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We sought to define the landscape of alternative pre-mRNA splicing
in prostate cancers and the relationship of exon choice to known
cancer driver alterations. To do so, we compiled a metadataset
composed of 876 RNA-sequencing (RNA-Seq) samples from five
publicly available sources representing a range of prostate pheno-
types from normal tissue to drug-resistant metastases. We subjected
these samples to exon-level analysis with rMATS-turbo, purpose-
built software designed for large-scale analyses of splicing, and
identified 13,149 high-confidence cassette exon events with vari-
able incorporation across samples. We then developed a computa-
tional framework, pathway enrichment-guided activity study of
alternative splicing (PEGASAS), to correlate transcriptional signa-
tures of 50 different cancer driver pathways with these alternative
splicing events. We discovered that Myc signaling was correlated
with incorporation of a set of 1,039 cassette exons enriched in genes
encoding RNA binding proteins. Using a human prostate epithelial
transformation assay, we confirmed the Myc regulation of 147 of
these exons, many of which introduced frameshifts or encoded pre-
mature stop codons. Our results connect changes in alternative pre-
mRNA splicing to oncogenic alterations common in prostate and
many other cancers. We also establish a role for Myc in regulating
RNA splicing by controlling the incorporation of nonsense-mediated
decay-determinant exons in genes encoding RNA binding proteins.
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Alternative pre-mRNA splicing is a regulated process that
governs exon choice and greatly diversifies the proteome. It

is an essential process that contributes to development, tissue
specification, and homeostasis and is often dysregulated in disease
states (1). In cancer, this includes growth signaling, epithelial-to-
mesenchymal transition, resistance to apoptosis, and treatment
resistance (2). In prostate cancer, our area of interest, the most
notable splicing change is the emergence of the ligand-independent
androgen receptor ARV7 isoform in response to hormone depri-
vation (3). Other examples include proangiogenic splice variants of
VEGFA (4), tumorigenic variants of the transcription factors ERG
and KLF6 (5, 6), and antiapoptotic splicing of BCL2L2 (7, 8).
However, the intersection of upstream oncogenic signaling, pre-
mRNA splicing, and the biological processes affected by those
splicing events has not been defined at a global level.
Prostate cancers progress from hormone-responsive, localized

disease to hormone-independent, metastatic disease accompanied
by changes in gene expression and mutations that confer cell-
autonomous growth and therapeutic resistance (9). The study of
disease progression from primary prostate adenocarcinoma (PrAd)
to metastatic, castration-resistant prostate cancer (mCRPC) and

treatment-related neuroendocrine prostate cancer (NEPC) has
been aided by large-scale genomic and transcriptomic studies of
patient samples representing each form of the disease (10–13).
Examples of driver alterations found in precursor lesions and
primary tumors include TMPRSS2-ERG translocations and PTEN
loss (14). Metastatic tumors are characterized by Myc and AR
amplification (15, 16). NEPC includes near-universal loss of TP53
signaling by inactivating mutation as well as chromosomal loss of
RB1 (17). Sequencing efforts and subsequent functional experi-
ments have identified prostate cancer driver alterations and defined
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the impact of gene expression networks on prostate cancer phe-
notypes. These studies have led to the successful development of
new therapeutics targeting AR signaling and DNA repair in ad-
vanced disease (18, 19).
Prostate cancer progression is also associated with shifts in

alternative pre-mRNA splicing patterns, but this process is not
well understood (20). Investigations of global changes in exon
usage in prostate cancer have focused on stage- or race-specific
comparisons (21–25). Comparisons of tumor-adjacent benign
material and PrAd identified intron retention and exon skipping
events in the biomarkers KLK3 and AMACR, respectively (22).
Others studying NEPC and PrAd have shown that a network of
splicing events controlled by the serine–arginine RNA-binding
protein SRRM4 contributes to the neuroendocrine phenotype (26–
28). Comparisons of European American and African American
(AA) PrAd samples identified an AA-specific splice variant of
PIK3CD that enhanced AKT/mTOR signaling (23). How these
splicing alterations connect to the driver alterations described
above remains to be explored.
The accumulation of RNA-sequencing (RNA-Seq) data in

large databases presents a unique opportunity to conduct an anal-
ysis of alternative splicing across the full range of prostate cancer
disease states. For our study, we prepared a unified dataset of large,
publicly available RNA-Seq datasets representing normal tissue,
tumor-adjacent benign tissue, primary adenocarcinoma, metastatic
castration-resistant adenocarcinoma, and treatment-related meta-
static NEPC. However, handling datasets of this size requires
splicing analysis software with greater efficiency than what is
currently available. To analyze these hundreds of datasets, we
created an improved version of our rMATS software (dubbed
rMATS-turbo) that can handle this volume of RNA-Seq data
(29, 30).

We identify a high-confidence set of exons whose incorpora-
tion varies across prostate cancer disease states. By combining
expression-level and exon-level analyses, we developed a pathway-
guided strategy to examine the impact of oncogenic pathways on
incorporation of these exons. This correlational analysis implicates
Myc, mTOR, and E2F signaling in the control of exon choice in
spliceosomal proteins. To further investigate the contributions of
Myc signaling to exon choice, we developed unique engineered
human prostate cell lines with regulated Myc expression. Func-
tional experiments in these cell lines identify Myc-dependent
exons and experimentally confirm that cassette exon choice in
many splicing regulatory proteins is responsive to Myc expression
level. These exons often encode frameshifts or premature termi-
nation codons (PTCs) that would result in nonsense-mediated de-
cay (NMD). We show that an ultraconserved, NMD-determinant
exon in the RNA-binding protein SRSF3 is particularly responsive
to Myc signaling. Our results implicate Myc signaling as a regu-
lator of alternative splicing-coupled NMD (AS-NMD) as part of a
program of growth control.

Results
Exon-Level Analysis Defines the Landscape of Alternative Pre-mRNA
Splicing Across the Prostate Cancer Disease Spectrum.We combined
RNA-Seq data from disparate published datasets representing
876 samples of normal tissue, benign tumor-adjacent material,
primary adenocarcinoma, metastatic castration-resistant adeno-
carcinoma (mCRPC), and treatment-related NEPC (Fig. 1A)
(10–13, 31, 32). Metaanalyses of RNA-Seq data with gene- or
isoform-level counts are subject to confounding batch effects and
rely on existing isoform annotation (33). Exon-level analysis,
however, uses a ratio-based methodology to estimate exon in-
corporation, which may be more robust against batch effects and
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Fig. 1. A global, exon-level analysis of alternative pre-mRNA splicing in normal prostate and prostate cancers identifies patterns of exon usage in RNA-
binding proteins. (A) Schematic with alluvial plot depicting the data-processing workflow combining RNA-Seq data from various prostate tissue disease states
(Left) and summary table depicting various exon events detected by rMATS-turbo before and after filtering for splice junction reads coverage, PSI range, and
commonality (Right). The alluvial plot depicts the sorting of patient RNA-Seq datasets from individual studies on the Left into prostate phenotypes on the
Right. (B) Scatter plot depiction of an unsupervised PCA of exon usage matrices from eight different prostate datasets representing healthy tissue, tumor-
adjacent benign tissue, primary prostate cancer, metastatic castration-resistant prostate cancer (mCRPC), and treatment-associated neuroendocrine prostate
cancer (NEPC).
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confounding factors in large-scale RNA-Seq datasets (34–37). In
addition, exon-level analysis can detect novel exon–exon junc-
tions and is thus independent of previous annotation.
To facilitate alternative splicing analysis in this and other large

RNA-Seq datasets, we developed rMATS-turbo (also known as
rMATS 4.0.2), a computational pipeline that permits the effi-
cient capture, storage, and analysis of splicing information from
very large-scale raw RNA-Seq data. This improved pipeline
refactors the original ratio-based rMATS software that we de-
veloped for splicing analysis in RNA-Seq data to optimize it for
very large-scale RNA-Seq datasets and is now available for
public use (29, 30). It offers significant improvements in speed
and data storage efficiency.
We applied rMATS-turbo to the combined RNA-Seq dataset

and identified over 330,000 different cassette exons across all
prostate samples. Previous estimates of the diversity of splicing
events in human cells vary, but are generally of the same order of
magnitude (38). We also identified tens of thousands of addi-
tional alternative splicing events (Fig. 1A), including alternative
5′ and 3′ splice sites, mutually exclusive exons, and retained in-
trons. For this study, we focused on cassette exons, as these are
the most well-defined type of alternative splicing event. We
should note that although the rMATS-turbo software detected
numerous mutually exclusive exons, most of these events were in
fact part of more complex alternative splicing events; thus, we did
not include these mutually exclusive exons in downstream analyses.
Filtering of these exons for coverage (≥10 splice junction reads

per event), cross-sample variance (range of percent-spliced-in
[PSI] > 5%; mean skipping or inclusion > 5%) and commonal-
ity (events detected in ≥1% of all samples) produced a set of
13,149 high-confidence exons with variable incorporation across
samples (see Methods). Principal-component analysis (PCA) of
this exon usage matrix grouped samples of the same disease phe-
notype regardless of dataset (Fig. 1B). By comparison, a similar
unsupervised analysis of isoform-level count-based metric from
the same metadataset grouped samples more by dataset of origin
than disease phenotype (SI Appendix, Fig. S1 A and B). This result
is consistent with prior observations that the exon-level splicing
analysis is more robust against batch effects and other confounding
factors in large-scale RNA-Seq datasets (35–37).

Combining Gene Pathway Analysis and Exon Usage Identifies Exon
Correlates of Oncogenic Signaling. Genomic studies of prostate
cancer have identified driver alterations associated with disease
progression (39). We sought to define how the variable cassette
exons we identified and the biological processes they participate
in might relate to these oncogenic signals. Instead of selecting
single oncogenes for study, we developed PEGASAS (pathway
enrichment-guided activity study of alternative splicing), a pathway-
guided analytic strategy that uses gene signatures to estimate the
activities of signaling pathways and to discover potential down-
stream exon changes (Fig. 2A). Gene signature-based analyses use
an ensemble of features (a set of genes collectively) to estimate
pathway activity and outperform single-gene measurements (40).
To mitigate potential batch effects in the expression data, we
utilized a rank-based metric to calculate the signature score,
providing a more robust measure of pathway activity as it is in
essence normalized on a per-sample basis (41).
We employed the hallmark gene signature sets maintained by

the Molecular Signatures Database (MSigDB) (42). These 50 sets
represent a diverse and well-validated array of cellular functions
and signaling pathways. To assess the performance of these sig-
natures in our combined dataset, we examined signature scores
for the AR, Myc Targets V2, and MTOR gene sets across five
different prostate phenotypes. Consistent with previously reported
observations of pathway activation in prostate cancer progression,
the androgen response gene signature scores we measured were
lowest in NEPC samples (SI Appendix, Fig. S2A). Similarly,

MTOR and Myc signature scores were higher in mCRPC samples
than in normal tissues. The Myc and MTOR signature scores
increased between normal healthy donors (Genotype-Tissue
Expression [GTEx]) and tumor-adjacent normal (TCGA-PRAD),
consistent with field cancerization and tumor–stromal interaction
effects on gene expression reported previously by others (43).
We then scored each sample in our metadataset for all 50

pathways and correlated this score with the data matrix of over
13,000 variable cassette exons (Dataset S1). After filtering for
correlation strength and false-discovery rate (FDR), each
pathway returned between 11 and 1,330 exon correlates (Dataset
S1). The 10 gene sets that returned the greatest number of exon
correlates with a Pearson’s correlation coefficient greater than 0.3
or less than −0.3 are shown (Fig. 2B). Nine out of 10 of these gene
sets had exon correlates found in genes with strong functional
enrichment by gene ontology (adjusted P value < 0.05).

Cassette Exons Correlating with Myc, E2F, and MTOR Signaling Are
Enriched in Splicing-Related Genes. We next examined the biolog-
ical processes specified by the genes containing the variant exons
correlated with prostate cancer-relevant hallmark gene sets (Fig.
2C). We also added a signature that describes transcriptional
activity due to TMPRSS signaling as this common prostate
cancer alteration is not represented by a hallmark gene set (44).
Here, we represent the network of data as a hive plot to show
how exons (left axis) correlate with signaling pathways (middle
axis) and the functional enrichment of genes containing those
correlated exons (right axis) (45). Gene ontology analysis in-
dicated that the relatively small number of exons correlated with
AR or Notch were modestly enriched in cell adhesion and
chromatin remodeling processes. Surprisingly, the numer-
ous exon correlates of Myc, E2F, and MTOR were strongly
enriched in genes related to the spliceosome and alternative pre-
mRNA splicing. In addition, the overlap in the exon sets corre-
lated with Myc, E2F, and MTOR was striking, with 50 to 60% of
exons held in common (Fig. 2D). These pathways play central
roles in growth control and are frequently codysregulated in hu-
man cancers, so a shared set of exons might be expected from a
correlation analysis.

Myc-Correlated Exons Are Found in the Oncogenes SRSF3 and HRAS.
Given the centrality of Myc signaling in tumorigenesis, tumor
maintenance, and tumor progression in a multitude of tissue line-
ages (46, 47) including the prostate, this pathway was selected for
further investigation (15, 48, 49). The validity of these correla-
tional results critically depends on the integrity of the underlying
gene signature used to produce them. We therefore performed
additional validation steps on the “MYC Targets V2” hallmark
gene set by examining its performance in The Cancer Genome
Atlas prostate adenocarcinoma RNA-Seq dataset (TCGA-PRAD)
that has accompanying patient outcomes data (32). We noted that
samples with genomic amplifications of Myc had higher signature
scores on average, as did samples that overexpressed Myc at the
mRNA level (SI Appendix, Fig. S3A). To examine whether these
relatively small changes in signature score had clinical relevance,
we performed Kaplan–Meier survival analyses using the “MYC
Targets V2” signature, Myc genomic amplification status, or Myc
single-gene overexpression status as strata. The Myc gene signa-
ture was equally predictive of overall survival as genomic ampli-
fication status and outperformed single-gene expression stratification
(SI Appendix, Fig. S3B).
Convinced of the performance of the Myc signature by these

additional tests, we performed further analysis of the 1,039 Myc-
correlated exons we identified in the prostate metadataset (Fig.
3A and Dataset S1). Unsupervised clustering of these 1,039 exons
also grouped the samples by phenotype (SI Appendix, Fig. S3C),
identifying patterns in Myc-dependent exon incorporation that
varied accordingly.
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Two examples among the most strongly Myc-correlated cas-
sette exons from our analysis are found in SRSF3 and HRAS
(Fig. 3B). Incorporation of the identified alternative exon in

SRSF3 is anticorrelated with the Myc signature score (Fig. 3 B,
Left). When examined by cancer phenotype, incorporation of this
exon decreases as prostate cancer progresses from normal tissue
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mTOR
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MYC
(1,039)MYC & E2F 

& mTOR
(665)

p < 2.2x10-16

Total filtered SE events 13,149
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Fig. 2. Pathway enrichment-guided activity study of alternative splicing (PEGASAS) analysis identifies exon correlates of oncogenic signaling in prostate
cancers. (A) Workflow diagram describing PEGASAS correlation of gene signature score with exon usage. Each sample is scored for a gene expression sig-
nature of interest. Gene signature scores are correlated with exon usage matrices to identify pathway-correlated exon incorporation changes. (B) Heatmap of
the correlation coefficients of the exon changes correlated with gene signatures in the Molecular Signatures Database (MSigDB) hallmark gene sets as
generated by PEGASAS. The 10 signatures that returned the highest number of exon correlates are shown here. Each row depicts the results of the correlation
to a single hallmark signature. Each column represents a single exon. The color represents the strength and direction of the correlation (red positive, blue
negative) of a single exon with each pathway. Columns are sorted by hierarchical clustering. Rows are ranked by total number of exon correlates passing
statistical metrics for each pathway (# Events, bar chart). The gene ontology term with the highest enrichment for the genes containing pathway-correlated
exons and the corresponding P value are also depicted. The P values correspond to the gene ontology enrichment and are not a measure of significance of
pathway–exon correlation. (C) Hive plot depiction of exons correlated with selected prostate cancer-related gene signatures and the biological processes
associated with genes containing those exons. All pathway-correlated exons are displayed on the left axis. Seven well-known prostate cancer driver pathways
are represented as nodes on the middle axis. The area of these nodes reflects the number of exons correlated with each pathway. The right axis depicts four
summary gene ontology terms. The width of the edges connecting the nodes on the middle axis to the nodes on the right axis is proportional to the en-
richment of each pathway for each biological process. The size of the nodes on the right axis is proportional to the total number of exons associated with each
biological process. (D) Area-proportional Venn diagram depicting the intersection of Myc-, E2F-, and MTOR-correlated exons in prostate cancer. Exons must
share the same correlation direction (positive or negative) to appear in the intersection. AS, alternative splicing; K-S, Kolmogorov–Smirnov; SE, skipped exon.
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Fig. 3. Exon incorporation events correlated with Myc activity are strongly enriched in RNA-binding proteins and are conserved in prostate and breast cancers. (A)
Heatmap depiction of exon usage of 1,039Myc-correlated exons across prostate cancer datasets in healthy tissue, primary adenocarcinoma,metastatic adenocarcinoma, and
neuroendocrine prostate cancer (NEPC). Columns represent samples ordered by disease phenotype and sorted by Myc Targets V2 signature score within each group. The
Myc score annotation is colored fromwhite (low) to black (high) based on the rank-transformed signature score of patient samples across the datasets. Rows represent exon
inclusion events ordered by hierarchical clustering. (B) Scatterplots depicting examples of cassette exons in SRSF3 and HRAS transcripts whose incorporation is negatively
correlated with Myc gene signature score. (C) Sashimi plots depicting average cassette exon incorporation levels of exons in SRSF3 and HRAS in prostate cancer datasets
separated by cancer phenotype. Sashimi plots depict density of exon-including and exon-skipping reads as determined by rMATS-turbo analysis. (D) Workflow diagram for
performing pathway-guided alternative splicing analysis on normal and cancerous breast and lung tissues. Each sample is scored for the Myc Targets V2 signature and
correlated with the exon usage matrix to identify pathway-correlated exon incorporation changes. (E) Venn diagram indicating the intersection between Myc-correlated
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REVIGO chart depicting the gene ontology of genes containing the 492 Myc-correlated exons from the triple intersection described above. SE, skipped exon.
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to primary tumor and is even lower in mCRPC samples (Fig. 3 C,
Left). Incorporation of this exon in NEPC is slightly higher, con-
sistent with the Myc signature scores in these samples (SI Ap-
pendix, Fig. S2A).
SRSF3 is a serine–arginine splicing factor that can act as a

proto-oncogene and also participates in transcription termina-
tion and DNA repair (50–53). The exon in question is ultra-
conserved throughout evolution and contains an in-frame stop
codon. Also known as a poison exon, this sequence functions as a
PTC (SI Appendix, Fig. S3 D, Top). Incorporation of this PTC
has been shown previously to reduce SRSF3 expression levels by
inducing NMD of the transcript (54, 55). These data suggest
increased Myc signaling leads to increased exon skipping, re-
duced NMD, and increased expression of SRSF3.
A cassette exon in HRAS was also anticorrelated with Myc

activity (Fig. 3 B, Right). When examined by cancer phenotype,
exon skipping increased with tumor progression (Fig. 3 C, Right).
HRAS is a well-known oncogene that cooperates with Myc to
induce carcinogenesis in multiple tissues (56, 57). Inclusion of
the cassette exon and the stop codon it contains results in the
truncated HRAS p19 product instead of the p21 form (58).
HRASp19 lacks the cysteine residues in the carboxyl-terminal
domain of HRASp21 required for nuclear translocation and
RAS-driven transformation and may function instead as a tumor
suppressor (58, 59). This exon is conserved in mammals (SI Ap-
pendix, Fig. S3 D, Bottom). Incorporation of this exon is anti-
correlated with Myc activity, suggesting that Myc can drive
increased expression of oncogenic HRAS by affecting its splicing.

Myc-Correlated Exons in Prostate Cancers Are Highly Conserved in
Breast and Lung Adenocarcinomas. To determine whether the ob-
served effects of Myc activity on splicing were prostate cancer
specific, we performed a similar correlation analysis on a second
hormone-dependent malignancy, breast adenocarcinoma, as well
as on a hormone-independent epithelial malignancy, lung ade-
nocarcinoma. The normal tissue and cancer RNA-Seq datasets
for this analysis were drawn from TCGA (TCGA-BRCA and
TCGA-LUAD) datasets and the GTEx collection of normal tissue
(31, 60, 61). We performed a similar correlation between Myc
signature score and exon usage as described above (Fig. 3D). The
Myc signature scores in breast and lung tissues behaved similarly
to those in the prostate tissues, with increases in score at each step
when moving from normal to tumor-adjacent normal to carcinoma
(SI Appendix, Fig. S3E). We identified 2,852 Myc-correlated cas-
sette exons in breast samples and 2,465 in lung samples using the
same filtering criteria for the prostate study (SI Appendix, Fig.
S3F). The exon list includes the same anticorrelated exon in
SRSF3, as shown for lung samples (Fig. 3D, fourth panel).
Intersecting this set with our previously defined set of Myc-
responsive prostate cancer exons (Fig. 3A), we found extensive
overlap and similar exon incorporation behavior in the three sets
(Fig. 3E). The triple intersection was even more strongly enriched
for RNA-binding proteins (Fig. 3F). Our analysis suggests the
exon incorporation response to Myc overexpression is conserved
across these cancers.

Creation of an Engineered Model of Advanced Prostate Cancer with
Regulated Myc Expression from Benign Human Prostate Cells to
Define Myc-Dependent Exon Events. Correlation analysis strongly
implicates Myc, E2F, and MTOR signaling in the control of exons
related to alternative pre-mRNA splicing but cannot define the
individual contribution of each pathway to the observed phenotype.
We therefore sought to determine whether the Myc-correlated
splicing effects we observed were indeed Myc dependent.
Numerous studies of the effect of Myc overexpression have

described large numbers of Myc target genes with significant
tissue heterogeneity (62, 63). The presence of complex back-
ground genetics, undefined driver alterations, and tissue culture-

specific phenomena further complicate the study of Myc biology
(64). We therefore constructed a model of advanced prostate
cancer by the transformation of benign human prostate epithelial
cells with defined oncogenes (Fig. 4A) (65). We have previously
shown that the enforced expression of Myc and myristoylated
(activated) AKT1 (myrAKT1) generates androgen receptor-
independent adenocarcinoma (66, 67). MyrAKT1 is included to
phenocopy the activation of AKT1 that follows deletion of the
tumor suppressor PTEN, a common event in prostate cancer tu-
morigenesis. Here, we cloned the Myc cDNA into a doxycycline-
inducible promoter lentiviral construct, whereas MyrAKT1 was
constitutively expressed (Fig. 4B and SI Appendix, Supplementary
Methods).
After lentiviral transduction of isolated human prostate basal

cells (SI Appendix, Fig. S4A), we initiated the organoid culture
and subsequent subcutaneous xenograft tumor outgrowth in
immunocompromised mice in the constant presence of the drug
(SI Appendix, Fig. S4 B and C). As previously reported, only
doubly transduced cells resulted in tumor outgrowth (Fig. 4C).
The histologic appearance and marker expression patterns of the
xenograft outgrowths were similar to those previously published
with constitutive constructs (Fig. 4D and SI Appendix, Fig. S4D).
The xenograft outgrowths were dissociated, and plated in tis-
sue culture conditions with doxycycline to initiate autono-
mously growing cell lines (Fig. 4E). We repeated the entire
procedure to generate three independent cell lines from the
prostate epithelium of three different human specimens.

Myc Withdrawal Affects Expression of Splicing-Related Genes.
Withdrawal of doxycycline from the Myc/myrAKT1 cell lines
resulted in the rapid, dose-dependent loss of Myc protein expres-
sion, consistent with its previously reported short half-life (Fig. 5A
and SI Appendix, Fig. S5A) (68). The cells also rapidly slowed
their growth with increased G0/G1 fraction at 24 h (SI Appendix,

A

B

C D

E

Fig. 4. Enforced expression of activated AKT1 and doxycycline-regulated c-Myc
initiates AR-negative PrAd in human prostate cells. (A) Workflow diagram for
derivation of Myc/myrAKT1-transformed human prostate cells from benign
epithelium. “B” = Trop2+/CD49fhi basal cells; “L” = Trop2+/CD49flo luminal
cells. (B) Depiction of lentiviral vectors used to enforce doxycycline-regulated
expression of Myc and constitutive expression of myrAKT1. Histologic sections
of transduced organoids. (C) Photomicrographs and fluorescent overlay of
recovered grafts and tumor outgrowth after lentiviral transduction and sub-
cutaneous implantation in NSG mice. A, myrAKT1 transduction (RFP); C, c-Myc
transduction (GFP); CA, dual transduction with c-Myc and myrAKT1 (GFP and
RFP merge depicted as yellow); UT, untreated. (D) Hematoxylin and eosin
(H&E) stain of histologic sections of recovered grafts and tumor outgrowths.
(E) Photomicrographs of cell lines ICA-1, ICA-2, and ICA-3 derived from tumor
outgrowths growing as suspended rafts in tissue culture.
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Fig. S5 B and C). They adopted a senescent-like phenotype after
prolonged Myc withdrawal with up-regulation of P21 (Fig. 5A). A
similar consequence of Myc withdrawal in oncogene-addicted
transformed cells has been previously reported (69).
We performed RNA-Seq on samples from Myc-high and Myc-

low conditions to define Myc-dependent genes and exons in our
model system. These samples were sequenced with high read depth
(>100 M reads) to enable accurate quantification of alternative
splicing in downstream analysis. Primary analysis of the RNA ex-
pression data showed that thousands of genes were highly re-
sponsive to Myc withdrawal (CuffDiff q-value < 0.05) (Fig. 5B).
Gene ontology analysis identified enrichment of several growth-
related biological processes among the Myc-dependent genes (Fig.
5C). Of note, genes involved in RNA processing were among the
most highly enriched in this subset. This is consistent with previous
reports of Myc’s broad control of the growth phenotype. The
regulated Myc expression system also allowed us to independently
validate the Myc signature score we used in our correlation
analysis (Fig. 5D).

Experimentation Confirms Myc-Regulated Exons Are Enriched in
Splicing-Related Proteins and Often Encode PTCs. We applied
rMATS-turbo to analyze Myc-regulated exon usage in our engi-
neered cell lines. To accommodate the paired nature of the
dataset (comparing Myc-high and Myc-low conditions for each),
we employed the PAIRADISE statistical test to the rMATS-turbo
output (70). After filtering for coverage (≥10 splice junction reads
per event), effect size (jdeltaPSIj > 5%), and FDR < 5%, this
analysis yielded 1,970 cassette exons that significantly changed
incorporation in response to Myc withdrawal (Fig. 6 A and B and
Dataset S1). We note that, among the Myc-dependent exons, we
again identified the alternative exons in SRSF3 and HRAS

described above, experimentally demonstrating that their in-
corporation is dependent on Myc signaling (Fig. 6C). The relative
incorporation of the poison exon in SRSF3 increased when Myc
was withdrawn, which would act to decrease the amount of SRSF3
protein in response to oncogene loss. We confirmed by immuno-
blotting that SRSF3 protein levels decreased relative to the
housekeeping protein GAPDH in this experimental setting (SI
Appendix, Fig. S6A).
Similar to the correlational data from the patient specimens,

the Myc-dependent exons were strikingly enriched in genes af-
fecting RNA splicing-related processes (Fig. 6D). Intersecting
this set of exons with the Myc-correlated exons in patient tissue
identified 147 common exons (Fig. 6E), a highly significant over-
lap (P = 1.03 × 10−90). The remaining exons may not be responsive
to short-term withdrawal of Myc in the cell line model or may be
correlated with other signaling derangements that often accom-
pany Myc deregulation in patient cancers (e.g., E2F or MTOR).
Alternative pre-mRNA splicing can regulate transcript levels

through the incorporation or skipping of NMD-determinant
exons (71). We hypothesized that Myc-driven exon choice in
splicing proteins could contribute to the regulation of their ex-
pression levels. To examine the functional outcome of Myc-
driven splicing changes on NMD, we annotated the 147 exons
in the patient data–cell line intersection for PTCs and frame-
shifts (Fig. 6F and Dataset S1). These 147 exons correspond to
124 genes, 30 of which were RNA-binding proteins by gene
ontology designation. We annotated all these exons using the
Ensembl database to identify those that contained verified
PTCs. We supplemented this annotation by parsing the remaining
exons to identify those predicted to produce a frameshift within
the coding sequence of the parent mRNA transcript. We found
that 36 of the 43 exons in RNA-binding genes encode a PTC, a
frameshift, or both (SI Appendix, Table S4). These exons rep-
resent a set of Myc-responsive sequences that act to regulate
transcript abundance of proteins involved in alternative pre-
mRNA splicing.

Discussion
This analysis was powered by rMATS-turbo, a fast, flexible, and
extensible software package that allows rigorous examination of
exon usage across disparate datasets. These public datasets have
moderate read depth (50 to 75 M reads) and variable read
length (50 to 75 bp). Here, we have used rMATS-turbo to
perform a comprehensive survey of exon usage across the entire
spectrum of prostate cancer disease progression. This exon-
level analysis allows the correlation of exon matrices with any
continuous metadata of interest. Our PEGASAS methodology
identifies putative exon targets of cancer signaling networks.
Its successful application to prostate, breast, and lung cancer
datasets suggests that pathway-driven analysis of alternative
splicing in pancancer data will also be of interest.
The engineered human prostate cell lines we developed with

regulated Myc expression represent a unique opportunity to
examine the consequences of Myc withdrawal on a defined ge-
netic background. We employed them to identify over a thou-
sand exons that significantly altered incorporation rates in
response to Myc withdrawal, again with a striking enrichment for
splicing-related proteins. The effects of Myc overexpression have
been shown in other cancer contexts to have deleterious effects
on splicing (72, 73). In Eu-Myc lymphoma cells, a Myc-target
gene, PRMT5, is essential for maintaining splicing fidelity.
Similarly, a component of the core spliceosome, BUD31, was
shown to be a MYC-synthetic lethal gene in a human mammary
transformation model. Others have shown that Myc-driven changes
in splicing are in part accomplished by the induction of the ca-
nonical serine–arginine splicing factor SRSF1 (74). Further eluci-
dation of the events downstream from Myc overexpression that
lead to splicing changes is needed.
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Fig. 5. Myc loss in the engineered cell lines produces a senescent-like
phenotype and strongly affects the expression of RNA binding proteins.
(A) Western blot of lysates from ICA1 cells withdrawn from doxycycline in a
time course examining Myc expression and changes in proteins related to
cell cycle state. Each of the three cell lines was examined in this manner, and
the data shown are representative of all three. (B) Volcano plot of gene-level
expression changes after Myc withdrawal. Genes down-regulated upon Myc
loss appear on the left-hand side of the plot. Gene expression changes with
the Cuffdiff q-value of <0.05 appear red. (C) Selected top gene ontology
terms from the gene ontology analysis of Myc-dependent gene expression
changes displaying strong enrichment for RNA binding. BP, Biological Pro-
cess; CC, Cellular Component; MF, Molecular Function. (D) Comparison of
Myc Targets V2 signature score levels in engineered cell lines in the presence
and absence of doxycycline.
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We note that Myc dysregulates the splicing of the PTC-
containing exon in the serine–arginine protein SRSF3 (54, 55).
This exon is Myc-correlated in both the prostate and breast
cancer datasets, Myc-regulated in our tissue culture model, and
ultraconserved. SRSF3 is known to alter the splicing of a number
of downstream targets, as well as to autoregulate its own splicing.
In a feedback loop, high levels of SRSF3 protein bind to its pre-
mRNA transcript and promote inclusion of the poison exon (55).
However, in the transformed setting we examined, Myc-high
states were associated with high levels of SRSF3 expression and
low levels of poison exon incorporation. This suggests Myc sig-
naling may allow escape from this autoregulatory mechanism and
stabilize SRSF3 transcripts despite high SRSF3 protein levels.
SRSF3 itself has been recently shown to regulate splicing of
NMD-determinant exons in chromatin modifier proteins during
the induction of pluripotent stem cells (75). Given the role of Myc
signaling in the acquisition of stem-like phenotypes and the stem-

like state of advanced cancers, the mechanism that connects Myc
overexpression to splicing changes in SRSF3 deserves further ex-
ploration (76, 77).
Furthermore, the phenomenon of Myc-regulated poison exons

is not limited to SRSF3. We identified a number of exons in
splicing proteins from patient tissues with experimentally validated
Myc dependence in vitro that also contained PTCs. Alternative
splicing coupled to NMD has been widely described as a mecha-
nism controlling levels of splicing factors and other RNA-binding
proteins (78). These splicing events are often autoregulated by the
encoded protein or cross-regulated by a related paralog (79). Our
data on Myc regulation indicate that this system of AS-NMD is
also more globally regulated as part of a program of growth
control. We postulate that these exons and regulation of them by
Myc may be part of an adaptive response to alter spliceosomal
throughput in response to high transcriptional flux.
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corporation of 1,970 Myc-dependent cassette exons in three independent engineered cell lines. (C) Sashimi plots depicting the change in splice junction
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Heatmap depicting the annotated outcome of exon changes in validated Myc-dependent exons. The annotation identifies exons likely to produce PTCs
(orange) or frameshifts (green). SE, skipped exon.

5276 | www.pnas.org/cgi/doi/10.1073/pnas.1915975117 Phillips et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1915975117


One limitation of our study is that RNA and protein levels of
the same genes are often poorly correlated (80). The potential
for premature stop codons introduced by alternative splicing to
induce NMD could further skew this relationship. Further studies
of the relationship between Myc levels and NMD-determinant
exons in splicing-related proteins should include proteomic
measurements.
Our study provides further insight into the relationship be-

tween Myc signaling and alternative splicing changes that could
be used to guide the development of splicing-targeted cancer
therapy (81). Future work will need to establish the specificity of
these exon events for cells with oncogenic levels of Myc ex-
pression to avoid simultaneously targeting rapidly dividing normal
cell types.

Methods
Descriptions of the gene ontology analysis, overlap enrichment assessment,
lentiviral constructs, organotypic human prostate transformation assay, xe-
nograft outgrowth, cell line derivation, and other tissue culture experiments
are available in SI Appendix.

RNA-Seq Data Processing Framework. A comprehensive RNA-Seq dataset
was compiled from published prostate cancer and normal prostate datasets
that reflect the full progression of prostate cancer. In total, 876 samples
were downloaded from different sources. RNA-Seq Fastq files of normal
prostate samples [GTEx Consortium (31)] and prostate cancer samples
[Beltran et al. study (10), Robinson et al. study (11), and Stand-Up-To-
Cancer study (12)] were downloaded from dbGAP (82, 83) via fastq-
dump in SRA toolkit. RNA-Seq Fastq files from TCGA primary prostate
cancer and adjacent benign samples were downloaded from GDC via gdc-
client (84).

A unified RNA-Seq processing framework was constructed to perform
read mapping as well as gene and isoform quantification on the collected
multiphenotypic prostate RNA-Seq samples. Specifically, read mapping
was done by STAR 2.5.3a (85) with a STAR 2-pass function enabled to
improve the detection of splicing junctions. The STAR genome index was
built with–sjdbOverhang 100 as a generic parameter to handle differ-
ences in read length of RNA-Seq samples from various sources. The ge-
nome annotation file was downloaded from GENCODE V26 (86) under
human genome version hg19 (GRCh37). The subsequent gene/isoform
expression quantification is performed by Cufflinks (87) with default
parameters.

RNA-Seq alternative splicing quantification is conducted uniformly with a
newly engineered version (version 4.0.2) of the rMATS-turbo software
package (29, 30). An exon-based ratio metric, commonly defined as PSI ratio,
was employed to measure the alternative splicing events. The PSI ratio is
calculated as follows:

ψ=
I=LI

S=Ls
+ I=LI

,

where S and I are the numbers of reads mapped to the junction supporting
skipping and inclusion form, respectively. Effective length L is used for
normalization.

Customized scripts were applied to calculate PSI value for each individual
alternative splicing event from the rMATS-turbo junction count output. To
build a confident set of exon events, the splice junction of each event was
required to be covered by no less than 10 splice junction reads. Additionally,
each event was required to have a PSI range greater than 5%across the entire
dataset (jmaxPSI − minPSIj > 5%), with a mean skipping or inclusion value
over 5%. Events with missing values in the majority (over 99%) of samples
were removed.

Analysis and Evaluation of Alternative Splicing Profile of Prostate Cancer
Metadataset. PCA was applied to inspect the RNA-Seq–derived gene ex-
pression/alternative splicing profiles of our multiphenotypic prostate
cancer dataset. First, the matrix of sample vs. fragments per kilobase of
transcript per million mapped reads/PSI value was produced by customized
scripts. Then, the matrix was completed and imputed by KNN method
(knnImputation in DMwR package) (88) for missing values. Last, the matrix
was mean centered and scaled (PSI matrix is not scaled). PCA was con-
ducted via prcomp function in R. The top five PCs were inspected, but only

the first two that describe the highest percentage of the variance are
shown.

In addition, silhouette width was applied to assess the fitness of PCA
clustering results derived from alternative splicing or gene/isoform expression
measurements (89). Specifically, disease conditions were used as sample la-
bels to compute the silhouette width of each cluster. Average silhouette
widths were compared between PCA clustering results with different metrics
(90). The R package cluster (91) was used for Silhouette calculation based on
PCA results and disease phenotype labels.

PEGASAS. In order to identify exon incorporation shifts that could correspond
to oncogenic pathway alterations during tumor progression, a correlation-
based analysis was developed to define signaling pathway correlated al-
ternative splicing events. It involves two major steps.

The first step is to define signaling pathway activity and alternative splicing
levels. The quantification of gene expression and alternative splicing is de-
tailed in RNA-Seq Data Processing Framework. Signaling pathway activity
can be characterized by assessing the expression level of its target genes as a
set relative to other genes (42). The MSigDB (92) has compiled gene sets (42)
for the use with gene set enrichment analysis (GSEA) (93) software or similar
applications. Here, a group of well-defined gene sets, known as hallmarks
(42), was selected to assess a wide range of pathways in prostate cancers. To
measure the activity of a given signaling pathway gene set, all genes (both
genes within the gene set as well as those not in the gene set) were ranked
according to their gene expression values, then a weight was assigned to
each gene based on the number of genes in the set (pathway or nonpath-
way) they belonged to. This was used to construct empirical distributions for
both sets, and a two-sample Kolmogorov–Smirnov test statistic, which is the
supremum of the differences between the two distributions, was computed
as a measure of the activity of the signaling pathway, i.e., an “activity
score.” Given the same gene set and gene annotation, the higher the score,
the higher the activity of a signaling pathway in a sample. Note that the
score should not be used to compare across signaling pathways as each gene
set has distinct number of genes, which affects the score.

The second step is to identify pathway activity-correlated alternatively
spliced exons. For each pathway, the pathway activity score defined above
was correlated with all of the AS events identified by rMATS-turbo. The
Pearson correlation coefficient was computed for each pathway–exon pair
across samples in the dataset. A Pearson correlation coefficient with an
absolute value >0.3 was considered as correlated. Data points for each
pathway–exon pair were permutated 5,000 times locally to produce empir-
ical P values to filter out faulty correlations caused by data structure or
missing data points. A stringent empirical P value < 2 × 10−4 was required for
this analysis. The analytical framework performs streamlined analysis of
multiple gene sets (e.g., 50 hallmark gene sets). Customized scripts were
implemented to generate the summary plot.

Cell Line Gene Expression and Alternative Splicing Differential Analysis. The
same RNA-Seq processing framework described above was applied to
quantify gene expression and alternative splicing of Myc cell line samples.
Differentially expressed genes were identified and visualized by the Cuffdiff
and cummeRbund pipeline with a threshold of q-value < 0.05. Skipped exon
events quantified by rMATS-turbo were analyzed by the PAIRADISE statis-
tical model for conducting paired tests of between Myc +/− conditions (70,
87). PAIRADISE with equal.variance = TRUE was used to perform the test.
The resulting events were first filtered by the coverage and deltaPSI re-
quirements (≥10 splice junction reads per event, jdeltaPSIj > 0.05). Then, an
FDR 5% cutoff was applied to identify significant differential alterna-
tive splicing events between the on and off states of the engineered Myc
cell line.

Code Availability. The computational pipeline of PEGASAS is available at
https://github.com/Xinglab/PEGASAS (94), and custom scripts used to perform
filtering, analysis, and visualization have been deposited separately at https://
github.com/Xinglab/Myc-regulated_AS_PrCa_paper (95).

Data Availability. Raw sequencing files (fastq) from the engineered cell lines
and gene expression matrices are available through Gene Expression Om-
nibus (accession no. GSE141633) (96). The PSI and gene expression matrices for
the prostate metadataset are also available from the same source. The normal
prostate expression data from GTEx used for the analyses described in the
manuscript were obtained from dbGaP (https://www.ncbi.nlm.nih.gov/gap)
accession no. phs000424 (accessed 1 October 2018). Data on primary prostate
cancers were obtained from the TCGA Research Network and downloaded from
the Genomic Data Commons (http://portal.gdc.cancer.gov/projects/TCGA-PRAD)
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accession no. phs000178 (accessed 1 October 2017). Additional datasets on
metastatic prostate cancers are available by controlled access through
dbGaP with accession nos. phs000909, phs000673, and phs000915 (accessed 1
October 2018).
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