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Large-scale Metabolomic Analysis 
Reveals Potential Biomarkers 
for Early Stage Coronary 
Atherosclerosis
Xueqin Gao1, Chaofu Ke2, Haixia Liu1, Wei Liu1, Kang Li3, Bo Yu1 & Meng Sun1

Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and 
chronic life-threatening disease. Initially, this disease is not always detected until a patient presents 
with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis 
of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted 
metabolomics approach to identify potential biomarkers that could enable highly sensitive and 
specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated 
early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and 
those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which 
suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism 
in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used 
as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine 
metabolites was then tested with an independent cohort of samples, which also yielded satisfactory 
diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological 
mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of 
early-stage CAS.

Coronary atherosclerosis (CAS) is a chronic and complicated metabolic disease, and is the pathogenesis of coro-
nary heart disease (CHD). It is characterized by endothelial dysfunction and chronic inflammation that interact 
with metabolic changes to trigger, propagate and activate lesions in the vessel walls1,2. Despite significant progress 
in the treatment of atherosclerosis (AS), this disease and its complications remain the leading cause of mortality 
and morbidity worldwide3,4. This is mainly because of a lack of effective detection methods for CAS in its early 
stages, and a poor understanding of the pathophysiology of the disease. Currently, coronary artery angiography 
(CAG) is the first choice for diagnosis of CAS5, but its invasive nature and high cost mean it is not widely used in 
clinical diagnosis or for tracking progression of the disease. It is generally only used when clinical and biochemi-
cal factors clearly indicate the presence of CAS, and its usefulness for prevention is limited5.

In the past decade, biomarker discovery has attracted a great deal of interest in CHD research. Biomarkers 
can be used for early diagnosis and to increase our understanding of disease mechanisms, possibly leading to 
better clinical decision making in prevention and treatment. Certain biochemical markers for this disease, such 
as C-reactive protein, have proven useful but have limitations6.

Metabolomics, the global quantitative measurement of low molecular weight endogenous metabolites in tis-
sues or biological fluids (serum, plasma, urine), is promising for discovery of novel biomarkers and increas-
ing understanding of the complex process of CAS development7–10. The number of studies using non-targeted 
metabolomics for study of cardiovascular disease is ever-increasing, and has included studies of myocardial 
ischemia11,12, acute coronary syndrome13,14, heart failure15, and hypertension16. Recently, metabolomics has been 
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successfully used to identify new biomarkers and characterize metabolic changes associated with AS17–21. Sun  
et al.18 and Mariona et al.19 used liquid chromatography/mass spectrometry (LC-MS) to study AS-based animal 
models, and revealed metabolic abnormalities for lipids, bile acids, and fatty acids. However, there is some contro-
versy regarding the validity of extrapolation of animal model results to humans. Chen et al.20 successfully discrim-
inated AS patients from healthy controls using metabolomic profiling and found that perturbations of fatty acids 
involved in the development of AS, especially palmitate, could be used as plasma biomarkers for atherosclerosis. 
Using gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy for metabolomics, 
Joanna et al.21 found that at least 24 metabolites were significantly modified in a group of AS patients, and most of 
the changes were related to insulin resistance. However, they used healthy people as the controls and both of the 
groups were limited in size, which could result in false and nonspecific results. In addition, to date, few studies 
have focused on metabolic markers to identify early stage CAS patients.

In this study, 60 early stage CAS patients and 60 CAG-defined controls were used to detect metabolic sig-
natures of early stage CAS based on liquid chromatography quadrupole time-of-flight mass spectrometry 
(LC-QTOF/MS) metabolomics. Subsequently, we identified potential biomarkers and explored their related 
metabolic pathways. The metabolites and their pathways might serve as targets for therapeutic intervention or 
prevention. Finally, a second study was performed in an independent population (40 patients with early stage 
CAS and 40 controls) to validate the discrimination performance of the selected metabolites, and confirm their 
potential as diagnostic indicators.

Results
Characteristics of patients.  A total of 200 patients (100 early CAS patients and 100 controls) confirmed 
by CAG served as the study population. Based on the time they entered the current study, the enrolled subjects 
were separated into a training set (60 patients and 60 controls) for biomarker selection and establishment of a 
model for discrimination of early CAS patients and controls, and a test set (the remaining cases) for validation 
of the model. Clinical characteristics and CAG parameters for these participants are summarized in Table 1. By 
design, all early stage CAS patients had mild angiographically documented coronary stenosis in at least one major 
coronary artery, with a mean percentage of 36.53 ± 12.82% in the training set, and 42.15 ± 11.76% in the test set. 
By contrast, no controls showed apparent lesions in CAG.

Metabolic profiling of the plasma samples.  We obtained 3892 and 2936 aligned individual peaks (vari-
ables) in ESI+ and ESI−mode, respectively. These peaks were for quasi-molecular ions, isotope ions, adduct ions, 

Training set Test set

early CAS (n = 60) Control (n = 60) P-value early CAS (n = 40) Control (n = 40) P-value

Male 37(61.67) 29(48.33) 0.1421 17(42.50) 20(50.00) 0.5011

Age (years) 58.43 ± 9.69 55.88 ± 9.50 0.1480 61.65 ± 9.78 57.98 ± 7.16 0.0588

Weight (kg) 70.03 ± 10.41 69.21 ± 10.70 0.6910 66.77 ± 11.70 68.45 ± 10.02 0.5155

Smoking Current 17(28.33) 14(23.33) 0.0623 15(37.50) 13(32.50) 0.1852

Former 13(21.67) 5(8.33) 5(12.50) 1(2.50)

Never 30(50.00) 41(68.33) 20(50.00) 26(65.00)

Hypertension 27(45.00) 19(31.67) 0.1331 23(57.50) 13(32.50) 0.0246

Hyperlipidemia 7(11.67) 4(6.67) 0.3426 7(17.50) 4(10.00) 0.3301

Prior coronary artery disease 2(3.33) 0(0.00) 0.5587 4(10.00) 2(5.00) 0.3959

TC (mmol/L) 4.95 ± 1.42 4.69 ± 0.91 0.2450 4.97 ± 1.22 4.76 ± 1.10 0.4410

TG (mmol/L) 2.20 ± 3.01 2.10 ± 1.07 0.8162 2.06 ± 1.04 1.99 ± 1.45 0.8086

LDL (mmol/L) 2.53 ± 0.77 2.51 ± 0.76 0.9205 2.73 ± 0.93 2.58 ± 0.57 0.3752

HDL (mmol/L) 1.25 ± 0.40 1.38 ± 0.37 0.0748 1.37 ± 0.55 1.48 ± 0.87 0.4924

apoA (g/L) 1.00 ± 0.21 1.14 ± 0.22 0.0018 1.04 ± 0.16 1.19 ± 0.22 0.0014

apoB (g/L) 0.77 ± 0.24 0.69 ± 0.18 0.0740 0.87 ± 0.29 0.73 ± 0.18 0.0174

hs-CRP (mg/L) 2.72 ± 3.03 2.05 ± 2.14 0.2635 5.18 ± 9.16 1.79 ± 1.99 0.0287

CK (IU/L) 81.24 ± 50.78 79.22 ± 40.10 0.8112 71.41 ± 32.63 64.38 ± 33.64 0.3522

CK-MB (IU/L) 1.47 ± 3.67 0.99 ± 2.20 0.3951 0.50 ± 0.53 0.47 ± 0.42 0.8332

Troponin I (μg/L) 0.39 ± 2.23 0.19 ± 1.03 0.5523 0.03 ± 0.05 0.02 ± 0.04 0.7098

Ejection fraction (%) 65.49 ± 7.24 65.51 ± 6.60 0.9854 63.26 ± 6.54 63.41 ± 7.23 0.9274

Coronary angiography parameters

Number of artery stenosis 1.95 ± 0.81 — — 2.38 ± 0.77 — —

Percentage of stenosis (%) 36.53 ± 12.82 — — 42.15 ± 11.76 — —

Table 1.  Demographic and clinical characteristics of early stage CAS patients and their controls in the training 
and test set. Values are presented as mean ± SD or number (%); TC, Total Cholesterol; TG, Triglyceride; LDL, 
Low Density Lipoprotein; HDL, High Density Lipoprotein; apoA, Apolipoprotein A; apoB, Apolipoprotein B; 
hs-CRP, hypersensitive C-reactive protein; CK, Creatine Kinase.
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and fragment ions of the metabolites. Examples of the LC-QTOF/MS total ion chromatograms of plasma samples 
from an early stage CAS patient and a control subject are shown in Supplementary Fig. S1.

Firstly, the unbiased PCA revealed that all the QC samples were tightly clustered in PCA score plots 
(Supplementary Fig. S2), which confirmed that our method was robust. The score plots from PCA model per-
formed on all plasma samples also showed that there were no extreme outliers that needed to be excluded from 
subsequent analysis. Nonetheless, no obvious separation trends between the two groups were observed when 
variables were not selected.

Then, to further explore the metabolic differences between the early stage CAS group and the controls, 
PLS-DA models were established in the training set. As shown in Fig. 1A,C, the early stage CAS subjects 
were obviously separated from the controls with little overlap. The values of those parameters quantifying the 
PLS-DA model were positive (R2X = 0.178, R2Y = 0.933, Q2 = 0.540 in ESI+ mode and R2X = 0.168, R2Y = 0.943, 
Q2 = 0.356 in ESI−mode), indicating the goodness of fit and prediction ability of the model22. In the training 
set, three samples from control subjects (5%) were wrongly classified in ESI+ mode, while no misclassifications 
were found in ESI−mode. Furthermore, the supervised PLS-DA models were validated with permutation tests 
to ensure those models were not overfitted. The validation plots of permutation tests (Fig. 1B,D) supported the 
validity of these constructed PLS-DA models, as all the values of the goodness of fit (R2 and Q2) calculated from 
the permuted data (in green on the left) were lower than the original point on the right, and the Q2 regression line 
(in blue) had a negative intercept23.

Selection and identification of potential metabolic biomarkers.  To identify potential biomarkers 
of early stage CAS, variables that dominated the discrimination were first selected according to their VIP val-
ues (VIP > 1), which were calculated from the PLS-DA model. A nonparametric Kruskal-Wallis test was then 
performed, and variables without significant differences between the two groups (p ≥ 0.05) were eliminated. 
The remaining biomarker candidates were selected for subsequent identification. The procedure for metabolite 
identification is detailed in our previous work23. Following the procedure, a total of 20 differential endogenous 
metabolites in ESI+ mode and 22 metabolites in ESI−mode were identified (Table 2). Among them, the identities 
of seven were confirmed using reference standards, and 29 were identified by online database searches (HMDB 
and METLIN) and LC-QTOF/MS. The MS/MS spectrums of the metabolites are shown in the Supplementary 
Figs S3–S7.

The concentrations of 24 metabolites were significantly higher in the early stage CAS patients than the con-
trols (Table 2). By contrast, the concentrations of 18 metabolites were lower in early stage CAS patients than the 
controls. These differences between the two groups are expressed as fold change. In addition, the relative standard 
deviations of the intensities of these 42 biomarkers were calculated in the QC samples, and varied from 4.63% to 

Figure 1.  PLS-DA score plots and validation plots for discriminating early-stage CAS patients from controls. 
(A) PLS-DA score plot in ESI+ mode; (B) validation plot in ESI+ mode; (C) PLS-DA score plot in ESI− mode; 
(D) validation plot in ESI− mode.
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Marker Identity RT(min) m/z Adduction ppm VIPa p-Valueb FCc AUC RSD (%)d Pathway

Positive electrospray ionization mode (ESI+)

V01 LysoPC(18:1)f 15.92 544.3365 [M + Na]+ 1 1.7714 0.0272 −0.11 0.6184 9.75 Phospholipid metabolism

V02 LysoPC(18:4(6Z,9Z,12Z,15Z))f 13.73 516.3039 [M + H]+ 8 1.8637 0.0114 −0.18 0.6357 8.39 Phospholipid metabolism

V03 LysoPC(20:4)f 14.31 544.3350 [M + H]+ 8 1.7796 0.0031 −1.17 0.6588 23.72 Phospholipid metabolism

V04 LysoPC(16:0)f 15.53 496.3382 [M + H]+ 3 1.9185 0.0169 −0.1 0.6281 12.83 Phospholipid metabolism

V05 LysoPC(22:4(7Z,10Z,13Z,16Z))f 16.03 572.3681 [M + H]+ 5 1.6443 0.0131 −0.22 0.6330 11.38 Phospholipid metabolism

V06 LysoPC(15:0)f 16.53 504.3072 [M + Na]+ 2 1.5424 0.0061 −0.17 0.6471 5.32 Phospholipid metabolism

V07 PE(16:0/0:0)f 14.40 454.2939 [M + H]+ 2 1.7497 0.0030 −0.89 0.6594 29.05 Phospholipid metabolism

V08 LysoPE(18:2)f 13.74 478.2930 [M + H]+ 0 1.7939 0.0141 −0.18 0.6316 7.06 Phospholipid metabolism

V09 PG(18:0/0:0)f 13.69 513.3240 [M + H]+ 10 1.2430 0.0021 −0.37 0.6649 23.05 Phospholipid metabolism

V10 PC(14:0/14:0)f 18.21 678.4994 [M + H]+ 10 1.3851 0.0013 0.32 0.6728 20.96 Phospholipid metabolism

V11 PE(P−16:0/0:0)f 15.14 438.2969 [M + H]+ 2 1.2223 0.0261 −0.15 0.6193 18.77 Phospholipid metabolism

V12 PE(42:8)f 19.20 833.5826 [M + NH4]+ 2 1.8696 0.0348 −0.21 0.6132 17.69 Phospholipid metabolism

V13 Phytosphingosinef 14.01 318.2992 [M + H]+ 3 1.7031 0.0288 0.48 0.6173 23.43 Sphingolipid metabolism

V14 Sphinganinef 13.65 302.3050 [M + H]+ 1 1.6431 0.0064 0.31 0.6462 4.63 Sphingolipid metabolism

V15 MG(18:2)f 18.18 372.3085 [M + NH4]+ 6 1.9830 0.0001 1.19 0.7070 23.76 Phospholipid metabolism

V16 MG(18:3)f 19.20 353.2648 [M + H]+ 10 1.3125 0.0049 0.55 0.6509 20.47 Phospholipid metabolism

V17 MG(18:1)f 19.48 357.3016 [M + H]+ 4 1.5380 0.0008 0.66 0.6804 10.59 Phospholipid metabolism

V18 DG(36:3)f 21.50 657.4790 [M + K]+ 9 1.6150 0.0317 −0.38 0.6152 20.11 Phospholipid metabolism

V19 DG(38:5)f 23.32 643.5240 [M + H]+ 8 1.5130 0.0448 −0.53 0.6076 29.40 Phospholipid metabolism

V20 Docosahexaenoic acide 18.83 329.2445 [M + H]+ 9 1.2292 0.0363 0.46 0.6123 27.33 Fatty acids metabolism

Negative electrospray ionization mode (ESI−)

V21 LysoPC(18:1) 16.03 556.3156 [M + Cl]− 3 1.5944 0.0230 −0.11 0.6165 19.68 Phospholipid metabolism

V22 LysoPC(18:2(9Z,12Z)) 14.47 554.2992 [M + Cl]− 4 1.8542 0.0284 −0.11 0.6123 17.03 Phospholipid metabolism

V23 LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 14.36 566.3261 [M − H]− 1 1.9864 0.0167 −0.12 0.6226 5.24 Phospholipid metabolism

V24 7Z,10Z,13Z,16Z,19Z-docosapentaenoic acidf 19.19 329.2455 [M − H]− 9 2.2605 0.0105 0.49 0.6311 8.48 Fatty acids metabolism

V25 Eicosatrienoic acidf 19.64 305.2464 [M − H]− 7 1.9257 0.0270 0.25 0.6133 17.04 Fatty acids metabolism

V26 Linoelaidic Acide 19.23 279.2300 [M − H]− 10 2.5287 0.0046 0.37 0.6450 10.35 Fatty acids metabolism

V27 Linolenic Acide 18.30 277.2165 [M − H]− 2 2.3205 0.0022 0.48 0.6567 6.52 Fatty acids metabolism

V28 Pentadecanoic acidf 19.39 241.2158 [M − H]− 6 1.8329 0.0193 0.26 0.6199 22.49 Fatty acids metabolism

V29 Elaidic Acide 20.39 281.2469 [M − H]− 6 2.3784 0.0145 0.39 0.6252 14.41 Fatty acids metabolism

V30 Myristic acide 18.49 227.2006 [M − H]− 4 1.7568 0.0433 0.35 0.6035 14.21 Fatty acids metabolism

V31 Δ2-trans-Hexadecenoic Acidf 18.83 253.2164 [M − H]− 3 2.0748 0.0270 0.47 0.6133 6.42 Fatty acids metabolism

V32 Palmitic acide 20.22 255.2316 [M − H]− 5 2.3728 0.0112 0.39 0.6299 20.57 Fatty acids metabolism

V33 Eicosadienoic acidf 20.65 307.2624 [M − H]− 6 2.2876 0.0132 0.3 0.6269 18.87 Fatty acids metabolism

V34 3-Hydroxycapric acidf 11.02 187.1332 [M − H]− 4 1.6750 0.0480 0.25 0.6013 13.08 Fatty acids metabolism

V35 Prasterone sulfatef 10.23 367.1571 [M − H]− 3 1.8665 0.0112 −0.56 0.6299 10.49 Steroid hormone 
biosynthesis

V36 L-Fucosee 0.92 199.0383 [M + Cl]− 2 1.7762 0.0084 −0.39 0.6350 29.22 Fructose and mannose 
metabolism

V37 Dihydro-3-coumaric acidf 16.11 165.0540 [M − H]− 10 1.6107 0.0176 0.69 0.6216 23.79 Phenylalanine metabolism

V38 p-Tolyl Sulfatef 6.45 187.0065 [M − H]− 2 1.4817 0.0216 0.8 0.6177 15.9 Gut microbial metabolism

V39 Indoxylsulfuric acidf 5.52 212.0045 [M − H]− 10 1.9667 0.0263 0.35 0.6138 13.56 Tryptophan metabolism

V40 3-oxo-tetradecanoic acid 14.45 241.1799 [M − H]− 4 1.7352 0.0079 0.65 0.6360 16.35 Fatty acids metabolism

V41 Hexadecadienoic acid 17.52 251.1990 [M − H]− 10 1.4676 0.0035 0.45 0.6497 14.91 Fatty acids metabolism

V42 3-oxo-dodecanoic acid 12.18 213.1489 [M − H]− 3 1.7331 0.0369 0.3 0.6069 11.6 Fatty acids metabolism

Table 2.  Plasma metabolic biomarkers for discriminating early-stage CAS patients from controls. 
Abbreviations: Retention time (RT, min); Measured mass to charge ratio (m/z); Variable importance in the 
projection (VIP); Fold change (FC); Mass error (ppm); The area under the ROC curve (AUC); Relative standard 
deviation (RSD%). aVariable importance in the projection (VIP) was obtained from PLS-DA with a threshold 
of 1.0. bThe p-value was calculated from the nonparametric Kruskal-Wallis rank sum test. cFold change was 
calculated as a binary logarithm of the arithmetic mean ratio between patients vs controls, where a positive 
value indicates that a relatively higher concentration present in patients while a negative value means a relatively 
lower concentration as compared to the control subjects. dVariation of the biomarker concentrations in the 
quality control samples expressed as relative standard deviation (RSD%). eThe metabolite was verified by 
reference standard. fThe metabolite was identified by online database.
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29.40% with a median of 16.14%. These data indicated that our metabolic profiling platform was robust, and that 
changes in the biomarkers arose from the disease state rather than analytical errors.

Furthermore, to investigate whether these differential metabolites are closely associated with clinical measures, 
Pearson correlation analysis was performed. However, the early stage CAS patients and their controls enrolled in 
this study exhibited no significant differences in clinical characteristics, so it is to be expected that no correlation 
was found between the majority of metabolic biomarkers and clinical parameters. Although certain biomarkers 
showed correlations with clinical parameters at a cutoff point of p = 0.05 (e.g. LysoPC(18:4(6Z,9Z,12Z,15Z)) and 
LysoPE(18:2)), the correlation coefficients were very low (<0.3075), as presented in Supplementary Table S1. 
Thus, the established correlations needed to be further investigated.

Evaluation of the Diagnosis Potential of the Metabolic Biomarkers.  To assess the diagnostic utility 
of the metabolites for discrimination between early stage CAS patients and controls, ROC curves were con-
structed for the 42 metabolites. For most biomarkers, the value of the area under the curve (AUC) was < 0.7 
(Table 2), indicating they had poor prediction ability. Therefore, multiple metabolites will need to be combined 
to diagnose early CAS.

A binary logistic regression model was constructed based on the 42 identified biomarkers in the training set. 
Through a forward stepwise variable selection analysis (Wald test), nine metabolites (i.e. lysophosphatidylcholine 
(LysoPC) (20:4), LysoPC(16:0), phosphatidylglycerol (18:0/0:0), elaidic acid, prasterone sulfate, l-fucose, mono-
glyceride (MG) (0:0/18:2(9Z,12Z)/0:0), diglyceride (DG) (20:2(11Z,14Z)/18:3(9Z,12Z,15Z)/0:0), and indoxylsul-
furic acid) were selected as the best predictors for early CAS discrimination. The prediction model was established 
as follows: probability = 1/[1 + exp(−(6.297 − 0.014 × V03 − 0.265 × V04 − 0.322 × V09 + 0.636 × V15 − 
0.076 × V19 + 0.002 × V29 − 0.001 × V35 − 0.024 × V36 + 2.929 × V39))]. As expected, the combinatorial 
model yielded a satisfactory result, with an AUC of 0.898 (95% confidence interval 0.841–0.955) (Fig. 2A). Using 
the best cutoff value of 0.4789, the sensitivity and specificity were 86.7% and 81.7%, respectively. The relative con-
centrations of these nine plasma metabolite biomarkers across all groups are presented in Fig. 3. Compared with 
the control group, three metabolites (MG(0:0/18:2(9Z,12Z)/0:0), elaidic acid, and indoxylsulfuric acid) showed 
increased concentrations in the patient group, whereas the other six metabolites (e.g., LysoPC(20:4) and l-fucose) 
showed decreased levels.

To validate the diagnostic capability of the combinatorial model, an independent cohort of 40 early stage 
CAS patients and 40 control subjects was used. None of the samples had been previously included in the training 
set, and this allowed for estimation of true predictive accuracy. In this case, the plasma biomarkers model still 
exhibited good classification ability (Fig. 2B). The AUC reached 0.890 (95% confidence interval 0.822–0.961). 
The percentage of correct diagnoses at the same cutoff value of 0.4789 was 85.0% for early stage CAS patients and 
80.0% for the control subjects (Fig. 2C). The external validation study confirms the outstanding performance of 
the LC-MS plasma metabolomics platform for diagnosis of early stage CAS patients.

Staging analysis.  In addition to accurate diagnosis, classification of the severity of CAS is critical for patient 
management and determining prognosis. Thus, we attempted to investigate the potential of plasma metabolom-
ics for stratification of the severity of CAS in combined training and test data sets. For simplicity in this study, 
we divided the patients into three groups based on the number of artery stenoses. When using the entire data 
set, the established PLS-DA models exhibited good ability to discriminate from each other (See Supplementary 
Fig. S8). Furthermore, all AUC values were greater than 0.90 (Table 3). These results highlight the potential of 
metabolomics in the staging of CAS. In addition, the concentrations of five metabolites were found to be signifi-
cantly different in patients who were at different stages of the disease (Supplementary Fig. S9). However, further 
validation and selection of more differential metabolites should be carried out using a larger patient cohort to 
confirm these results.

Discussion
Complex diseases such as CAS with multiple etiological factors necessitate a systemic approach for mechanistic 
understanding and optimization of early diagnosis. In this study, we applied metabolomics, covering thousands 
of small molecular endogenous metabolites, to characterize metabolic alterations of early stage CAS.

Our results demonstrated that multivariate models can accurately distinguish early stage CAS patients from 
control subjects, and 42 plasma metabolites were identified as biomarkers of early stage CAS. However, diagnosis 
based on so many metabolites would not be convenient or economical in clinical practice. Thus, simplification of 
the plasma metabolite signature is required for practical diagnosis of early stage CAS. To accomplish this, we per-
formed a binary logistic regression, in which nine metabolites were selected as the best predictors for early stage 
CAS discrimination. Furthermore, the AUC was calculated to quantitatively assess the diagnostic performance 
of this simplified metabolite signature. The findings indicated that the simplified metabolite signature of the nine 
biomarkers was a good classifier for discrimination of early stage CAS patients from controls, and this was sup-
ported by the satisfactory AUC values of 0.898 in the training set and 0.890 in the test samples. However, further 
studies involving a larger sample set or heterogeneous population are needed to verify these novel biomarkers.

In the current study, in addition to assessing the potential of these biomarkers as diagnostic indicators for early 
stage CAS, we investigated the biology and metabolic functions of the biomarkers to enhance our understanding 
of the disease’s metabolic mechanisms. The pathways for the biomarkers (Table 2) were determined by searching 
the KEGG PATHWAY Database, Human Metabolome Database and ChEBI Database.

Among the metabolites, a series of LysoPCs and lysophosphatidylethanolamines (LysoPEs), in addition 
to phosphatidlycholines (PC), phosphatidylethanolamines (PE) and phosphatidylglycerols (PG), were greatly 
altered in early stage CAS patients compared to the controls. A well-known mechanism of lysophospholipid pro-
duction is hydrolysis of phosphoglycerides by phospholipase A2 (Supplementary Fig. S10A). Although elevated 
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levels of lysophospholipids have been reported to induce oxidative stress on endothelial cells, which leads to AS 
and cardiovascular disease24–26, it has also been observed that lysophospholipids produced by a PLA2-like activity 
of Paraoxanase 1 contribute to inhibition of macrophage biosynthesis and consequently reduce cellular choles-
terol accumulation and atherogenesis27. Lysophospholipids have been widely recognized as pro-inflammatory 
and pro-atherogenic metabolites28, but some recent population-based studies have suggested lysophospholipids 
have protective effects on CHD and its risk factors. Fernandez et al. and Stegemann et al. found an inverse asso-
ciation between several LysoPCs and incident CHD29,30. In a study of type 2 diabetes, LysoPC 18:2 was found to 
be inversely associated with incident diabetes and impaired glucose tolerance31. Our study confirms and extends 
on these previous findings. With this knowledge, we inferred that a disturbed phospholipid catabolism would be 
closely interrelated with early stage CAS.

We found plasma concentrations of three MGs and two DGs, MG(18:2), MG(18:3), MG(18:1), DG(36:3) and 
DG(38:5), were significantly disrupted in the early stage CAS patients. MG(18:1), MG(18:2) and MG(18:3) were 
upregulated in the patients compared with controls, while DG(36:3) and DG(38:5) were downregulated relative 
to the controls. The circulating DGs are mostly derived from phosphatidic acid, and then converted into triglycer-
ides under the catalysis of DG acyltransferase. Triglycerides are further hydrolyzed to release fatty acids and MGs 
by the action of lipoprotein lipase or hormone sensitive lipase (Supplementary Fig. S10A). Within the intestinal 
wall, MGs are precursors to triglycerides via the MG pathway before being transported in lymph to the liver32. 
Thus, it has been shown that DGs and MGs are central in the synthesis and breakdown of triglycerides, and a large 
randomized analysis recently been proved this has a positive causal effect on CHD risk33. On the other hand, the 
disturbed DGs and MGs metabolism observed in this study may lead to an increase in the number of free fatty 
acids, and further migration and invasion of macrophages via the p38 MAP-kinase signaling pathway, Toll-like 
receptors 2 and 4, and JNK-dependent pathways34,35. Several studies have suggested accumulated macrophages 

Figure 2.  ROC curves of the combined plasma biomarkers for distinguishing early-stage CAS patients from 
controls in (A) the training set; (B) the test set. (C) Predictive scores plot of plasma samples between patients 
and their controls in the test set.
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exert a key role in the formation and development of AS36. Therefore, the perturbed DG and MG metabolites, 
particularly MG(18:2) and MG(18:3), should be associated with the onset of early stage AS, which is in line with 
a previously report that demonstrated they are involved in the pathogenesis of CHD23,32.

The levels of phytosphingosine and sphinganine in the early stage CAS patients compared to the controls 
were elevated significantly in our study. It is known that accumulation of phytosphingosine and sphinganine 
occurs because of the action of sphingomyelinases hydrolysis of sphingolipids37. Sphingolipids, which are a large 
class of lipids, play important roles as both membrane components and signaling molecules involved in diverse 

Figure 3.  Bar plots of potential biomarkers. Value in the box plots are shown as the normalized peak areas of 
the metabolites. The horizontal line inside the box is the median, and the bottom and top boundaries of the 
boxes are the 25th and 75th percentiles, respectively. Lower and upper whiskers are the 5th and 95th percentiles, 
respectively.

Positive mode Group1/2 Group1/3 Group2/3

AUC 0.971 0.987 1.000

Sensitivity(%) 100.0 94.4 100.0

specificity(%) 83.3 96.7 100.0

Negative mode Group1/2 Group1/3 Group2/3

AUC 0.945 0.909 0.923

sensitivity(%) 90.9 94.4 91.7

specificity(%) 80.6 71.0 87.9

Table 3.  The diagnostic potential of PLS-DA Models for Different CAS stages.
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cell processes, including cell-cell interactions, cell proliferation, cell differentiation, and apoptosis38. Emerging 
evidence has shown that sphingolipid-mediated cellular signaling pathways play a critical role in cardiovascular 
pathophysiology39. It has been reported that sphingolipids have the capacity to reduce triglyceride and cholesterol 
levels40. However, higher concentrations of phytosphingosine and sphinganine in plasma samples from patients 
suggested that sphingolipids were depleted, which increased the risk of AS and metabolic syndrome41. In addi-
tion, using metabolomics, Liu et al. and Qi et al.42,43 found that phytosphingosine and sphinganine levels were 
significantly increased in a myocardial ischemia rat model, which is in accordance with our study. Therefore, it is 
reasonable to suggest that the sphingolipid metabolism is activated in the early stages of CAS.

We found that several metabolites of interest were involved in metabolic processes related to long-chain fatty 
acids. Generally, fatty acids are an important source of energy for the heart. Under AS conditions, the oxygen 
requirements of the heart exceed the oxygen supply to the heart. In our study, we observed significantly enhanced 
levels of plasma long-chain fatty acids in early stage CAS patients, indicating that the increased abundance of 
plasma long-chain fatty acids was probably the result of strong de novo fatty acid synthesis during the initiation 
and progression of AS to supply the required energy. Zha et al.44 showed that syntheses of polyunsaturated fatty 
acids and unsaturated fatty acids were significantly upregulated in an early AS animal model. Interestingly, we 
also found that the plasma concentrations of long-chain fatty acids, such as palmitic acid, linolenic acid, and 
elaidic acid, were significantly higher in the early stage CAS group than the control group. Therefore, the metab-
olism of long-chain fatty acids might have a pivotal pathogenetic role in triggering CAS.

In summary, our study demonstrates that LC-MS-based plasma metanolomics is a powerful approach that can 
accurately distinguish early stage CAS patients from control subjects. The results provide a panel of metabolite 
markers that have clinical potential for disease diagnosis and patient stratification for early CAS. These metabolite 
markers are involved in several key metabolic pathways such as phospholipid metabolism, sphingolipid metab-
olism, and fatty acid metabolism. The present study is the first clinic metabolomics study focusing on early stage 
CAS to suggest that plasma metabolomics could be used for non-invasive early diagnosis and surveillance of CAS 
with high sensitivity and specificity. The elucidation of the associations between biomarkers and early stage CAS 
events increases mechanistic understanding of early stage CAS.

Methods
Patients.  The study protocol was approved by the Ethics Committee of the Second Affiliated Hospital of 
Harbin Medical University. All experiments were performed in accordance with relevant guidelines and regu-
lations. Subjects were enrolled between August, 2012 and July, 2014 from the Department of Cardiology, 2nd 
Affiliated Hospital of Harbin Medical University, Harbin, China. Patients were included in this study if they 
underwent diagnostic CAG for the evaluation of coronary artery disease and did not have significant coronary 
artery stenoses (i.e., stenosis < 50%). According to Tousoulis’s study45, we defined early stage CAS patients as 
individuals with newly diagnosed, angiographically documented coronary stenosis < 50% in at least one major 
coronary artery, while the controls showed no apparent lesions in angiography. Exclusion criteria for this study 
included the following: previous myocardial infarction or myocardial revascularization or percutaneous coronary 
intervention; heart failure (left ventricular ejection fraction less than 30%); valvular heart disease; any metabolic 
disease (e.g., diabetes mellitus); malignancy; liver/renal disease; inflammatory disease (e.g., infections); preg-
nancy or lactation; multiple organ function failure; and previous coronary artery bypass surgery. All participants 
provided written informed consent, were screened for age, sex, weight, cardiac risk factors, prior cardiac disease, 
cardiac medications, and were given hematological and biochemical examinations.

Peripheral venous blood samples (5 mL) were collected in the morning before breakfast from 100 early stage 
CAS patients and 100 controls using vacutainer tubes containing fresh sodium dihydrogen phosphate antico-
agulant. The plasma samples were separated by centrifugation at 1000 × g for 10 min and stored at -80 °C until 
required for further analysis.

Blank and quality control samples.  Blank and quality control (QC) samples were analyzed throughout 
the whole experimental procedure. A blank (75% acetonitrile) was run after every five samples to identify and 
minimize sample carryover. The QC samples were created by combining equal volumes of plasma samples from 
20 patients with early stage CAS and 20 controls. The QC samples were injected four times in randomized order 
within every analytical batch, and used to monitor the stability and performance of the system and evaluate the 
quality of the acquired data.

Sample preparation.  Before analysis, all of the plasma samples, including the QC samples, were processed 
according to our previous method with minor modifications23. Briefly, methanol (1000 μL) was added to 200 μL 
of plasma and vortex-mixed vigorously for 2 min. The mixture was centrifuged at 14,000 × g for 15 min at 4 °C. 
The supernatant was transferred to a clear vial and reduced under a stream of nitrogen at 37 °C. The residue was 
dissolved in 200 μL of acetonitrile/water (3:1/v:v), vortex-mixed for 60 s and then centrifuged at 14,000 × g for 
15 min at 4 °C. The supernatant was then placed into a sample vial for LC-QTOF/MS analysis.

Chromatography.  Chromatography separation was performed on an Agilent Technologies 1260 liquid 
chromatography system using a ZORBAX SB-C18 column (100 mm × 3.0 mm i.d., 1.8 μm, Agilent, Santa Clara, 
CA) at 40 °C. The mobile phase was a mixture of water containing 0.1% formic acid (A) and acetonitrile with 0.1% 
formic acid (B). The mobile phase flow rate was 0.5 mL/min. A linear gradient elution was performed, starting 
with 5% B, increasing to 98% B over 18 min, and was holding at 98% B for 3 min. Subsequently, the mobile phase 
was returned to the initial condition (5% B) within 0.1 min, and maintained at this level for 7 min for equilibra-
tion. The injection volume of the sample was 10 μL. All samples were maintained at 4 °C during the analysis46.
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Mass spectrometry.  Metabolic profiling was conducted using an Agilent 6530 series quadrupole 
time-of-flight mass spectrometer equipped with a dual electrospray ionization source (ESI). The ionization was 
operated in positive (ESI+) or negative (ESI−) mode. The mass spectrometry parameters were set as previously 
described23. To ensure mass accuracy and reproducibility, the mass spectrometer was internally mass calibrated 
in real time with purine (m/z 121.0509 and m/z 119.0363 in ESI + and ESI− mode, respectively).

Tandem mass spectrometry (MS/MS) experiments were carried out in targeted MS/MS mode to identify 
potential biomarkers. Argon was employed as the collision gas, and collision energy was set at 10, 20, or 40 eV.

Data preprocessing and annotation.  The raw data acquired from LC-QTOF/MS were initially converted 
into mzData format via Mass Hunter Qualitative Analysis Software (Agilent) and then imported to xcms pack-
age in the R platform for preprocessing47. The default xcms parameters were used, with the following excep-
tions: xcmsSet (method = “centWave”, peakwidth = c(10,50))47. The preprocessing result was obtained with a 
three-dimensional data set of the retention time, mass-to-charge ratio (m/z), and peak intensity. Then the R 
package CAMERA was used for annotation of isotope peaks, adducts, and fragments47. Finally, the data for each 
sample were normalized to the total sum of peak intensities before statistical analysis48.

Statistical analysis.  Multivariate data analysis was performed using SIMCA-P 11.5 software (Umetrics AB, 
Umea, Sweden). Unsupervised principal component analysis (PCA) was first carried out with all samples to pro-
vide an overview of the grouping trends and outliers49. Then, supervised partial least-squares discriminant analy-
sis (PLS-DA) was used to find differences between the early stage CAS patients and controls. Variable importance 
in the project (VIP) was calculated as a coefficient for selection of variables50. To validate the robustness of the 
supervised model and evaluate the degree of overfitting, permutation tests with 100 iterations were performed51. 
In addition to the multivariate statistical method, the nonparametric Kruskal–Wallis test was also applied to 
measure the significance of each variable. Only mass features with multivariate and univariate statistical signifi-
cance (VIP > 1.0 and p < 0.05) were included in the list of candidate markers contributing most to the discrim-
ination, which was then submitted to the metabolite identification procedure. Receiver operating characteristic 
(ROC) curve analysis and binary logistic regression were performed using SPSS software (IBM SPSS Statistics 
22, USA) following the previously published data analysis method52. The training set was used to generate the 
classification model, and an independent test set was then subjected to the constructed model to evaluate its 
diagnostic ability.

Metabolite identification.  Markers were identified through a multiple-step procedure. The first step was 
to find quasi-molecular ions via analysis of the peak list and annotation results and determine the corresponding 
molecular weights. The second step involved performing the MS/MS experiments on a quadrupole time-of-flight 
mass analyzer (6530 Agilent) to produce the fragment patterns and obtain structural information for selected bio-
markers. Then, the fragmentation patterns of the biomarkers were compared to the spectral data of metabolites 
that had the same m/z in freely available databases, namely HMDB53, METLIN54, MassBank55 and LIPID MAPS 
Structure56. The mass tolerance between the measured m/z value and the exact mass of the component of interest 
was set to within 15 ppm. Finally, if available, confirmation with standards was carried out by comparison of 
retention time, isotopic distribution, and fragments of commercially available reagents (Sigma-Aldrich, St. Louis, 
MO) with those obtained in real samples.
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