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The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community
to be profiled en masse. However, there are two challenges to address: (1) exploring the genetic differences between E. coli strains in
human gut and (2) dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human
gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E.
coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in
network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources
(acetate, ethanol, glucose, and succinate) and found that these stress-associated genes were involved in host-microbial interactions
and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions
are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli
models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful

in integrating diverse data sources in the following study.

1. Introduction

Escherichia coli (E. coli) is the most widely studied prokaryotic
model organism and an important species in the fields of
biotechnology and microbiology. E. coli constitutes about
0.1% of human gut flora [1], which benefits human beings
by providing supplemental nutrition, by enhancing nutri-
ent acquisition, and by preventing the establishment of
pathogenic bacteria within the intestine [2]. The study of this
bacterium is both of importance for applications, such as
environmental testing and metabolic engineering [3], and of
interest as a fundamental physical problem. For example, a
recent study demonstrated an obvious increase in the number
of E. coli in the stool, while diarrhea was apparent [4].

In the recent five years, the flood of deep sequencing
data has set the latest wave of microbiome research apart

from earlier studies, with the ability to enumerate all of
the cells in a complex microbial community at once [5].
For instance, using deep sequencing, the Human Micro-
biome Project (HMP) was launched to characterize the
microbial communities found at several different sites on
the human body and to analyze the role of these microbes
in human health and disease [6, 7]. This switch from the
low-throughput technique, culture-based enumeration, to
the high-throughput technology of deep sequencing offers
several advantages, including high accuracy, culture-free
sampling, and comprehensive information. However, there
are still two challenges to address. First, due to the huge data
size and high complexity of the different algorithms, it is
difficult to determine the exact roles of the various species
in human microbiome, let alone strains of the same species.
The composition of E. coli strains is of value to human health;
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for example, changes in the E. coli composition were observed
associated with intestinal inflammatory disorders in human
and mice [8, 9]. Second, most of the microbiota community
structures obtained from sequencing were “static,” while
the human microbiomes are diverse and dynamic. The diet
changes, individual differences, sampling sites, and physical
conditions are responsible for the dynamic responses of
human microbiome [10-12]. However, the comprehensive
responses of microbiome to the dynamic microenvironments
can hardly be obtained from one or several samples.

To solve these problems, considerable efforts have been
made to develop metabolic networks of E. coli [3, 13, 14].
These in silico models have been successfully applied in many
fields. For example, they were frequently used in prediction
of steady-state or dynamic responses of cells to changes
in ecosystems [3]. In addition, the metabolic models can
be easily integrated with other data sources, such as DNA
sequencing [15], expression profiles [16], proteomics [17], or
metabolomics [18]. Goals of such data integration efforts
are (1) to gain a better understanding of the observable
phenotypes of the cell, (2) to predict potential functions of
molecular signatures, and (3) to apply these in silico models
for biological discovery and engineering applications. As a
result, integration of relevant omics data with metabolic mod-
els as a representative species in the human gut microbiota
elucidates the changes in the gut microbiota.

In this study, we performed in silico modeling of
metabolic networks of E. coli strains in human gut micro-
biome. First, we determined E. coli strains in human gut
microbiome using 148 fecal metagenomes. Next, we recon-
structed genome-wide metabolic network of common E. coli
strains in human gut. Then, the cellular phenotypes were
predicted and validated using the genome variation of E.
coli and diet changes. The findings of the study will help
in developing new technologies and tools for computational
analysis and exploring the relationship between disease and
changes in the human microbiome.

2. Materials and Methods

2.1. Human Gut Metagenomes and Reference Genomes.
High-quality short reads of 148 human gut samples
were retrieved from Human Microbiome Project (HMP,
http://www.hmpdacc.org/). The sequenced and well-
annotated E. coli genomes (totally 61 genomes) deposited
in GenBank were downloaded from NCBI database
(http://www.ncbi.nlm.nih.gov/), to build a reference genome
database. The reads were aligned against the E. coli reference
genome using BLASTN (version 2.2.27+) with E < 0.01,
minimal 99% identity cutoff and considering the reads that
were aligned onto only a single position in the reference
genome.

2.2. De Novo Assembly and Identification of Genes. The
reads of human gut samples were assembled by Newbler
(454/Roche GS Mapper/Assembler), following the protocol
in HMP [19]. The assembled scaffolds were aligned against
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E. coli genomes using BLASTN with minimal 99% identity
cutoft and best hit output.

2.3. Reconstruction of Strain-Specific Metabolic Network. The
E. coli pan-genome (the union of the gene sets of all the
strains of a species) metabolic network has been generated
in a recent study [20]. The strain-specific metabolic model
could be reconstructed based on the pan-genome metabolic
network. We generated metabolic networks for the common
E. coli strains in human gut microbiome based on the pan-
genome metabolic network.

In the process, we derived the strain-specific metabolic
models using two commonly used algorithms of top-down
metabolic reconstructions, including GIMME [21] and iMAT
[22]. These two algorithms are different: the GIMME is a
linear programming procedure, while the iMAT is a mixed
integer linear programming procedure.

2.4. Predictions of Cellular Phenotypes Using Metabolic Net-
work. Fluxes through reactions in the metabolic models can
be predicted using flux balance analysis (FBA) [23]. In the
process, fluxes are constrained by steady-state mass balances,
enzyme capacities, and reaction directionality, which yield a
solution space of possible flux values. Besides, FBA uses an
objective function to identify flux distributions that maximize
(or minimize) the physiologically relevant predicted solution.
Cellular growth rate (biomass production in another word)
was used as an objective function for FBA analyses performed
in this study. The same biomass equation, growth (GAM)
and nongrowth (NGAM) associated ATP requirement values,
and PO (number of ATP molecules produced per pair of
electrons donated to the electron transport system) ratio were
used for all the E. coli models and were the same as that
in iAF1260 model [24]. When the metabolic models were
used to simulate the change of carbon source (e.g., from
glucose to succinate), we obtained the corresponding optimal
growth rates and flux distributions for all the reactions. If
the uptake/secretion flux for a reaction in the optimal flux
solution was reduced or increased by over 10% (flux.x >
1.1 x flux.y or flux.x < 0.9 x flux.y) between two conditions,
we defined the reactions to be associated with the diet stress.

Uniform random sampling of the solution space for E.
coli metabolic models in any environmental condition is
a rapid and scalable way to characterize the structure of
the allowed space of metabolic fluxes [25]. The set of flux
distributions obtained from sampling can be interrogated
further to answer a number of questions related to the
metabolic network function. In the study, we studied how
dependent two reactions within the E. coli network were on
each other.

2.5. Flux Variability Analysis (FVA). Biological systems often
contain redundancies that contribute to their robustness.
FVA can be used to examine these redundancies by calculat-
ing the full range of numerical values for each reaction flux in
anetwork [26]. In FVA, the process is carried out by optimiz-
ing for a particular objective, while still satisfying the given
constraints set on biological systems. In the study, FVA was
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applied to determine the ranges of fluxes that correspond to
an optimal solution of the E. coli models determined through
FBA. The maximum value of the objective function is first
computed and this value is used with multiple optimizations
to calculate the maximum and minimum flux values through
each reaction.

3. Results

3.1. E. coli in Human Gut Microbiome. Deep metagenomic
sequencing provides us the opportunity to explore the exis-
tence of a common set of E. coli species in human gut
microbiome.

To obtain this goal, we built a nonredundant database
of 61 sequenced and well-annotated E. coli genomes. After
aligning the reads of each human gut microbial sample onto
the reference database, we determined the proportion of
the genomes covered by the reads (Methods). At a 99%
identity threshold and 10-fold coverage (the genomes of E.
coli strains are 5M on average), we detected one in all gut
samples, three in 80%, and seven in 60% of the 148 human
gut samples (Table 1). We focused on the three common E.
coli strains, including E. coli HS, UTI89, and CFT073. Other
recent studies support our findings, including studies from
human [27] and animal models [28].

Besides the genome-guided methods, the reads were used
to perform de novo assembly, which can recover transcript
fragments from regions missing in the genome assembly
[29]. We first assembled metagenomes in 148 human gut
microbiome samples using over 10 billion reads. Then, we
mapped the 15 million gut scaffolds to the 293663 genes
(target genes) of the 61 E. coli genomes in the human gut.
At a 99% identity threshold, over 60% of the target genes of
the seven E. coli in Table 1 had at least 80% of their length
covered by a single scaffold, indicating that the genes of these
E. coli strains were significantly enriched in the gut scaffolds
(Fisher’s exact test, P < 10710).

3.2. In Silico Metabolic Models of E. coli Strains. We generated
genome-wide metabolic network of three common E. coli (E.
coli HS, UTI89, and CFT073) from metabolic model of E. coli
pan-genome using GIMME and iMAT algorithms.

The results indicate that the metabolic networks obtained
with the two algorithms are identical (TEXT SI-S3 available
online at http://dx.doi.org/10.1155/2014/694967). We then
explored the differences in network properties among the
three models. It shows that these models are different in net-
work structure (Figure 1(a), Table S1). For example, compared
with E. coli CFT073 and E. coli UTI89, E. coli HS model
has 41 specific metabolic reactions catalyzed by 36 genes
(Figure 1(b)). These reactions are associated with alternate
carbon metabolism, murein recycling, nitrogen metabolism,
and inner membrane transport. Most of the reactions tend to
form a subnetwork rather than are scattered in an apparently
random manner in the metabolic network. We also observed
32 different metabolites not included in all the three models
(Table 2). Only three of the metabolites (including allantoate,
tRNA-Ala, and tRNA-Phe) can be detected in the human

metabolic model Recon2 [30], suggesting that most of these
different metabolites are not involved in direct interactions
of gut microbiome host. However, some of these metabolites
are of importance to strain-specific characteristics and closely
related to human-microbe interactions. For example, GDP-
L-fucose plays important roles in microbial infection and
numerous ontogenic events [31].

The genome-wide metabolic networks for E. coli CFT073
and UTI89 have recently been reconstructed based on the
comparative genomics analysis [20]. We compared our mod-
els (TEXT S1-S3) with the previous ones and found that
our models included more metabolic genes because the deep
sequencing has been proven to lead to the identification of
large populations of novel as well as missing transcripts that
might reflect Hydra-specific evolutionary events [32].

3.3. Optimal Flux Distributions for E. coli Strains. In the
previous studies, one of the most fundamental genome-scale
phenotypic calculations is the simulation of cellular growth
using flux balance analysis (FBA) [25]. As a result, we defined
biomass composition of the cell as the biomass objective
function and performed FBA on the model in order to
maximize the objective function. It shows that the optimal
biomass flux for the three models are pretty close (optimal
flux = 0.7287 for CFTO73, while optimal flux = 0.7367 for
HS and UTI89). However, the optimal flux distributions are
of different in the networks. Figure 2 shows the optimal
flux distribution map of core metabolic network in three
E. coli strains. It shows that the fluxes of ACS (acetyl-
CoA synthetase), PTAr (phosphotransacetylase), and ACKr
(acetate kinase) in CFTO73 model are obviously different
from that in the other two models.

We then estimated the effect of reducing flux through
metabolic reactions on biomass production of three mod-
els. Two reactions ACOADGF (acyl-CoA dehydrogenase,
tetradecanoyl-CoA) and PGK (phosphoglycerate kinase)
were taken as examples here (Figure S1). It shows that
the growth rate is sustained near the optimal value over a
range of values for PGK in all three models, indicating the
same network robustness with respect to flux changes in the
reaction (Figure S1A). However, the effects of reducing flux
through ACOADGF on growth are different between E. coli
CFTO73 and the other two models (Figure SIB). Besides,
the growth rate is sharply reduced after reaching the optimal
value in HS and UTI89 models.

3.4. Dynamic Responses of Metabolic Networks to Changes
in Carbon Sources. Although a few human gut microbiome
projects have been launched, the interrelationships between
our diets and the structure and operations of our gut micro-
bial communities are poorly understood. Here, we predicted
the human gut E. coli’s response to diet using metabolic
modeling.

We simulated the optimal growth rates for three mod-
els on carbon source as acetate, ethanol, glucose, and
succinate, respectively (uptake rate sets all changed to
9mmol gDW ' h™!). The average growth rates of three
metabolic models corresponding to four diet conditions are
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TaBLE 1: Common Escherichia coli strains in human gut.

Genes by de novo

Escherichia coli strains Samples count® Genome size Gene counts Protein count
assembly

E. coli HS 148 4.6 M 4629 4377 3606
E. coli UTI89 134 5.0M 5127 5017 3435
E. coli CFT073 125 52M 5579 5369 3406
E. coli KOIIFL 115 49M 4756 4533 3512
E. coli NA114 94 5.0M 4975 4873 3381

E. coli 536 90 49M 4779 4619 3488
E. coli O127:H6 str.

F2348/69 90 50M 4890 4552 3179

“There are 148 individual samples in the analysis.
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FIGURE 1: Comparisons of metabolic networks of three E. coli strains. (a) Basic parameters of metabolic models. (b) Strain-specific reactions
in E. coli HS model.
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TaBLE 2: Different metabolites in E. coli strains.
Metabolites Descriptions Formulas Charges
4h2opntn 4-Hydroxy-2-oxopentanoate C5H704 -1
acgle-D 6-Acetyl-D-glucose C8H1407 0
acmalt Acetyl-maltose C14H24012 0
alatrna L-Alanyl-tRNA(Ala) C3H6NOR
all6p D-Allose 6-phosphate C6H1109P -2
alltt Allantoate C4H7N404 -1
allul6p Allulose 6-phosphate C6H1109P -2
cechddd cis-3-(3-Carboxyethyl)-3,5-cyclohexadiene-1,2-diol C9H1104 -1
cenchddd cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol CI9H904 -1
cinnm trans-Cinnamate C9H702 -1
dhcinnm 2,3-Dihydroxicinnamic acid C9H704 -1
dhpppn 3-(2,3-Dihydroxyphenyl)propanoate C9H904 -1
dtdp4d6dm dTDP-4-dehydro-6-deoxy-L-mannose C16H22N2015P2 -2
dtdprmn dTDP-L-Rhamnose C16H24N2015P2 -2
frulysp Fructoselysine phosphate C12H24N2010P -1
gdpddman GDP-4-Dehydro-6-deoxy-D-mannose Cl6H2IN5015P2 -2
gdpfuc GDP-L-Fucose C16H23N5015P2 -2
gdpofuc GDP-4-oxo-L-Fucose Cl6H2IN5015P2 -2
ggdabut Gamma-glutamyl-gamma aminobutyric acid C9HI1505N2 -1
ggbutal Gamma-glutamyl-gamma-butyraldehyde CI9H1604N2 0
ggptrc Gamma-glutamyl-putrescine C9H2003N3
hkndd 2-Hydroxy-6-oxonona-2,4-diene-1,9-dioate C9HB8O6 -2
hkntd 2-Hydroxy-6-ketononatrienedioate C9H606 -2
malt6p Maltose 6'-phosphate CI2H21014P -2
man6pglyc 2(alpha-D-Mannosyl-6-phosphate)-D-glycerate C9H14012P -3
op4en 2-Oxopent-4-enoate C5H503 -1
pac Phenylacetic acid C8H702 -1
phaccoa Phenylacetyl-CoA C29H38N7017P3S -4
phetrna L-Phenylalanyl-tRNA (Phe) C9HIONOR
trnaala tRNA(Ala) R 0
trnaphe tRNA (Phe) R 0
urdglyc (-)-Ureidoglycolate C3H5N204 -1

shown in Figure 3(a). We can see that the growth rates for
three models are similar in different conditions. Besides, it
demonstrates substantially decreased anaerobic growth as
compared with aerobic (18 mmol gDW ™' h™") growth with
the same glucose uptake rate, which was supported by recent
studies that E. coli requires aerobic respiration to compete
successfully in the mouse intestine [8, 9]. For E. coli strains
in human gut, carbon sources are diverse, but glucose is most
suitable for their growth.

These responses of E. coli to the diet changes involve
many metabolic genes and pathways. We explored the per-
turbations in the metabolic networks and found 10 genes
(including ADH5, ALDH5AI, DLD, FECH, GCLC, GPT,
GSR, KARS, MPST, and TST) closely associated with the
diet stress (Figure 3(b)). The glycolysis, gluconeogenesis,
and glycerophospholipid metabolism were enriched in the
metabolic reactions catalyzed by these genes (P < 10~ using
Fisher’s exact test). Besides, we found that these enzymes
were evolutionarily conserved from E. coli to human and

were involved in the interactions between human and E. coli
[14, 33]. Especially, nine out of these 10 genes (except GPT,
glutamic-pyruvate transaminase) were found to be increased
in human obesity [34].

3.5. Analyzing Flux Correlations in Diabetes-Associated Path-
ways in E. coli Using Sampling. Assessment and charac-
terization of gut microbiota (E. coli acts as an integral
component) has become a major research area in human type
2 diabetes, the most prevalent endocrine disease worldwide.
A recent metagenomic research identified and validated over
400 type-2-diabetes-associated markers in E. coli, including
over 100 metabolic genes [35]. In the study, we performed
uniform random sampling for three models under glucose-
limiting aerobic growth conditions to explore the relation-
ships between the diabetes-associated pathways.

We detected 158 metabolic reactions in E. coli models that
were associated with human type 2 diabetes (Table S2). It
shows that these reactions participate in many subsystems,
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FIGURE 2: Flux balance analysis of metabolic models. The figure shows the core metabolic map (a) in E. coli and the reactions with different
fluxes (b) among three E. coli models. ACS: acetyl-CoA synthetase; PTAr: phosphotransacetylase; ACKr: acetate kinase.

of which over 30% are associated with lipid metabolism
and cofactor/prosthetic group biosynthesis. Correlation ships
between some metabolic reactions can be observed in
Figure 4. For example, PGL (6-phosphogluconolactonase)
and GND (phosphogluconate dehydrogenase) fluxes are
positively correlated in the E. coli HS model, whereas PGL
shows negative correlation with RPI (ribose-5-phosphate iso-
merase) fluxes. The correlation ships between these diabetes-
associated reaction fluxes are the same in other two models.

3.6. Flux Variability Analysis (FVA) of E. coli Models. FBA
returns a single flux distribution that corresponds to maximal
biomass production under given growth conditions. How-
ever, alternate optimal solutions may exist, which correspond
to maximal growth. As a result, we performed FVA for the
three E. coli models under glucose-limited aerobic growth
conditions (glucose and oxygen were changed to 10 and
18 mmol gDW ™' h™%, resp.).

It shows that the minimum and maximum fluxes for the
reactions in E. coli models are different. Figure 5 illustrates
FVA result for the seven reactions in pyrimidine biosynthesis.
All the reactions have different flux range in three networks,
especially carbamate kinase and dihydroorotic acid dehydro-
genase.

4. Discussion and Conclusion

In our study, we determined the common E. coli strains in
human gut microbial communities based on HMP datasets.
We applied two widely used algorithms (GIMME and iMAT)
to reconstruct genome-wide metabolic models for three

common E. coli strains (E. coli HS, UTI89, and CFT073) and
compared the network characteristics of these models. These
models were then used to predict the cellular phenotypes
and dynamic responses to the diverse gut microenvironment.
The models were also applied in exploring the relationships
between E. coli and human diabetes. The results will be help-
ful in exploring the dynamic responses of gut microbiome to
the environmental perturbations.

The E. coli strains have been proven to be significantly
different among individuals, although the species is abundant
in human gut [36]. Although it is well accepted that the
composition of E. coli strains in human gut flora is associated
with health status, the exact molecular mechanism is still
unclear. We detected the common E. coli strains in human gut
and systematically compared their functions through in silico
modeling, which have two advantages over the traditional
methods. First, the sequencing data allows for a much more
accurate determination of microbiome composition. The
advent of next-generation sequencing (NGS) enabled several
high-profile collaborative projects including the HMP Con-
sortium (http://www.hmpdacc.org/project_catalog.html)
and MetaHIT Consortium (http://www.sanger.ac.uk/resour-
ces/downloads/bacteria/metahit/), which have released a
wide range of data on the human microbiome. Using these
datasets, we applied different methods (genome-guided map-
ping and de novo assembly) to determine the common E.
coli strains, making the following study of interconnectivity
between gut microbiota, diet, and cell molecular responses
avaijlable. Second, the metabolic modeling can allow us to
see how a biological system might respond [37]. This will
guide the wet lab experiments and avoid most of the mistakes
in the process. In fact, developing computational methods



BioMed Research International

Anaerobic

0.8 Aerobic
~ 0.7
= 06
K 0.5
=]
2 04
<
g 0.3
L
A 0.2
0.1
0
g £ =
< @& T

Lip
Dihydrolipoylprotein
Lipoylprotein

R ISR

Succinyl-CoA N
Dihydrolipoy]

o kg S

2-Oxobutanoatey_Oxoglutarate
L-Alanine

R 4 — 00258 3-Mercaptopyruvate
Alanine hatamate sulfur fransferase

transaminase E0’F 3,4-Dihydroxymandelaldeh
(S)-2-Aminobutanoate ) . 43 ammyp]amyl—bcysteine 3,4-Dihydrox

Thiosulfate \ L-Cysteine liga
CY ide

RE1691

<— TIrreversible
<> Reversible
© Metabolic genes

lutamate--c

Thiq(sulfa te
sulfurtransferase F
Ferrochelat

Succinate
Acetate
Ethanol

Succinate

—
©
=

N2-Succinyl¢L-glutamate
2-Succinyl-L-glutamate
. 5-semialdehyde S- (Hydroxy rethyl)glutathione

Sucg‘%ia‘te Succmate semialdehyde

3alpha, 7alpha, 26 riﬁ@ly 5beta-cholestane 5- hyd oxytryptophol

s

)Tsteine
se |

porphyrin Lysin 6 tRNA
ligase

tRNﬁLLK

# L-Lysyl-tRNA
¢ L-Lysine

Flﬁde

Glutathior e dis

Enzymes
Reactions
(O Metabolites

(b)

FIGURE 3: Optimal growth rates for E. coli strains on different carbon sources and the associated gene-protein reactions. (a) Optimal growth
rates for E. coli strains on nutrition sources in human gut. The length of each bar represents the average optimal growth rates for three models

on the same carbon source. (b) The diet stress-associated metabolic

capable of predicting metabolic flux by integrating these data
sources with a metabolic network is a major challenge of
systems biology [18]. For example, the predicted behaviors
of diabetes-associated reactions in E. coli (Table S2) can be
integrated with experimental validations to detect the causal
genes in human diabetes.

network in gut E. coli.

The E. coli is regarded as the prototypical pluripotent
pathogens capable of causing a wide variety of illnesses in
a broad array of species, including pyelonephritis, diarrhea,
dysentery, and the hemolytic-uremic syndrome [38]. In
particlar, human gut E. coli and its relationship to complex
diseases, such as cancer [39] and diabetes [40], has attracted
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PGL: 6-phosphogluconolactonase; FBA: fructose-bisphosphate aldolase; FUM: fumarase; MME: methylmalonyl-CoA epimerase; RPI: ribose-

5-phosphate isomerase.

increasing interest in the last few years. A question then
arises: “How is it possible for this Jekyll and Hyde species to
both coexist peacefully with its host and cause devastating
illness?” [38]. The answer mainly lies in the existence of
different strains of E. coli with variable pathogenic potential
[41]. However, we can hardly draw a complete picture of how
the E. coli strains respond physiologically to the complex
gut microenvironment. Our study can provide valuable
information based on the systematic comparisons of different
E. coli strains. It shows that although the optimal growth
rates are similar for three E. coli strains, the optimal flux
distributions are different for three models, even in E. coli
core reactions. The detected different reactions, such as ACS
(acetyl-CoA synthetase) and PTAr (phosphotransacetylase)
were approved to be involved in the virulence of E. coli and
be associated with human complex diseases [35, 42]. The
results can be integrated with other data sets, such as human
clinical trials and virulence profiles, which will help establish
the extent of commonality between food-source and human
gut E. coli [43] and estimate the contribution of strain-specific
reactions or genes to infections in humans.

We found that the E. coli responded distinctly to different
gut diets and the stress-associated genes were closely associ-
ated with obesity. With the high prevalence of diet-induced
health concerns, such as diabetes and obesity, there remains a
need for approaches that treat the causal factors. Among these
factors, gut microbiome is drawing more attention [35, 44] for
itis suitable as disease markers and drug targets. For example,

Qin et al. carried out a metagenome-wide association study
which indicated that patients with type 2 diabetes have only
moderate intestinal dysbiosis but that butyrate-producing
bacteria are less abundant and opportunistic pathogens are
more abundant in these individuals than in healthy controls
[35]. The underlying mechanisms of interactions between
gut microbiome and human health are complicated; however
the stress-associated pathways (such as the detected the
gluconeogenesis, and glycerophospholipid metabolism) may
play important roles in the disease development. The diet
changes first induced changes of involved metabolic genes
(such as ADHS5, alcohol dehydrogenase 5), which trigger the
downstream signaling pathways. These signaling pathways
mainly associated with immune responses and development
[44, 45]. It is commonly accepted that the gut microbiota
interacts with the immune system, providing signals to
promote the maturation of immune cells and the normal
development of immune functions [46]. The dynamic inter-
actions between all components of the microbiota and host
tissue over time will be crucial for building predictive models
for diagnosis and treatment of diseases linked to imbalances
in our microbiota.

In summary, the findings here represent a significantly
expanded and comprehensive reconstruction of the E. coli
metabolic network in human gut. This work will enable a
wider spectrum of studies focused on microbe-host interac-
tions and serve as a means of integrating other omics sets in
systems biology.
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FIGURE 5: FVA of E. coli models. Shown is a map of metabolic reactions in pyrimidine biosynthesis pathway of E. coli models. Using FVA, the
minimum (min) and maximum (max) allowable flux values for each reaction were determined. The values shown in the table correspond to
the min and max allowable fluxes for each reaction shown in the map. The results were further characterized by the direction of predicted
flux (bidirectional or unidirectional) computed using FVA. The full names of the metabolic reactions are included in TEXT S1-S3.
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