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Abstract
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26–27,
2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computa-
tional Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on
clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological
properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that
underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features
from medical images and relate them to genomics analyses. The second workshop focused on computational
methods that explore informatics and computational requirements to extract phenotypic features from medical
images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing
NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and
genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes.
Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1936-5233/14
http://dx.doi.org/10.1016/j.tranon.2014.07.007



Translational Oncology Vol. 7, No. 5, 2014 Colen et al. 557
The group generated a set of recommendations to NCI leadership and the research community that encourage
and support development of the emerging radiogenomics research field to address short-and longer-term goals in
cancer research.

Translational Oncology (2014) 7, 556–569
Introduction
To examine opportunities and challenges in the field of radio-
genomics and the allied discipline of computational bioinformatics,
the NCI Cancer Imaging Program (CIP) convened two related
workshops on June 26 to 27, 2013, entitled “Correlating Imaging
Phenotypes with Genomics Signatures Research” and “Scalable
Computational Resources as Required for Imaging-Genomics
Decision Support Systems.” The first workshop focused on clinical
and scientific requirements, exploring our knowledge of phenotypic
characteristics of cancer biological properties to determine whether
the field is sufficiently advanced to correlate with imaging phenotypes
that underpin genomics and clinical outcomes, and exploring new
scientific methods to extract phenotypic features from medical images
and relate them to genomics analyses. The second workshop focused
on computational methods that explore informatics and computa-
tional requirements to extract phenotypic features from medical
images and relate them to genomics analyses and improve the
accessibility and speed of dissemination of existing NIH resources
such as The Cancer Genome Atlas (TCGA) and The Cancer Imaging
Archive (TCIA) to enable cross-disciplinary research. A secondary goal of
the workshops was to explore the importance of correlating in vivo imaging
with digital pathology and the importance of including preclinical
research. In this article, we outline the background and rationale for
organizing this workshop, provide clinical examples that demonstrate
early progress made to date, outline clinical and technical research
progress to date and related research barriers, review research resources,
and finally provide succinct short- and long-term recommendations to
the NCI leadership and the research community to encourage and
support further research in this important emerging field.

Background

Correlating specific imaging phenotypes with large-scale genomic
analyses is an emerging research topic in recent literature. The
research area, commonly referred to as radiogenomics or imaging-
genomics, addresses novel high-throughput methods of associating
radiographic imaging phenotypes with gene expression patterns as
illustrated in Figure 1. Radiogenomics should not be confused with
the term “radiomics,” which addresses high-throughput extraction of
large amounts of image features from radiographic images. Radio-
genomics has potential to impact therapy strategies by creating more
deterministic and patient-specific prognostics as well as measurements
of response to drug or radiation therapy. Methods for extracting
imaging phenotypes to date, however, are mostly empirical in nature,
and primarily based on human, albeit expert, observations. These
methods have embedded human variability, and are clearly not
scalable to underpin high-throughput analysis. Until recently,
prognosis and therapeutic decisions that distinguish between the
varieties of cancers were generally based on distinctions inferred by
consolidating clinical records of patient groups who share a common
cancerous organ of origin (e.g., lung, breast, renal, prostate, etc.).
The likely aggressiveness of the cancer (and prognosis) was usually
only assessed by laboratory microscopy, as well as staged at the time
of discovery. Recent subcellular genomic and molecular biophysical
discoveries now offer numerous plausible alternatives to this
dominant organ-specific cancer model. Similarly, conventional
in vivo anatomic imaging has long been used to access efficacy of
response to chemotherapy or radiation therapy for various cancers,
based primarily on gross quantitative measurements of changes in
tumor size or extracted texture features. These approaches to date
have limitations for predicting recurrence and effective treatment
response. With emerging functional and molecular imaging methods,
such as combining positron emission tomography (PET) with
computed tomography (CT), or use of dynamic contrast-enhanced
(DCE) or diffusion-weighted magnetic resonance imaging, a
potentially more accurate assessment of response to therapy at the
cellular level is to assess the in situ tumor’s metabolic and proliferative
activity. While these functional and molecular imaging approaches
are already an improvement over conventional imaging methods [1],
their integration with -omics information can be a powerful strategy,
potentially enabling clinical decision tools for improving diagnostic
accuracy and patient care. Radiogenomics represents a synergy
derived from data integration by these complementary biomedical
assessment tools. Effectively addressing the field of radiogenomics
requires implementation of advanced functional and molecular
imaging methods as well as new approaches to robust feature extraction,
data integration, and scalable computational strategies to implement
clinical decision support.

The cancer research community faces a plethora of conundrums,
such as tumor cellular heterogeneity, both within the primary tumor
and among its metastases; disease signatures that are more complex than
a single pathway; stem cell-driven tumor evolution; and immune system
tumor interactions. Impacts of these biological factors are not fully
understood, and are more likely entwined with cancer progression,
metastasis, resistance to therapy, and recurrence. To address these
emerging complexities, new cross-disciplinary research approaches and
teams are required, encompassing a wide range of research domains that
should include genomics, epigenomics, biostatistics, and informatics as
applied to pathology and clinical and preclinical imaging.

Extraction of spatial and temporal features from images, including the
use of modeling methods, is required for correlation of imaging
phenotypes with genomic signatures. In correlating imaging and
omics data, the large dimensionality of omics datasets potentially poses
significant challenge in integration with imaging data that are typically of
much smaller dimensionality. Mathematical approaches for dimension
reduction and the validation of these approaches using clinical data are
urgently needed in order to integrate these disparate datasets [2–4].

Methods for feature extraction should ideally be independent of
the different data collection platform(s), data collection sites, and



Figure 1. A logic diagram of an example of the field of radiogenomics for breast cancer using digital mammography and DCE MRI.
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method of analysis, which may include image acquisition and analysis
protocols, unrestricted collection of and access to image data,
harmonization of data collection, and analysis across clinical sites and
different commercial imaging platforms, including the formalization
of structured reporting and uniform semantics. However, these
requirements may not always be needed as several research sites are
making progress with standard of care images. These themes were
recently addressed by NCI, CIP [5], and later by the professional
imaging societies (Radiological Society of North America, American
College of Radiology Imaging Network, Society of Nuclear Medicine,
and the American Association of Physicists in Medicine) [6]. Common
approaches to defining strategies for broad adoption of imaging
standards in therapy treatment trials are currently in progress.
Integrating image phenotypes and genomic signatures into clinical
decision-making, however, will require a significant extension of
these quantitative imaging strategies. Similarly, there is a critical need
to scale up the computational methods required for clinical decision-
making using high-throughput analysis that may require scalable cloud
computing strategies.

Developing and implementing clinical decision support systems
requires access to data collected from all the above research domains
in order to optimize their performance and test their reliability in the
clinical or preclinical setting. NCI has initiated this effort through
TCIA [5], and designed it to be compatible and interoperable with
NIH TCGA [7]. The primary goal of creating this research resource
was to improve its accessibility and enable cross-disciplinary research
in both of these research domains, supporting initial efforts
to correlate imaging phenotypes with genomics signatures. The
TCIA-TCGA interface currently meets personal health information
de-identification and data inter-operability requirements, while
preserving the means to support diverse research projects. However,
this research resource is unable to meet future requirements for
radiogenomics research, such as supporting very large, statistically
tractable, diverse datasets that are much broader and more inclusive
than have been conceived to date in the cancer imaging community.
Finally, there is a similar need to develop the open-access software
tools required to evaluate clinical decision support systems. NCI is
currently exploring NCIP HUB (HUBzero) as a tool-sharing resource
for the above research domains. These additional requirements,
however, will need significantly more investment by NCI or NIH,
and success will greatly depend on the research community’s
willingness to share data and related software tools and success in
reaching a consensus on standardized methodology for the rapidly
emerging field of radiogenomics.

Clinical Examples

Brain: Glioblastoma (GBM)

Genomic differences discovered between patients with GBMs,
which are known to have uniformly poor survival times, might be
better understood by simply knowing the tumor extent and the
hemisphere of involvement, for example, by MRI at the time of first
diagnosis. Genomically equivalent GBMs might differ in their overall
survival (OS) time if their location and extent at presentation occurs
differently in neurologically silent brain areas, or in the extent of
peritumoral edema. TCGA researchers have cataloged recurrent genomic
abnormalities in GBMs and in lower grade gliomas. As a parallel effort,
NCI, CIP is retrospectively obtaining imaging data for TCGA patients
andmaking it available viaTCIA [5]. These programs provide easy access
to genomic and imaging data collected from multiple institutions, and
have resulted in supporting initial research work on GBMs. Three case
studies are briefly reviewed below as examples.

For the first case, methodologies and tools were developed to
investigate conventional and advanced neuroimaging-based bio-
markers for predicting OS and molecular signatures using TCGA
GBM data [8]. Presurgical MRIs of 75 GBM patients were
downloaded from TCIA and independently reviewed by three
neuroradiologists for 27 features that assessed size, location, and
tumor morphology as illustrated in Figure 2. The results
demonstrated the presence of contrast enhancement (CE) on post-

image of Figure�1


Figure 3. MR images fused with CBV map showing a contrast-
enhancing GBM (red ROI) with central necrosis in the medial left
parieto-occipital lobe in a 56-years old male. Surrounding non-
enhancing component of the tumor is outlined by multiple ROIs
showing different grades of increased CBV, suggesting tumor
infiltration beyond the contrast enhancing component.

Figure 2. Radiological and histological feature extraction and correlation to genomic data. Following identification of the contrast
enhancing region (top-left) or cancer nuclei (right) various imaging features can be extracted. Using corresponding genomic data such
as DNA expression, mutations, and methylation, these features can be correlated with molecular data and underlying biological
characteristics of tumorigenesis can be identified.
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gadolinium MRIs (N33%), a significant and independent predictor
of poor survival. Associations between genetic alterations revealed
that epidermal growth factor receptor (EGFR) mutant GBMs were
significantly larger on T2-weighted and fluid attenuated inversion
recovery (FLAIR) images than wild-type EGFR GBMs; TP53
mutant GBMs were smaller than wild-type GBMs; and EGFR
mutant GBMs were significantly larger than TP53 mutants.

The second case involved the use of perfusion parameters. For
example, Jain [9] reported provocative results demonstrating a
genomic basis for the commonly employed quantifiable perfusion
parameters and gave impetus to implement this added knowledge into
clinical practice. Integrating these quantitative perfusion parameters
with the genomic markers in GBMs generated better prognostic models
than either imaging or genomics could provide alone [10]. More
recently, his group demonstrated that combining clinical, imaging, and
genomic markers could also provide important and unique prognostic
information about the poorly understood non-enhancing tumor regions
in GBMs [11]. The results, illustrated in Figure 3, demonstrated tumor
infiltration beyond the contrast enhancing component and increased
regional cerebral blood volume (rCBV) within the non-enhancing
component. Graphs of survival estimates demonstrated that rCBVNEL

(CBV of the non-enhancing component) is a significant predictor
of OS (log-rank test, P= .0103) and progression-free survival (log-
rank test, P= .0223), which also showed an association with wild-type
EGFR mutation.

The third case involved building gene expression-based models to
predict quantitative microscopic disease phenotypes. The potential
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Figure 4. Integrated morphologic analysis for the identification and characterization of disease subtypes. Approximately 500 whole slide
images representing 162 glioblastoma cases were analyzed and cellular features were extracted and analyzed. Clustering results
identified three morphologically driven subtypes which differed from each other based on prognosis, pathology, genetics, methylation,
and TCGA subtype associations (for example, neural subtypes were particularly enriched in the chromatin modification subtype).
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advantage of using microscopic disease phenotypes (rather than
patient survival) to supervise identification of biologically meaningful
expression signatures is the presence of multiple phenotypic targets
per patient. For example, Brat et al. have used TCGA molecular
data together with MR images within TCIA and whole slide
pathology images to investigate molecular correlates of morphology in
GBMs [12]. To streamline glioma morphology-omics investigations
using whole slide pathology images, they developed an end-to-end
image analysis and data integration pipeline [13–15] and developed
morphologic “signatures” from hundreds of millions of cells in
digitized whole slide images. Using digitized images from TCGA
GBM collection, three prognostically significant patient clusters were
found based on biological functions of associated genes: cell cycle,
chromatin modification, and protein biosynthesis clusters, as
illustrated in Figure 4. Several cancer-related pathways were
differentially enriched among the morphology clusters, including
the ATM and TP53 DNA damage checkpoints, the NF-κB pathway,
and the Wnt signaling and PTEN-AKT pathways. This analysis
demonstrated the potential of high-throughput morphometrics to
develop sub-classifications of the disease.

Breast Cancer
Discovery of therapeutic effectiveness among tumor-type subpop-

ulations for breast cancer has been masked by the presumption
of cancer-type uniformity. A few adaptive clinical trial designs are
now in progress that link quantitative imaging with the -omic
profiling of patients (e.g., Investigation of Serial Studies to Predict
Your Therapeutic Response With Imaging and Molecular Analysis, I-
SPY 2 TRIAL [16] and ALCHEMIST [17]). Data from the I-SPY 2
trial has permitted computer analyses of imaged lesions that
can potentially be related to molecular classifications in breast cancer
(e.g., estrogen receptor [ER] status, HER2 status, and progestin
receptor status). For example, computer‐extracted features of the tumor
potentially can be used to assess tumor aggressiveness.

In the pilot study shown in Figure 5, lesion features were
automatically extracted from DCE breast MRI images (obtained with
1.5 T and 3 T scanners) and analyzed on their own as well as merged
into lesion signatures to assess molecular classification. Results
shown in Figures 5 and 6 demonstrated that individual lesion features
were only weak classifiers, as evidenced by the modest areas under
the receiver operating characteristic curve (AUC value), but when
artificial intelligence was used to merge the features into lesion
signatures, performance substantially improved (last four data points
in plot below). Giger et al. have been developing and investigating
computerized quantitative methods for extracting data from multi‐
modality breast images and mining the data to yield image‐based
phenotypes relating to breast cancer risk, diagnosis, prognosis, and
response to therapy [18–20].

Renal Cancer
Currently, the primary role of imaging in the management of renal

cell carcinoma (RCC) consists of tumor detection, staging, and
gauging response to treatment. Although numerous modalities can be
employed to image RCC, multi-detector CT (MDCT) is most
commonly used [21,22] because of its speed, high spatial resolution,
sensitivity to contrast enhancement, and ability to provide a global
multi-planar view of the abdomen. However, while MDCT has
achieved success for detection of RCC and accurate anatomic staging,
continued reliance on this technique alone will likely prove inadequate
in the future. Over the past decade, several studies have attempted to
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Figure 5. Relationship of MRI-based phenotypes in distinguishing
breast cancer subtypes (big data analyses). Performance is given
in terms of AUC (y-axis) for various MRI-based Phenotypes (x-axis)
aswell as a Tumor Signature formulated frommerging selectedMRI-
based phenotypes using linear discriminant analysis. Features 1 to
11 are kinetic features, 12 to 25 are texture features, 26 to 30 are
morphological features, 31 to 34 are size features, and the far right
data point refers to the tumor signature from the merged features.
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further characterize RCC, focusing mainly on enhancement character-
istics of the tumor [23,24], as illustrated in Figure 7. A few interesting
studies correlated imaging features of RCCs with chromosomal changes.
Karlo et al. [25,26] found significant associations between gene
mutations and phenotypic characteristics of clear cell RCC by
contrast-enhanced MDCT. RCC radiogenomics, however, can only
contribute new insights if clear associations between imaging character-
istics and molecular aberrations of the tumors are determined.
All of the above clinical examples posed one or more imaging

protocol limitations. For example, clinical protocols should be
optimized and harmonized across imaging platforms, clinical data
collection sites, and organ-site specific methods of analysis. The
development of consensus taxonomy will be required to coordinate
meaningful future research results. Furthermore, specific features to
be addressed include establishing definitions to quantify necrosis,
criteria for tumor margin assessment, and quantifying the degree of
enhancement and neovascularity. Once the key imaging features are
clearly defined, the inter-observer variability for future radiogenomics
research will need to be reduced and structured reporting will be
required to achieve reporting stability and consistency necessary for
large-scale clinical studies. Theses biological and technical limitations
are discussed further below.

Research Barriers

Tumor Inhomogeneity
Increasing evidence supports the impact of intra-tumor genetic

heterogeneity on the metastatic ability of tumors and their resistance
to therapeutic interventions. Genetic intra-tumoral heterogeneity
may contribute to treatment failure by initiating phenotypic diversity
that introduces tumor sampling bias and enables drug resistance to
emerge [27–29]. Recent massively parallel sequencing studies and
epigenetic analysis of different tumor types have revealed that cancers
are composed of mosaics of non-modal clones [30,31] which harbor
distinct constellations of genomic alterations in addition to the
founder genetic events, and that clonal selection occurs during
metastatic progression [32,33]. Intra-tumor genetic heterogeneity, for
example, may be present in high-grade serous ovarian cancer
(HGSOC) [27,28,34–36], resulting in incomplete response to
chemotherapy [34]. Using phylogenic tree analysis to evaluate
relationships between tumor deposits in patients with ovarian cancer,
Cowin et al. [34] found substantial copy number differences between
metastatic deposits within individual patients and identified signaling
pathways plausibly linked to peritoneal dissemination and establish-
ment of metastatic foci. Significantly greater genomic change was
observed in patients who experienced relapse after responding to
chemotherapy than in patients who were resistant from the outset,
possibly reflecting the requirement for selection of a subpopulation
of resistant cells in cases initially sensitive to treatment [34].
Incorporating multiregional tumor analysis of both primary and
metastatic disease into the development of new targeted therapies and
validation of biomarkers of therapeutic response is therefore crucial;
image-informed multiregional tumor analysis may be required to fully
characterize tumor heterogeneity.

Intra-tumor functional heterogeneity is often manifested by
intermingled vascular compartments with distinct pharmacokinetic
properties. DCE imaging provides a noninvasive method to evaluate
tumor vasculature or metabolism rate based on contrast accumulation
and washout. However, intra-tumor functional heterogeneity cannot
be resolved directly by most in vivo dynamic imaging methods due to
intermingled cellular subpopulations and limited imaging resolution.
This inability to distinguish different cell/tissue types with tracer
signals can confound compartmentmodeling and deep phenotyping for
association studies [37–39].

An important step in developing such a characterization is to
determine the tumor “cytotype”, defined as the identity, quantity,
and location of the different cells that make up a tumor and its
microenvironment, by careful microscopic identification [40–42].
Specific probes defining subtypes of tumor cells or stroma need to be
established and verified. Molecular imaging using radionuclide probes
have been employed that promises to detect specific tumor or stromal
cell targets. It is crucial to carefully consider what types of tumors will
be best suited for such studies and what tumor sampling strategy
should be used. Imaging methods that identify different types of
tumor architectures promise to improve all types of cancer diagnoses
and treatment [43,44]. Therefore, development of more sophisticated
imaging methods to characterize this multi-cellular structure and how
the microenvironment influences tumor behavior is urgently needed.
An example of this is shown in Figure 8, which shows diagnostic CT
scans from two patients with non-small cell lung cancer (NSCLC).
The bottom panels show the same images plotted as the gradient of
attenuation inHounsfield units per cm. The patient on the left with the
more heterogeneous tumor died seven months after surgery, and the
patient on the right is still alive more than 30 months post-surgery.

Cancer cells can evolve to adapt to therapy, leading to therapeutic
failure. Such adaptations not only cause heterogeneity, but also create
consequences ranging in scale from single-cell genetic mutations to
large feature variations. Even within a single tumor, marked variations
in imaging features such as necrosis or contrast enhancement are
common. Radiologic heterogeneity is usually governed by blood flow,
though genetic heterogeneity is typically ascribed to random
mutations. This tumor evolution is marked by environmental
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Figure 6. Image-based phenotype array of computer-extracted characteristics of breast cancer tumors on MRI for ER− and ER+ tumors
from the TCGA/TCIA breast cancer dataset. Bottom row gives values and the corresponding AUC (area under the receiver operating
characteristic curve) of the image-based signature in the task of distinguishing between ER− and ER+ tumors.
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selection forces and cell phenotype (not genotype) [45]. An
alternative means to describe intra-tumoral heterogeneity is through
creation of “habitat maps”, wherein images containing orthogonal
information are combined to identify regional differences. An
example is the combination of CE MRI, a measure of blood flow
and perfusion, with diffusion MRI, a measure of cell density. These
individual images can be separated into low- and high-enhancing
regions using fuzzy clustering or Otsu thresholding. Combining the
images can yield four different “habitats,” as illustrated in Figure 9.
In addition to imaging approaches, tracking mutations in cell free
DNA [46] provides complementary information in understanding
the cancer cell evolution process.

Opportunities for researching intra-tumoral heterogeneity would
benefit from more image-informed regional tumor tissue genetic/
expression mapping. For instance, expanding imaging genomics into
the analysis of gliomas could focus on the intra-tumoral heterogeneity
in high- and low-grade lesions. Correlation of quantitative imaging
parameters with locus-specific gene expression will help identify not
just a genomic basis for specific imaging phenotypes, but pave the way
to monitor any phenotypic changes occurring during the treatment/
observation phase with serial imaging, using imaging as surrogate
markers, as surveillance tools.

Tumor heterogeneity is multidimensional. For example, within a
tumor, there can be genetic and epigenetic heterogeneity; differences
in microenvironments; phenotype differences; heterogeneity arising
over time; and heterogeneity between primary tumor and metastases.
Imaging phenotype can be characterized by one or more spatially
registered imaging modalities (e.g., CT, PET, molecular imaging,
MR, and ultrasound). Imaging is the only technique that can
characterize the whole tumor as well as any pertinent surrounding
tissues; it is non-invasive and can be repeated over time (assuming
issues of radiation dose, where applicable, are addressed). Specific
attention should be paid to “serial imaging,” to understand molecular
mechanisms behind treatment success/failure and changes in spatial/
temporal/habitats that accompany treatment, and to observe tumor
evolution over time (e.g., resistance development). Image analysis
methods to predict and detect the emergence of resistance, correlate
with genomic heterogeneity, and identify homogeneous subtypes
within a heterogeneous tumor would be invaluable.

Within the context of tumor heterogeneity, microscopic images
represent an extremely valuable resource of disease phenotype data.
Visual analysis of microscopic images is considered the gold standard
diagnostic modality for virtually all cancer types [47,48]. Importantly,
a large amount of cell type-specific and tissue region-specific
biomedical knowledge encoded in morphological data is not directly
recoverable from -omics data, which requires destroying tissue
structure prior to extraction of molecular analytes and molecular
profiling. This suggests that there may be value in integrating
molecular and morphological phenotype data to take advantage of the
unique strengths of each data type (depicted in Figure 10).

Similarly, within the context of tumor heterogeneity, image-guided
(IG) semi-automated needle core biopsy methods will prove to be
very important. These IG methods, capable of extracting 30+ mg
tumor tissue samples suitable for micro-fluidic -omic analysis, are now
available, but have not yet been widely deployed. Such targeted tumor
sampling, coupled with increased fresh frozen biospecimens
pioneered by TCGA, could extend the reliability of -omic sampling
and analysis procedures. Many individual comprehensive cancer
centers are currently engaged in this type of biospecimen harvesting
but further standardization is required. For example, in RCC, the use
of IG biopsy, has allowed determination of imaging phenotypes with
clinical relevance, since it has been shown that the clear cell variant is
often subject to intra-tumoral genomic heterogeneity [30]. Use of IG
biopsy coupled with deformable image registration should permit
improved longitudinal sampling [12].

All of the above work could have significant clinical implications,
not just for identifying a more effective therapeutic drug target,
but also for monitoring treatment response. Identifying molecular
targets with specific imaging markers should lead to development of
better chemotherapeutic agents with less toxicity. Early detection of a
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Figure 7. Enhancement analysis of renal cell carcinoma. Axial
multidetector CT images obtained during the A) noncontrast,
B) corticomedullary, C) nephrographic and D) excretory phases
show regions of interest (red circles) drawn within a renal cell
carcinoma of the right kidney. Attenuation values measured by the
regions of interest are used to investigate the enhancement
characteristics of the tumor during dynamic imaging.

igure 8. Diagnostic CT scans from two patients with non-small
ell lung cancer, and gradient maps of image intensity.
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favorable response or failure of a treatment regimen using combined
imaging and genomic markers could potentially help expedite drug
approval, generating substantial cost savings for clinical trials.

Preclinical Imaging
Mouse and human-in-mouse models of malignancies (e.g., patient-

derived xenografts, transgenic) are routinely used for drug efficacy and
toxicity testing [49,50]. The mouse model research strategies prove to
be promising for understanding biological factors in prediction and
response to therapy, as direct access to tissues during longitudinal
studies is possible. In addition, a growing body of evidence shows that
reliable preclinical data can be merged with patient data and used to
determine what therapy may be used to treat specific malignancies [51].
This newer approach to integrated cross-species testing, termed co-
clinical trials, involves concurrent assessment of novel drug combina-
tions in mouse and human-in-mouse models of tumors, and in patients
with recurrent or metastatic disease with whom the mice are
genotypically matched [52,53]. Recent published literature demon-
strates that well-documented, integrated cross-species approaches are of
value for clinical decision making [54]. Radiogenomics will clearly play
an important role in co-clinical trial studies where imaging phenotypes
will be correlated with genomics signatures. A powerful component
of both pre- and co-clinical testing is the use of various in vivo
imaging modalities that either mirror medical imaging practices or
provide additional biological information [52,53,55]. Imaging is a key
to success in co-clinical investigations, providing real-time monitoring
of the animal subjects for response, disease progression, recurrence,
F
c

or metastasis, and ready access to longitudinal tissue samples for
genomic analysis using image guidance. The evolving pre- and co-
clinical approaches require development and incorporation of data and
semantic standards to ensure reliability of interpretation and use of
research resources such as data archiving and the implementation of
quality improvement methods as reviewed later.

Computational Methods
It is becoming increasingly clear that molecular changes in gene

expression elicit structural and vascular changes in cancer imaging
phenotypes that are in turn observable indirectly by various imaging
modalities across different spatial resolution scales. For example, for the
above clinical examples, these observations were evident in anatomical,
molecular, and/or functional imaging methods in vivo. In addition,
tumor morphology in standard H&E stained tissue specimens may
reflect the sum of all molecular pathways in tumor cells. It is therefore
possible to postulate that by extracting quantitative disease-specific
information across different scales of image data, different imaging
phenotypes can be identified via association for different organ sites.

To exploit this potential, efforts have already been directed to using
data presented in TCGA and TCIA. The information-rich content of
both multiplex -omics platform assay datasets and modern digital
images along with the accompanying complexity of metadata and
annotations, however, poses new challenges for computational
methods. Thus, increasingly sophisticated computational methods
and archival storage capabilities to make the data accessible and
interpretable for the desired clinical context is necessary. A wide range
of new computational methods are available for image analysis
methods and data integration strategies in the published computer
science and image processing literature, which will not be reviewed
here in the interest of space [56]. They include texture analysis
methods, multi-resolution feature extraction methods such as
wavelets, feature reduction methods, a range of statistical classifiers
including semi-supervised and unsupervised clustering methods
with the ability to differentiate tissues within the tumor bed,
and modeling methods that address tumor heterogeneity. Finally,
a number of statistical methods for performance assessment of these
methods have been reported.
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Figure 9. Example of a contrast enhanced T1 map and a diffusion
ADC map clustered into high (red) and low (green) values using
Otsu thresholding. These can be combined to yield regions with
low ADC (high cell density) and low T1 (low contrast enhancement)
in violet; and regions with high ADC (edema) and low T1 in green.
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Perhaps the more important barrier to implementation of advanced
computational image analysis methods is the critical need for
annotated data across different resolution scales, as required to
optimize and validate the performance of these different software
tools and final clinical decision support systems. While image or
molecular datasets are widely available (e.g., TCGA, TCIA, and other
database resources [57–61]), only a few of these datasets exist in a
structured, deeply annotated form. For example, while the shape of
breast lesions in image scan help distinguish between benign
and malignant lesions, to quantitatively assess lesion shape and type
(e.g. via angularity or spicularity), segmentation of the lesion
boundary is required. Progressing to using a wider range of features,
including features extracted across different modalities, will clearly
require a much higher level of deep annotation across different
resolution scales invariably absent in most publicly available datasets.
A further complication is that annotation is intrinsically specific to the
scale of data being interrogated. For instance, digitized histopathology
images (typically several gigabytes in size each) can be annotated at
multiple scales depending on the specific problem to be addressed
(nuclear segmentation or tumor detection). Thus, software tools for
annotation, often referred to as metrology tools [62], are required as
opposed to observer annotation measurements that are not scalable and
impractical. Tomaximally extract value from these large diverse datasets
(often referred to as BIG DATA), unstructured representations need to
be annotated across different levels of detail, as illustrated in Figure 11.

Multi-scale data enrichment refers to the process of identifying at a
particular scale features that become obvious or discoverable only
when the data is viewed in conjunction with corresponding
representations at finer, more granular size scales. A large body of
empirical and theoretical studies has confirmed that the intelligent
combination of multiple, independent sources of data can provide
more predictive power than any single source. For example,
Madabhushi et al. have shown that an upstream classifier combining
imaging and molecular features allows for improved prediction of
high risk prostate cancer patients, as shown in Figure 12[63].
Additionally, the Madabhushi group showed that the combination of
histologic images and proteomic features could allow for improved
prediction of five-year biochemical recurrence in prostate cancer
patients following radical prostatectomy (see survival curves in
Figure 13). Finally, multi-scale deep annotation tools will allow for
generation of highly curated, “ground truth” datasets, facilitating
training and evaluation of different classes of analytic methods (image,
signal analysis and bioinformatics), and for building and evaluating
fused classifiers for disease characterization. The same annotation
strategies will also allow for creation of multi-scale disease ontologies
that incorporate quantitative disease attributes ranging from the
imaging to the electrophysiological and cellular level, down to
molecular-length scales.

Imaging Standards
The correlation of imaging phenotypes with genomics signatures

may require the implementation of imaging standards as outlined in
the background section. The degree to which imaging standards are
required will depend greatly on the data collection strategy. For
example, if the intent is to collect large data sets using standard of care
studies to validate and implement clinical decision support systems,
the requirements for data collection harmonization would need to be
relaxed. However, the use of standardized methods for data analysis,
feature extraction, and data integration will be important in order to
reduce the measurement uncertainty for data analysis across different
clinical or research sites. Similar imaging standards for data collection
and analysis hold for preclinical imaging where the problem is
compounded by a more diverse range of preclinical imaging
platforms, and the use of imaging methods such as optical imaging
where Digital Imaging and Communications in Medicine (DICOM)
standards are not yet fully developed [52–54]. The requirements for
quantitative imaging, particularly as applied to predicting and/or
measuring response to therapy, are extensively covered in a special
issue of this journal and will not be addressed in this report due to
space limitations [6,64,65].

Research Resources—Database Archives

Databases linking imaging with molecular data are just beginning
to emerge at a slow pace due to the high cost of large-scale imaging
studies and lack of standards for interpretation. To conduct
meaningful imaging genomic correlation studies, big scale (Big-N)
imaging studies will be needed, which will require data acquisition,
aggregation, management, and analysis methodologies, as well as
technologies quite different from those used in research today.
Achieving such large-scale aggregation will require new incentive
structures, computing infrastructure, security policies, and analysis
methods. In addition to the NIH supported TCGA-TCIA data
archive, there are three other examples of note for platforms being
built for the purpose of integrating disparate data. They include
(a) the Information Sciences in Imaging at Stanford (ISIS) group,
(b) the I-SPY TRIAL, and (c) the Georgetown Database of Cancer
(G-DOC). ISIS is developing several tools to collect and integrate
annotated imaging, clinical, and molecular data through novel
computational models that help identify relationships within the data
[66]. The I-SPY TRIAL breast cancer data collection was a
collaboration of ACRIN, Cancer and Leukemia Group B
(CALGB), and NCI’s Specialized Programs of Research Excellence
(SPORE). The study aimed to identify molecular markers of response
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Figure 11. Multi-scale deep annotation and population-based atlas: by employing advanced segmentation on MRI we can segment
(A) prostate (yellow) on MRI. However, to “see” more on routine MRI we need to rely on coregistering MRI with (d, f) pathology to
appreciate the (B) central gland (purple) and peripheral zones (cyan), anatomic landmarks such as the ejaculatory ducts (green), urethra
(blue), and neurovascular bundles (yellow) and (C) cancer extent (red). Immuno-histochemically stained pathology (D, F) can inform on
cancer aggressiveness; population-based prostate atlas (H) shows the 3D distribution of cancer relative to the prostate anatomic regions.

Figure 10. Glioblastoma morphology pipeline: (A) Image analysis algorithms segment cell nuclei and calculate a feature set for each
nucleus describing its shape and texture. Nuclear features are aggregated over the hundreds of millions of cells in whole-slide images to
produce a morphometric profile for each patient. (B) Analysis of morphometric profiles reveals clusters of patients with cohesive
morphologic characteristics. (C) The correlates of morphologic patient clusters are identified through deeper analysis of clinical and
genomic data.
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to conventional neoadjuvant chemotherapy and imaging markers
associated with response to therapy [67], posing new challenges for
data archiving. G-DOC, developed at Georgetown University, deals
with five types of -omics data integrated with clinical metadata and
patient outcome data. It offers a model for how to store, integrate, and
visualize multiple disparate data types. A major challenge in analyzing
the potentially enormous datasets, however, is to design them to be
useful for the end user—the translational researcher who is either
developing clinical decision support systems or implementing these
methods into clinical trials. The generation and computer visualization
of reports from such data-integrating platforms are critically needed to
reduce the multi-dimensional data into graphical representations that
can be more readily interpreted. Thus, it is clear that more consensus
approaches are potentially needed to develop interoperable web-based
data archives using common standards that are initially being promoted
by the NCI-funded TCIA-TCGA database.

Research Resources—Cloud Computing
Cloud-based computing and resources present new opportunities

for supporting imaging and genomics correlation research. Scalability
of cloud-based resources for storage, sharing, and analysis of research
data enhances computing power and tools for individual researchers
whose proprietary resources may be much more limited. Enhance-
ment of community resources on a large scale should provide a major
incentive and increased ability to accomplish the full integration
of genomics capabilities into research programs. Cloud computing
can provide novel opportunities for a collaborative environment
that fosters re-use of data and community-driven creation of tools
and analytics.

Industry Role
Technology companies could play multiple roles in supporting

an imaging-genomics correlation initiative, from implementation
vendors to marketplace contributors and facilitators, and ultimately as
community stakeholders. They can contribute by providing input
and feedback that help to shape technical standards in their
development and implementation. Technology companies need
recognition as key stakeholders in this new model, since they are
the source of continued innovation, ongoing technical expertise, and
professional networks for furthering the ecosystem.
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Figure 13. Upstream fusion of Big Data streams may improve prediction of 5 year PSA failure in prostate cancer patients following
surgery. Panels (a)–(c) show survival curves for distinguishing men with (red) without 5 year PSA recurrence (blue) via (A) histologic image
features from excised specimens, (B) proteomics from mass spectrometry from dominant nodule on the excised specimen, and
(C) combination of histologic image and proteomic features.

Figure 12. Computer extracted MRI markers of aggressive prostate cancer. (A) DCE-MRI, corresponding (B) CD31 (vascular) stained slice
with PCa annotations (red), (C) histology-MRI registration, (D) DCE-MRI feature map, (E) microvessel architecture used for histologic
feature extraction, (F) correlation heat map of histology and DCE MRI features, (G) imaging biomarkers identified in (F) allowed for
separation of Gleason grade 3 from 4 tumors, with an AUC = 0.92.

566 Colen et al. Translational Oncology Vol. 7, No. 5, 2014
Collaboration with industry under public-private partnerships
could help to ensure industry participation. The NIH’s Biomarkers
Consortium is a public-private partnerships that has successfully
benefited the federal government as well as industry, helping
to accelerate new biomarkers for discovery, and ultimately
for marketed therapies and drugs. Creation of an interactive
community that enables collaboration through the cloud
computing environment and utilization of other crowd sourcing
technologies will help to develop innovative solutions. Community-driven
tool development can be enabled with the provision of
a software development kit. User-provided analytics can be vetted by the
community. Crowd sourcing challenges can be issued to solve especially
intractable problems for analytics, display, or data integration.

Opportunities and Overall Recommendations
The recommendations for this new field of radiogenomics was
developed by workshop attendees, who have very diverse experiences
in fields of imaging sciences, genomics, molecular biology, bioinfor-
matics, computer science, and industry. The recommendations address
both short-and long-term requirements where appropriate to advance
the field of radiogenomics specifically in predicting and/or measuring
response to therapy. Four breakout groups were formed: (a) clinical
opportunities, (b) scientific opportunities, (c) computational method-
ology opportunities, and finally (d) research resource opportunities.
Breakout group reports are listed below.

A: Clinical Opportunities
1. Short-term Clinical Recommendations:

(a) Define what we mean by imaging-genomics (and all the other similar terms):
• Identify the gene mutations in a tumor
• Search terms to mine unseen data in the images

(b) Need to clinically establish:
• Is imaging heterogeneity reflective of genetic instability?
• Is genetic analysis of tumors relevant in the absence of heterogeneity analysis?

(c) Improve existing biomarker signature panels by adding imaging features:
• For instance, tumor image size and texture added to Oncotype DX

(d) Heterogeneity is easily seen in images generated in clinical trials; however, we need:
• Imaging-directedmultiple biopsies for heterogeneity and correlation—co-register spatially
• Genetics of the entire tumor, not just the small biopsy sample as currently practiced.

(e) Address highly targeted studies by evaluating image features across tumor types:
• Specifically with same mutations—e.g., RAS or EGFR to find commonalities

(f) Use the databases we have now for retrospective studies, despite obvious
inadequacies, as lessons learned to help with future prospective studies
2. Long-term Clinical Recommendations:

(g) Replace repeated biopsies with validated imaging approaches using feature
extraction methods
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(h) Optimize imaging features/image analyses and clinical decision support systems
independently to do:
• What humans observers do best
• What computers do best

(i) Back up imaging predictive elements from trial data with targeted therapy
(j) Natural language processing to scribe physician interpretations
(k) The performance of clinical decision support systems should be:

• Independent of data collection and analysis platforms and clinical sites, and
• Ideally operator independent as required for their clinical adoption

B: Scientific Opportunities
1. Short-term

(a) Tumor heterogeneity: Need to establish multiple definitions:
• Genetic, epigenetic heterogeneity within tumor
• Differences in microenvironments within tumor
• Phenome differences within tumor
• Heterogeneity involving primary tumor and metastases

(b) Tumor heterogeneity: Characterization across research domains:
• Imaging phenotype (radiology, pathology, optical) and molecular phenotype
• Spatially characterized molecular phenotype (laser-captured micro-dissection,
imaging mass spectroscopy, molecular imaging)

2. Long-term
(a) Develop imaging and analysis methods to characterize heterogeneity:

• Within a tumor at one time point
• Evolution over time
• Among different tumor types

(b) Develop imaging metrics that can:
• Predict and detect emergence of resistance
• Correlate with genomic heterogeneity
• Correlate with habitat heterogeneity
• Identify more homogeneous sub-types

(c) Serial imaging (longitudinal studies):
• To understand molecular mechanisms behind treatment success/failure
• To understand changes (spatial/temporal/habitats) behind treatment success/failure
• To observe tumor evolution over time, e.g., during of therapy

(d) Multi-scale characterization, multimodality registration
• In vivo (radiological, optical, microscopic):
• Ex vivo (traditional pathology specimens, microscopy used to generate 3-D
reconstructions, spatially mapped molecular studies)

• Computational methods to support multi-scale tissue characterization
• Computational methods to support multi-modality registration
• Analytical methods to characterize time dependent changes in large datasets
• Management, query of large, complex spatiotemporal datasets

C: Computational Methodology Opportunities
1. Short-term

(a) Large annotated datasets with clinical outcome using existing
retrospective data:
• Matching of reports from radiology and pathology to drive the annotations
• Creating semi or fully automated algorithms for annotation. Semi-
supervised learning approaches for curating training sets which might be
inherently noisy

• Prospective data generation wherein the different clinical disciplines are engaged
to create the annotated datasets

2. Long-term
(a) New image analytics and mathematics of predictive modeling:

• Creating a catalog of image based descriptors, similar to the MPEG 7 effort
• Supporting fundamental developmental work in new mathematics for defining
new image features using an array of imaging modalities

(b) Quantifying “error” of the analytics, defining ground truth for evaluation:
• Leverage experience from the field of computer assisted detection/classification
• Distinguishing the evaluation of the different analytics—segmentation, feature
extraction, classification, etc.

• Better annotation tools for facilitating generation of surrogate ground truth
• Annotation mechanisms to achieve consensus amongst experts, including active
learning based annotation

• Hierarchy of data annotations in order to leverage differently sophisticated
experts (mixture of experts)

• Educated/trained crowd sourcing for annotations
(c) Compare algorithms and prepare them for high performance computing:
• Need for organized support to migrate algorithms into an optimized format
for supporting high-performance computing; i.e., see US Dept. of Energy
SciDAC software centers for examples

• Infrastructure for comparing algorithms
• Data collections, algorithm collections, mechanisms for adding algorithms and
testing against others

• Meteorology tool sharing to permit objective performance comparisons
(d) Mechanism for being able to compute on the data—send the analytics to the

datacenter to compute remotely such as cloud computing:
• Examples: NCI TCIA and NCIP HUB (HUBzero)

D: Data-sharing Research Resource Opportunities
1. Short-term

(a) Support and expand data collection using NCI TCIA-TCGA
(b) Explore how to develop a means for metrology tool sharing such as the NCIP HUB

(HUBzero)
(c) Explore the interest of cancer centers to share data and metrology tools
(d) Explore the interest in data sharing with NCI National Clinical Trial Network or

other funded clinical trials (retrospective data with clinical outcome)
(e) Leverage the technical resources being developed by NCI’s Quantitative Imaging

Network
(f) Cooperative groups and VA hospitals—EMR, genomics being acquired from each

VA patient (ongoing)—could be a model.
(g) Suggested priority list for data collections: Core set + additional pre-therapy a must

(post-therapy and follow-up needed:
• Diagnostic/therapeutic populations; target is 1000 patients to develop decision
support system core set +

• Lung—CT; PET/CT (dual reconstruction at thin and radiology slice)
• Breast MRI—DCE/T2/STIR (DWI)
• Prostate—endorectal (N1.5 T) or body (3.0 T) T1, DCE, T2, DWI (ADC)
• GBMMRI—DCE/T2/FLAIR (DWI, MRS), immediate post-operative images valuable
• Ovarian—CE CT
• HNCC—PET/CT
• RCC—DCE/T2/STIR (DWI)

(h) Screening Populations?
• Mammography
• Lung CT screens
2. Long-term

(a) Long-term requirements for database research resource:
• Need to collect a million imaging phenomes, radiologists have to become the
point of entry into populating the databases

• Adding images to current TCGA in the long term may not useful, without major
resources to scale up this archive and maintain inter-operability with TCGA.

• Incentivization may come from Centers for Medicaid and Medicare Services, if
effective DSS can be developed

• Leverage TCGA to build a database for development of SS (with low bar AUC 0.85).
• This strategy will not be successful unless processes are fully automated, and not
require significant imaging physician’s time

(b) What is needed to meet these long term database requirements?
• Collection and curation of images including annotation
• Annotated and qualified segmentations
• Common metrology tools for annotation
• Provenance and Health Insurance Portability and Accountability Act compliant
• EMR links to clinical, genomic, pathology, and treatment data
• Strategy for either federated or centralized data bases
• Need to capitalize on the NCI cloud for data and metrology tool access
• Industry support to sustain imaging and data archives

E: Logistical and Funding Recommendations
1. Research Resources Support

(a) A means for sharing images and related metadata should be included in current and
future TCIA-TCGA agreements with support for their annotation and additional
archiving/hosting requirements

(b) A means for metrology tool sharing and evaluation of feature extraction and clinical
decision tools using cloud computing methods

(c) A means for sustaining the above resources for their useful life times and support for
scaling up these resources to meet the demands by the clinical and research
communities, including industry participation.
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2. Clinical and Basic Research Support
(d) Targeted support for multidisciplinary research teams to populate the above

resources for clinical and preclinical investigations
(e) Targeted support to develop and evaluate advanced computational and informatics

required using the above resources
(f) Targeted support for investigations to optimize and implement decision support

systems for targeted clinical and preclinical research projects
(g) Uploading clinical trial data to a federally managed data repository with multiple

centers in the US
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