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Polyglutamine (PolyQ) disorders such as Spinal and Bulbar
Muscular Atrophy (SBMA) and Huntington’s disease are
caused by an expansion in the glutamine tri-nucleotide
(CAG) repeat region of affected genes (Fu et al. 1991; La
Spada and Taylor 2003). The expansion results in the
production of mutant proteins which aggregate and form
insoluble inclusions within affected neurons (Ordway et al.
1997). The mechanism by which the mutant proteins mediate
neuronal cell death remains uncertain. Insoluble nuclear or
cytoplasmic disease protein inclusions were initially thought
to activate apoptotic pathways and/or alter patterns of gene
transcription (Lipinski and Yuan 2004). However, studies
have suggested that small monomers of mutant protein are
responsible for the observed neuronal toxicity and that
insoluble inclusions are formed because of the sequestration
of these monomeric mutant protein (Watase et al. 2002; Yu
et al. 2002; Arrasate et al. 2004).

Molecular chaperones play a key role in protein synthesis
and biogenesis (Bukau et al. 2006) and they are found bound
to the insoluble protein inclusions that characterise neurode-
generative diseases, including Alzheimer’s Disease, Parkin-
son’s Disease and many PolyQ diseases (Cummings et al.
1998; Bailey et al. 2002; Petrucelli et al. 2004). Often the

characteristic intracellular inclusions of each disease are
associated with the small heat shock protein ubiquitin and
heat shock protein 70 (HSP70) (Muchowski and Wacker
2005). HSPs have therefore been hypothesised to be associ-
ated with the aetiology of these diseases and perhaps more
likely that their up-regulation represents an attempt to refold
or remove the abnormal protein aggregates (Chai et al. 1999).
Consistent with the latter hypothesis are the observations
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Abstract

Heat shock proteins (HSPs) are associated with the protein-

aceous inclusions that characterise many neurodegenerative

diseases. This suggests they may be associated with disease

aetiology and/or represents an attempt to remove abnormal

protein aggregates. In this study the adenoviral mediated

over-expression of HSP70 interacting protein (HIP) alone was

shown to significantly reduce inclusion formation in both an

in vitro model of Spinal Bulbar Muscular Atrophy and a pri-

mary neuronal model of polyglutamine disease. Experiments

to determine the mechanism of action showed that: denatured

luciferase activity (a measure of protein refolding) was not

increased in the presence of HIP alone but was increased

when HIP was co-expressed with HSP70 or Heat Shock

cognate protein 70 (HSC70); the expression of polyglutamine

inclusions in cortical neurons mediated an increase in the

levels of HSC70 but not HSP70. Our data suggest that HIP

may prevent inclusion formation by facilitating the constitutive

HSC70 refolding cycle and possibly by preventing aggrega-

tion. HIP expression is not increased following stress and its

over-expression may therefore reduce toxic polyglutamine

aggregation events and contribute to an effective therapeutic

strategy.
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that over-expression of HSP70 and proteins that facilitate
targeting to the ubiquitin-proteasome system (UPS) suppress
aggregate formation in models of Huntington’s disease
(Howarth et al. 2007). The role small molecular co-chaper-
ones play in facilitating the removal of protein inclusions has
also recently been studied (Jana and Nukina 2005; Jana et al.
2005). HSP70 interacting protein (HIP/p48) represents a
unique class of co-chaperones that bind the ATPase domain of
HSC70 and HSP70, stabilizing the complex formed with
ADP and thus facilitates refolding of substrate proteins
(Hohfeld et al. 1995; Bruce and Churchich 1997). In
addition, HIP is reported to be a chaperone in its own right,
binding to unfolded proteins and preventing their aggregation
but not mediating refolding (Bruce and Churchich 1997).
Structural analysis of HIP demonstrated that this co-chaper-
one combines structural elements found in HSC70 and other
HSC70/HSP90 associated co-chaperones, including tetraco-
peptide repeat regions (Irmer and Hohfeld 1997) and several
repeats of the tetrapeptide GGMP (Hohfeld et al. 1995).
Deletion studies revealed that the HSP70-binding domain and
the homo-oligomerization domain of HIP are required for
HSP70-mediated reactivation of denatured firefly luciferase.
The evolutionary conservation of such domains suggests that
HIP plays an important role in HSC70/HSP90 regulation,
enabling the formation of multimeric chaperone complexes
with their substrates (Irmer and Hohfeld 1997; Bedard et al.
2007). However the role of HIP within a disease context has
not yet been investigated. We have used powerful adenoviral
(Ad) gene delivery systems and in vitromodels of SBMA and
PolyQ disease to study HIP function and assess its ability to
suppress the formation of insoluble protein inclusions.

Materials and methods

Transfection of androgen receptor
Mouse neuroblastoma (N2a) cells were grown in Dulbecco’s

Minimum Essential Medium with 5000 mg/L Glucose (DMEM;

Sigma, St Louis, MO, USA), supplemented with 10% (v/v) heat

inactivated fetal calf serum (FCS; Gibco, Rockville, MD, USA),

100 U/mL penicillin, 0.1 mg/mL streptomycin and 2 mM L-gluta-

mine (both Sigma) in a humidified, 5% CO2 atmosphere, at 37�C.
Cells were transfected (using Lipofectamine) with vectors encoding

the human Androgen Receptor construct plus 20 CAG repeats (hAR)

or an expanded ‘knock-in’ construct (hARk) containing 51 repeats.

Cells were subsequently transduced with adenoviral vectors express-

ing HSP70, HSC70, HSP40 or HIP. After 24 h cells were incubated in

Phenol Red Free/Dextran Coated Charcoal (PFR/DCC) media for a

further 24 h, prior to stimulation with 50 nM testosterone.

Primary cortical neuron cultures
Primary cortical tissue dissected from Wistar rat embryos at

embryonic day E18 were cultured following a protocol described

previously (Howarth et al. 2007). Cells were plated at a density of

100 000 cells per well of a standard 24 or 4 well plate (Nunc,

Naperville, IL, USA) and cultures were transduced with adenoviral

vectors after 5 days.

Virus production
E1 deleted adenoviral (Ad) vectors expressing various heat shock

proteins and co-chaperones were produced by homologous recom-

bination in HEK293 cells according to standard techniques (Harding

et al. 1998). Additional Ad vectors expressing CAG repeat

fragments tagged with green fluorescent protein (GFP) (QnGFP)

from the neuron-specific synapsin promoter were used to produce an

in vitro model of PolyQ disease in primary cortical neuron as

previously described (Howarth et al. 2007). Ad vectors expressing

an expanded Exon1 construct of the Huntingtin gene containing 103

CAG repeats (HttEx1-Q103EGFP), a kind gift from Dr Wyttenbach

(Firdaus et al. 2006), were amplified by the same method.

Immunofluoresence microscopy
Following fixation in methanol, transfected cells were incubated

with anti-androgen receptor antibody, AR N20 (1 : 150, Santa Cruz

Biotechnology, Santa Cruz, CA, USA). FITC-conjugated anti-rabbit

antibody (1 : 200, Jackson Immuno-Research, West Grove, PA,

USA) enabled visualisation of SBMA inclusions within cells. Cells

were mounted with non-quenching medium (Vectashield, Vector

Laboratories, Peterborough, UK) and images captured using an

Inverted Leica Confocal Imaging system. All counts of cell

inclusions were performed blind and recorded the presence or

absence of any inclusions (regardless of size or number) in a cell.

Cortical neurons were fixed in 4% paraformaldehyde, before

incubation with anti-HSC70 antibody (1 : 200, SPA-815 Stressgen,

Collegeville, PA, USA).

Luciferase refolding assay
Neuroblastoma cells were co-transduced with Ad vectors expressing

luciferase and various heat shock proteins and/or co-chaperones.

After 3 days, cells were subjected to heat shock at 46�C and left to

recover for 0–60 min in a 37�C incubator and luciferase assays then

carried out (Promega, Madison, WI, USA). Luciferase activity was

also measured in control (undenatured) cells. Similar experiments

were performed in primary cortical neurons using a milder

temperature of 42�C which yielded the most reproducible results.

Filter-trap assays
Cells were lysed with sodium dodecyl sulfate (SDS) lysis buffer and

centrifuged to obtain insoluble and soluble fractions as previously

described (Bailey et al. 2002). Samples were applied onto nitrocel-

lulose or cellulose acetate membranes under vacuum using slot-blot

apparatus. Proteins within each fraction were detected by probing

with antibodies against GFP (Roche Molecular Biochemicals,

Indianapolis, IN, USA), Ubiquitin (Ubi1, Abcam Inc., Cambridge,

MA, USA) or AR (N20, Santa Cruz) and visualised using Enhanced
Chemiluminescence reagent.

Western blots
Neuroblastoma cells were transduced with Ad vectors [at a

multiplicity of infection (MOI) of 100 viral particles per cell] and

lysed after 48 h using Radio Immuno Precipitation Assay Buffer [1·
phosphate-buffered saline, 1% Nonidet P-40 (Roche Applied

Science, Mannheim, Germany), 0.5% sodium deoxycholate, 0.1%
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SDS (all Sigma)] containing protease inhibitors phenyl-methyl-

sulphonyl-fluoride (PMSF; 100 lg/mL), aprotinin (70 lg/mL) and

sodium orthovanadate (1 mM). Samples from primary cortical

neuron cultures were lysed 8 days post-transduction with Ad vectors.

All samples were resolved by SDS gel electrophoresis at the

appropriate percentage acrylamide. Proteins were transferred onto

polyvinylidene difluoride) membrane (Roche), probed with primary

antibodies against HSC70 (SPA-815, Stressgen, 1 : 10 000), HSP70

(SPA-810, Stressgen, 1 : 40 000), HSP40 (SPA-450, Stressgen

1 : 10 000), HIP (R-19, Santa Cruz, 1 : 1000), or Alpha Tubulin

(Sigma, 1 : 1000) and visualised using ECL detection via horse-

radish peroxidase conjugated secondary antibodies. Co-immuno

precipitation assay methods are detailed in Appendix S1.

Results

Estimating HSP mediated protein refolding
Adenoviral vectors expressing HIP, HSP70 and HSP40 (all
human) were used to transduce cells (Fig. 1a). Western blots
confirmed high protein expression in both N2a cells and
primary cortical neurons following viral transduction com-

pared to the low endogenous expression of each HSP/co-
chaperone (Fig. 1b and c). In addition the co-expression of
multiple chaperones mediated similar levels of expression
(data not shown). To estimate refolding activity N2a cells (a
cell line used extensively in similar studies) were transduced
with Ad-vectors expressing chaperones and luciferase and
then heat shocked. When expressed alone, HIP did not
significantly increase luciferase activity after the initial
denaturing stress (Fig. 1d). However, a statistically signifi-
cant increase in luciferase activity (p < 0.05) was observed
when cells were co-transduced with HSP70 and HIP. Similar
results were also obtained following co-transduction with
HSP70 and HSP40 in the presence and absence of HIP.

Assessing the effect of HIP on PolyQ inclusion formation
Cells were transfected with SBMA plasmids, hAR and hARk
(containing 20 and 51 polyQ repeats respectively) and
immunocytochemical analysis was used to estimate inclusion
formation (Fig. 2a). This SBMA model of polyQ disease was
used to perform preliminary experiments to assess the
effectiveness of co-chaperones at reducing the number of
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cells containing polyQ inclusions. Our results demonstrated
that transfection of HIP resulted in a significant suppression
of inclusion formation, (p < 0.001) and that this was greater
than that mediated by HSP70 alone (p < 0.01) (Fig. 2b).
Transduction with Ad vectors expressing HIP in conjunction
with HSP70 also mediated a significant reduction in the
number of cells containing cytosolic inclusions (p < 0.001).
During these studies cell death was also assessed by 4¢-6-
Diamidino-2-phenylindole (DAPI) staining and cell counts
and the expression of SBMA plasmids alone or together with
HIP did not lead to a significant increase in the number of
pyknotic nuclei or alter cell numbers.

Inclusion formation was also estimated in a more complex
primary neuronal model of PolyQ disease to better model
events in the CNS. Cortical neurons were transduced with Ad
vectors expressing Q19EGFP and Q80EGFP fusion proteins
under the control of a neuron specific promoter. Following
HIP expression, fluorescence microscopy revealed a reduc-
tion in the size and number of aggregates in cortical neurons

(Fig. 2c). Filter-trap assays were performed to quantify the
level of insoluble protein following the transduction of cells
with HSP70 or HIP (Fig. 2d). Densitometry results showed
that transduction with HIP alone at the higher viral multi-
plicity of infection (of 100 particles per cell) led to a highly
significant decrease (p < 0.001) in the formation of insoluble
Q80EGFP, with a concomitant increase in the soluble
fraction (Fig. 2d). In addition the level of cell death was
not altered following expression of Q80EGFP and/or HIP.

HIP expression does not increase ubiquitin-mediated
removal of PolyQ proteins
Analysis of steady-state luciferase levels in non-heat shocked
control cells showed that HIP does not alter steady-state
luciferase levels (Fig. 3a). Conversely HSP70, either alone or
in conjunction with HIP, led to a significant increase in
steady state luciferase activity (p < 0.001). These results
were supported by slot-blot experiments performed to
investigate ubiquitin-mediated removal of the hARk con-
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Fig. 2 Reduction of aggregates in models of PolyQ disease. (a)

Photomicrographs of mouse neuroblastoma (N2a) cells transfected

with control hAR plasmid (i), the expanded hARk SBMA construct (ii),

hARk transfection followed by transduction with Ad vectors expressing

HSP70 (iii) or HIP (iv). (b) Following each treatment, the number of

cells with and without aggregates was counted (blind). The results are

presented as the percentage of cells containing aggregates relative to

the untreated control ± SEM (n = 12). Chaperone transduced cells

were compared to the hARk control and statistical analysis was carried

out by ANOVA followed by post-hoc t-tests. (c) Cortical neurons were

transduced with Ad vectors expressing Q19GFP (i), Q80GFP (ii),

Q80GFP + HSP70 (iii) or Q80GFP + HIP (iv). (d) Lysates from corti-

cal neurons transduced with HSP70 or HIP at a viral MOI of 50 or 100

were fractionated and applied to cellulose acetate membranes and

probed with an anti-GFP primary antibody. Membranes were analysed

by densitometry to quantify changes in insoluble inclusions. Statistical

analysis was carried out by ANOVA followed by post-hoc t-tests,

**p < 0.01, ***p < 0.001.
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struct via the ubiquitin proteosome system. These results
showed that transfection of hARk produced high levels of
insoluble AR compared with hAR, but that these proteins
were not ubiquitinated. Similarly the presence of HIP did not
increase the ubiquitination of proteins present in the insol-
uble fraction, whereas HSJ1a and HSJ1b (HSP40 family
members that contain ubiquitin interacting motifs known for
their involvement in proteasomal degradation of misfolded
proteins) did increase the presence of ubiquitinated proteins
in the insoluble fraction (Fig. 3b). Similar results were
obtained following Ad-mediated expression of HIP in cells
expressing Q80EGFP. Taken together these observations
suggest there is no degradation/removal of steady-state
luciferase levels following the expression of HIP.

Expanded polyglutamine repeats increase HSC70
expression
The reduction in PolyQ inclusion formation may indicate that
HIP facilitates HSP70-mediated refolding. To assess this
possibility the endogenous levels of HSP70 family members
in N2a cells and primary cortical neurons were measured.
Western blotting showed that of HSC70 was expressed at high

constitutive levels in N2a cells and that expression of hARk
did not increase these levels further or induce the expression
of HSP70 (Fig. 4a). In cortical neurons endogenous levels of
HSC70 could also be detected, however, Ad-mediated
expression of Q80EGFP or HttQ103EGFP resulted in an
increase in HSC70 but not induction of HSP70 (Fig. 4b).
Similar results were observed following immunocytochemi-
cal studies on cortical neurons expressing Q19EGFP or
Q80EFGP where the expression of Q80EGFP led to an
increase of HSC70 which co-localised with PolyQ aggregates
(Fig. 4c). In contrast viral-mediated over-expression of HIP
in cortical neurons reduced the number of PolyQ aggregates.
Inclusion formation appeared to be inversely correlated with
the level of HIP expression such that co-localisation was only
detected in cells showing diffuse enhanced green fluorescent
protein (EGFP) staining (Fig. 4c). Similar results were also
observed by co-immunoprecipitation studies which showed
that HIP associated with Q80EGFP and reduced the amount
of insoluble Q80EGFP formed (Fig. S1).
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Additional studies in our SBMA model also confirmed
that the Ad-mediated expression of HSC70 reduces the
percentage of cells containing cytoplasmic PolyQ inclusions
(Fig. 5a). Denatured luciferase refolding assays were then
performed in primary cortical neurons (Fig. 5b) and the
results showed that HIP when expressed alone did not
mediate an increase in luciferase activity. However a
significant increase in denatured luciferase activity
(p < 0.01) was observed following the Ad mediated expres-
sion of HSP70 and in the presence of HSC70, HIP also
mediated a small, but non-significant increase in refolding.

Discussion

Polyglutamine diseases are characterised by insoluble protein
inclusions that are thought to eventually contribute to the

death of neurons. In recent years strategies which may
increase the removal of disease proteins (e.g. the stimulation
of protein refolding and activation of proteasomal degrada-
tion pathways) have been examined. In this study we
investigated for the first time the effect of expressing HIP, a
positive regulator of HSP70 and HSC70, on the formation of
inclusions containing PolyQ expansions. The results showed
that viral-mediated over-expression of HIP alone signifi-
cantly reduced inclusion formation in two polyglutamine
disease models. Investigations into the mechanism of action
showed that HIP could only facilitate luciferase refolding in
the presence of HSP70 or HSC70. Interestingly, the expres-
sion of an expanded PolyQ tract in primary neurons
increased the expression of HSC70 but not HSP70. Exper-
iments using the SBMA model showed that the adenoviral
mediated expression of HSC70 was more effective than
HSP70 at reducing inclusion formation and that HIP
facilitated HSC70/HSP70 mediated refolding activity. There
was no evidence that the expression of HIP increased the
ubiquitination of PolyQ substrates. Our data therefore
suggest that HIP prevents inclusion formation by facilitating
constitutive HSC70 chaperone activity and not by targeting
to the ubiquitin proteosome system.

Prior work has shown that HIP prevented the aggregation
of unfolded polypeptides but did not mediate refolding of
denatured proteins (Hohfeld et al. 1995; Bruce and Chur-
chich 1997). It was further hypothesised that HIP may
contribute to the stabilisation of unfolded polypeptide
substrates prior to interacting with HSC/HSP70 (ibid). HIP
was originally reported to positively regulate HSC70 by
binding and stabilising the ATPase domain when in the ADP-
bound state. By performing this function, HIP is currently
considered to antagonize the substrate discharging function
of another co-chaperone molecule, BAG-1 (Nollen et al.
2001). Thus HIP expression prevents the BAG-1 mediated
slowing of the ATPase cycle of HSC70 (Hohfeld and Jentsch
1997) and ensures optimal chaperoning of misfolded
proteins. We found the expression of the co-chaperone
molecules HSP40 and HIP led to a reduction in insoluble
PolyQ proteins by enhancing the refolding of misfolded
proteins. In the primary cortical neuron model, the expres-
sion of polyglutamine proteins resulted in a significant
increase in HSC70 but this alone was not sufficient to reduce
inclusions formation. This is likely to be because of the
relatively weak ATPase activity of HSP70 family members.
The introduction of co-chaperones enhances the efficiency of
the HSC70 refolding cycle and HSP40 has been shown
previously to decrease inclusion formation via this mecha-
nism. The results of this study propose a similar role for HIP,
which acts as a nucleotide exchange factor, enhancing
substrate processing by HSC70 family members (Hohfeld
et al. 1995; Bruce and Churchich 1997).

In summary our data suggest that HIP suppresses the
formation of insoluble PolyQ inclusions by: (i) facilitating the
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HSC70 refolding cycle, acting in concert with enhanced
levels of endogenous HSC70 following PolyQ expression; (ii)
binding to unfolded polyglutamine proteins and preventing
their aggregation. Considering HSC70 levels may be elevated
in the neurons expressing disease aggregates, increasing HIP/
co-chaperone expression could prove to be a useful thera-
peutic strategy for the treatment of PolyQ diseases.
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