction can be performed
using many kinds of reagents, for examples, borohydrides (sodium cyanoborohydride
and triacetoxyborohydride), formic acid (Leuckart reaction), borane, or transition metal-
mediated reduction, of the intermediate formed by the condensation of formaldehyde with
an amine group of amino acids (Scheme 3) [44,48].
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Scheme 3. Preparing N-methyl amino acid by Schiff’s base reduction.

Ben-Ishai first noticed that oxazolidin-5-ones were susceptible to nucleophilic attack
(Scheme 4a) [49]; the N-methylol amide could be easily transformed to N-methylated
amide via palladium-catalyzed hydrogenation [49] or reduction with triethylsilane/TFA
combination [50]. Freidinger and co-workers further optimized this method, directly



Mar. Drugs 2021, 19, 311 6 of 17

reductive ring-opening to furnish the protected N-methylated amino acids was achieved
in one-pot and single step of reaction in the presence of triethylsilane/trifluoroacetic acid
(TFA) (Scheme 4b) [51]. This technique was applicable to the synthesis of N-Fmoc- or
N-Cbz- protected NMAAs [52,53] and has already been extended for the preparation of
N-Boc-protected NMAAs in neutral reaction conditions by utilizing a mild hydrogenation
procedure [54].
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reduction with triethylsilane/TFA (b).

With the expanding of toolkits, many kinds of protected NMAAs are available; the
N-protective groups range from oNs, Boc, Cbz to Fmoc, etc., while the starting materials
cover nearly all proteinogenic amino acids. These NMAAs have been widely used in
solution-phase and solid-phase synthesis of N-methylated peptides; most of these kinds of
building blocks are even commercially available today.

3.1.2. Regio-Specific N-Methylation for Solid-Phase Synthesis of Peptides

Solid-phase peptide synthesis (SPPS) is a widely used technique for peptide synthesis.
To incorporate NMAAs in SPPS usually suffers from steric hindrance, leading to low
efficacy of peptide coupling and difficulties for purification. To install the N-methyl group
on a specific unit of an amino acid after it has been attached to the peptide chain using
the classical coupling method for SPPS, would be a good choice. Fukuyama and co-
workers introduced a versatile and efficient protective group for primary amine, the o- or
p-nitrobenzene sulfonyl (nosyl, o-, and p-NBS-Cl) [55], these groups are easy to introduce as
N-protecting groups for amino acids, and due to their strong electron-withdrawing features,
they are stable and suitable for N-methylation reaction in SPPS under very mild reaction
conditions, for example, the Mitsunobu reaction. Miller and Scanlan [56,57] extended this
method for N-methylation of specified amino acids in SPPS, which are wildly used by
many research groups (Scheme 5) [46]. The procedure was further optimized by the Kessler
group with a significant reduction in time and cost [58].
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3.2.1. Studies on Methylated Analogs of Sanguinamide A 

Scheme 5. N-methylation of amino acid and peptide chain in SPPS.

Removal of these nosyl groups usually need strong nucleophiles; the Locky group
reported N-trifluoroacetamide (Tfa) as an N-protecting group and that it was also applicable
for regio-selective N-methylation in SPPS, [59], and unlike nosyl groups, the Tfa group can
be reliably cleavaged using sodium borohydride, which is completely orthogonal to most
standard protecting groups employed in SPPS.

3.2. Backbone N-Methylation in the Discovery of Permeable Cyclic Peptide/Peptidomimetic

N-methylation, as a chemical modification, could be utilized in the design of pep-
tides to improve their drug-like properties. In recent years, several investigations have
been reported about the influences of backbone N-methylation on the permeability of
cyclic peptides.
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3.2.1. Studies on Methylated Analogs of Sanguinamide A

Sanguinamide A was isolated from Hexabranchus sanguineus as a novel thiazole-
containing macrocyclic heptapeptide (cyclo- [Ile(Thz)-Ala-Phe-Pro-Ile-Pro]). Many ef-
forts have been devoted to the synthesis of Sanguinamide A and related analogs [60–62].
Sanguinamide A has also been a good molecular template for the study of relationships
between N-methylation on its backbone amides and the changes of conformation and
permeability (Figure 3).
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Name N-Methylation Site R 
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Danamide D  Phe3 tBu 2.1 ± 1.7  14.0 ± 6.8 9.6 
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a:data from [62]; b:data from [60]. 
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The first total synthesis of Sanguinamide A was reported in 2012 by the Fairlie
group [61]. The total chemical synthesis revised the cis,cis-amide bonds to cis,trans-amide
bonds in this macrocyclic peptide, and some interesting conformational information were
found in NMR studies. Two intramolecular hydrogen bonds, Ala2NH-COIle5 and Ile5NH-
COAla2, were strong enough to keep the macrocycle locked in one stable conformation,
which left the hydrophobic side-chains of aminol acids outward of the macrocycle, shield-
ing the other hydrophilic amide groups interiorly from water. Supported by H-D exchange
experiments, amide NH protons in Ala2 and Phe3 were found more solvent-exposed
than others [60]. A series of analogs of Sanguinamide A were synthesized from commer-
cially available Fmoc-N-methyl-amino acid by solid-phase synthesis, and a systemically
study on the permeability of Sanguinamide A and its analogs were also reported [60,61].
Compared to Sanguinamide A, analogs with the removal of the thiazole moiety (cyclo-(Ile-
Ala-Ala-Phe-Pro-Ile-Pro)) or the introduction of a bulky tertiary butyl glycine at position 2
(Danamide F) did not significantly affect their permeability (RRCK, Papp = 0.6 × 10−6 cm/s;
1.2 × 10−6 cm/s); however, an analog with N-methylation on Phe3 (Danamide D) signifi-
cantly improved the RRCK cell membrane permeability to 9.6 × 10−6 cm/s.

The Lokey group reported more results on the impact of backbone N-methylation of
the Sanguinamide A scaffold, [62] they noted that the effect of backbone N-methylation
on permeability was highly position-dependent, the N-methylation at the Ala2-NH and
Ile5-NH broke the transannular hydrogen bonds and significantly reduced both parallel
artificial membrane permeability (PAMPA) and Caco-2 permeability, when N-methylation
was applied to Phe3-NH, it resulted in dramatic improvements to permeability.
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3.2.2. PAMPA Permeability of N-Methylated LB51 Analogs

TPR2A, one of three TPR domains in Heat shock organizing protein (HOP), plays
an important role in the interactions of the MEEVD region with Hsp90 [63–65]. The TPR
peptide was discovered by Kawakami and co-workers as a mimic (Figure 4) of the TPR2A
domain, which could disrupt Hsp90-HOP binding [66]. Aiming for a promising lead
compound, several truncated linear peptides and their cyclic variants were synthesized.
A cyclic analog, LB51 showed promising activity on Hsp90b-Cyp40 binding inhibition
with an IC50 value at low micromolar levels [67]. Owing to the presence of four highly
polar side chains in this cyclic pentapeptide, poor cell permeability became the greatest
challenge for further development. Backbone N-methylation was elected to archieve some
breakthroughs in membrane permeability. The McAlpine group reported systemic studies
on backbone amide N-methylation at each amino acid, which produced five analogs of
LB51 [68]. The N-methylated analogs were archived by N-methylating amino acids on
solid-phase with the Miller and Scanlan approach [56,57]. The resin-bound amino acid or
peptide was methylated with the Mitsonobu reaction [46,47]. All of these analogs showed
significantly improved membrane permeability over the original lead molecule.
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3.2.3. Studies on N-Methylated Analogs of Cyclo(-Pro-Phe-D-Trp-Lys-Thr-Phe-)

Cyclic hexapeptide cyclo(-Pro-Phe-D-Trp-Lys-Thr-Phe-) is a synthetic somatostatin
mimic that has selective inhibition activity towards sst2 and sst5 subtypes of somatostatin
receptor. Synthetic somatostatin analogs have been wildly used in the diagnosis and
treatment of somatotropinomas, thyrotropinomas, and functioning and non-functioning
gastroenteropancreatic neuroendocrine tumors. However, parenteral drug administration
is the only dosing method because of its low oral bioavailability. Kessler, Hoffman, and
co-workers discovered several N-methylated analogs of cyclo(Pro-Phe-D-Trp-Lys-Thr-Phe)
with better intestinal permeability and enzymatic stability that would be orally available
(Figure 5) [69]. A library of N-methylated peptides was synthesized on a solid support (lin-
ear peptides) and cyclized in solution. The Fmoc-MePhe-OH building block was prepared
following the procedure described by the Freidinger group, while other N-methylated
amino acids were generated using an optimized Miller and Scanlan approach [56–58]. In
the library of 30 N-methylated peptides, analog with triple-N-methylation on D-Trp8, Lys9,
and Phe11 showed the highest intestinal permeability (Caco-2, Papp = 4 × 10−6 cm/s).
This compound improved oral bioavailability without any loss of its biological activity
and selectivity.
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3.2.4. Membrane Permeability of N-Methylated Poly Alanine Cyclic
Pentapeptide/hexapeptide

The Kessler group reported the extensive conformational studies of poly-alanine
cyclic peptides, using cyclic poly-alanine peptides as templates, to survey the structural
requirements that convey permeability. To clarify how backbone amide N-methylation
improves cell permeability, it is essential to sort out the impacts of N-methylation on
cyclic peptide conformation. Derived from the basic sequence cyclo(-D-Ala-L-Ala4-),
a library with 30 different N-methylated cyclic peptides (Figure 6) was generated [70].
N-methyl alanine was synthesized in solution using the Freidinger approach [51] and
used on solid-phase like a normal amino acid. A conformational study on constrained
cyclic pentaalanine peptides indicated that N-methylation on cyclic peptides led to high
variability in their conformations. A systematic investigation of the relationship between
backbone N-methylation and intestinal permeability of hexa-Ala peptide was also reported
by the Kessler group in 2011 [71]. A polyalanine cyclic hexapeptide library (Figure 6) that
varied in the number (1-5 N-Me groups) and positions of N-methyl groups was synthesized
in SPPS and screened for intestinal permeability through a Caco-2 cell monolayer. The
cyclic hexa-Ala peptide had low permeability, but 10 out of the 54 N-methylated derivatives
were found to have a high permeability rate; some of them had similar permeability to that
of testosterone (a wildly used passive transcellular permeability marker). These studies
clearly showed that alteration of the site and/or numbers of N-methylation on the backbone
amides of a cyclic peptide could make great impacts on permeability. Further studies from
the Kesser group suggested that multiple backbone N-methylation could dramatically
improve their Caco-2 permeability; there were two preferable conformational templates
with high Caco-2 permeability [72]. One template possessed two β-turns of type II along
Ala6-D-Ala1 and Ala3-Ala4; another one possessed a type-VI β-turn geometry along Ala4

and Ala5. Mechanistically, carrier-mediated transporters are involved in the improvement
of cell permeability [73].
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3.2.5. Studies on N-Methylated Analogs of Cyclo(-Leu-Leu-Leu-Leu-Pro-Tyr-)

Using a selective on-resin N-methylation method, [74] the Lokey group created a
library of cyclic hexapeptides (Figure 7) with different degrees of N-methylation. Passive
membrane diffusion rates were tested in the parallel artificial membrane permeability assay.
The conclusions happened to coincide with Kessler and other research groups; on the one
hand, the intramolecular hydrogen bonds played pivotal roles in conformational control,
intramolecular hydrogen bonds would not adversely affect permeability because they
could lock the hydrophilic groups inside the macrocycle and leave the hydrophobic side-
chains outside the molecule; on the other hand, backbone N-methylation increased steric
hindrance regio-specifically that could be helpful for the molecules to adopt preferential
confirmation with better permeability. Comparing to intramolecular hydrogen bonds, N-
methylation was more intrinsic as it could be resistant to environmental changes. However,
over-methylated substrates did not inherit all of these advantages. Partially and region-
specifically N-methylated analogs were more permeable than the original peptides and
the permethylated analogs. A partially methylated compound (namely 1NMe3) with good
cell permeability and microsomal stability was discovered. 1NMe3 showed intravenous
absolute oral bioavailability (F = 28%, similar to that of CSA) in in vivo pharmacokinetic
studies. Advanced studies on the pharmacokinetic features of 1NMe3 will benefit the
understanding of molecules with similar structures and attributes.
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3.2.6. Backbone N-Methylation on Modulators for Chemokine Receptor CXCR7

New knowledge generated from previous studies can be applied in the optimization
of other scaffolds. On the development of modulators for chemokine receptor CXCR7,
strategies, such as peptoid variations, side-chain replacement, and backbone N-methylation,
have been applied to gain cyclic peptides with improved binding affinity and passive
permeability [75]. Backbone N-methylation at R1, R2 has been shown to have a beneficial
effect on permeability in these scaffolds (Figure 8).
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3.2.7. Influence of N-Methylation on Permeability of Semipeptide Macrocycles

Semipeptidic macrocycles now play important roles in drug development. However,
different from macrocyclic peptides, backbone N-methylation on semipeptide macrocycles
may not produce similar results. The Marsaultp group provided a detailed analysis of the
structure-permeability relationship of semipeptidic macrocycles [76]. From easily prepared
Fmoc-(N-Me)-Phe-OH and other commercially available Fmoc-N-methyl-amino acids,
semipeptidic macrocycles analogs with different N-methylation state were synthesized.
Compared to a non-N-methylated scaffold, N-methylation on Leu, Phe, and alkyl linker C6
had positive impacts on efflux ratio, while other modifications showed opposite potentials.
As illustrated in Figure 9, N-methylation changed the efflux ratio and cellular permeability
on Caco-2 cells in a site-specific manner but had little influence on passive permeability. The
unique alkyl linker in semipeptides imparted higher flexibility and could not accommodate
the strong transannular IMHBs. Taken all these factors together, the behaviors of backbone
N-methylation on semipeptide macrocycles displayed significant differences from that
of peptide macrocycles. N-methylations on this semipeptide affected IMHB patterns but
showed different results of cell permeability. The influences of the ring size, sequence, and
expanding side-chain diversity on permeability were also studied in this report.
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3.2.8. Membrane Permeability of Hirsutellide A and Its Desmethyl Analog

Hirsutellide A (Figure 10) is an 18-membered cyclic hexadepsipeptide with in vitro
antimycobacterial (M. tuberculosis H37Ra, MIC = 6-12 µg/mL) and antiplasmodial (Plasmod-
ium falciparum, IC50 = 2.8 µg/mL) activities [77,78]. To verify its structural configuration
and the structure-activity relationship, series of depsipeptide and peptide analogs of hir-
sutellide A were prepared by the Imming group [79]. To evaluate the role of N-methylation
on retaining biological activities and ADME profiles, a demethylation analog (Figure 10) of
the N-methyl sarcosine was prepared. The demethylated analog showed a positive effect
on the passive artificial membrane permeability but with reduced antiplasmodial activity
and plasma stability.
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3.2.9. Influence of Backbone N-Methylation on Permeability of Lariat Peptides

The split-pool bead method provides access to large and well-diversified chemical
libraries. The Lokey group generated a library of novel lariat peptide scaffolds (Figure 11)
with molecular weights around 1000 Da [80]. The library with over four thousand com-
pounds was screened for permeability. Many lariats were surprisingly permeable, com-
parable to many known orally bioavailable drugs. Relationships between structure and
permeability for lariats were well summarized, with extensive variation in backbone
N-methylation, stereochemistry, and ring topology. On the aspect of N-methylation, Fmoc-
N-methylated amino acids as building blocks were introduced in the solid-phase peptide
synthesis to produced libraries with different degrees of methylation. Comprehensive
analysis showed that compounds with more N-Me groups were more permeable, but
N-methylation performs differently in different positions.
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3.2.10. Backbone N-Methylation of Hexa-, Hepta- and Octo-Thioether-Containing
Cyclic Peptides

The Monovich group reported an in silico optimization guided discovery of permeable
and orally exposed cyclic peptidomimetics [81]. Specific thioether-containing macrocycles
(Figure 12) were chosen as the parent skeleton for the investigation. Target macrocycles
with backbone N-methylations are synthesized in the solid phase from Fmoc-N-methylated
amino acids. The impact of the N-methylation pattern on the permeability was first
carried on the thioether-containing hexapeptide macrocycles skeleton. For molecules
that had different degrees and positions of N-methylation, one with double methylations
on peptide backbone at AA4R or AA3AA5 showed high passive permeability (PAMPA,
log Papp = −4.3). Others verified significantly on the permeability property with differences
in the numbers or locations of N-methylation. Several facts could be contributed to passive
permeability, and physical models of passive membrane permeation were evaluated on
the cyclic hexapeptide system. In advance of chemical synthesis, a combination of 3D
physics-based predictors, such as ∆G*

transfer and a number of solvent-exposed NHs with
conformational analysis, should facilitate the identification of permeable and orally exposed
cyclic peptidomimetics. This strategy was further applied to the hepta- and octo- thioether-
containing macrocyclic systems.
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4. Summary and Perspectives

Today, more than 60 peptide drugs have been approved; more than half of them are
cyclic peptides. Peptides have a three-dimensional configuration that can adopt partic-
ular conformations for binding to proteins, which are well suited to interact with larger
PPI contact surface areas on target proteins. However, low cell permeability is a major
challenge in the development of peptide therapeutics. In recent years, peptide-focused
structural studies on macrocycle structure have pointed out the promising of cyclic pep-
tide/peptidomimetic. Amides are unquestionably one of the most intrinsic functional
groups in peptides, and N-methylation is a wildly used tool to manipulate permeability.
Backbone N-methylation permits the adjustment of the molecule’s conformational space.
Several pathways are involved in the drug absorption; the relative importance of each
N-methylation to total permeation is likely to differ with intrinsic properties of cyclic
peptide/peptidomimetic. The current understanding of the relationship between cyclic
peptide structure and its permeability could not provide a quantitative comparison across
macrocyclic peptide/peptidomimetic systems; we hope these problems can be solved in
future studies.

Broadly speaking, the current topic may be extended to small proteins such as affi-
bodies [82–84] and nanobodies [85,86]. Affibodies are composed of 50−60 amino acids,
with molecule weight ranging between 6−7 kDa, while nanobodies are barely higher than
15 kDa. Owing to their small size, they have congenital advantages to penetrate membranes
upon the conjugation with cell-penetrating peptides (CPPs) [87–89] or by resurfacing with
polycationic residues [90]. Like the above strategies, increasing the net charge by ester-
ifying the surface carboxylic acids could also increase the cell-permeability of GFP [91],
which might be applicable to these small proteins. However, it is yet to be investigated
whether backbone N-methylation, the topic of this review, could be applied to manipulate
the permeability of affibodies or nanobodies as efficiently as for macrocyclic peptides.
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