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The heme catabolite bilirubin has anti-inflammatory, anti-oxidative and anti-mutagenic
effects and its relation to colorectal cancer (CRC) risk is currently under evaluation.
Although the main metabolic steps of bilirubin metabolism, including the formation of
stercobilin and urobilin, take place in the human gastrointestinal tract, potential
interactions with the human gut microbiota are unexplored. This study investigated,
whether gut microbiota composition is altered in Gilbert’s Syndrome (GS), a mild form of
chronically elevated serum unconjugated bilirubin (UCB) compared to matched controls.
Potential differences in the incidence of CRC-associated bacterial species in GS were also
assessed. To this end, a secondary investigation of the BILIHEALTH study was
performed, assessing 45 adults with elevated UCB levels (GS) against 45 age- and
sex-matched controls (C). Fecal microbiota analysis was performed using 16S rRNA gene
sequencing. No association between mildly increased UCB and the composition of the
gut microbiota in this healthy cohort was found. The alpha and beta diversity did not differ
between C and GS and both groups showed a typical representation of the known
dominant phyla. Furthermore, no difference in abundance of Firmicutes and
Proteobacteria, which have been associated with the mucosa of CRC patients were
observed between the groups. A sequence related to the Christensenella minuta strain
YIT 12065 was identified with a weak association value of 0.521 as an indicator species in
the GS group. This strain has been previously associated with a lower body mass index,
which is typical for the GS phenotype. Overall, sex was the only driver for an identifiable
difference in the study groups, as demonstrated by a greater bacterial diversity in women.
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After adjusting for confounding factors and multiple testing, we can conclude that the GS
phenotype does not affect the composition of the human gut microbiota in this generally
healthy study group.
Keywords: bilirubin, UGT1A1, unconjugated bilirubin, 16S rRNA gene, microbiota, microbiome, colorectal cancer
INTRODUCTION

Mild hyperbilirubinemia, a benign condition also known as
Gilbert´s Syndrome (GS), is usually defined by an
unconjugated bilirubin (UCB) blood concentration of above
17.1 µmol/L. The prevalence of GS is remarkably common,
affecting 5-10% (depending on ethnicity and sex) of the adult
population (Wagner et al., 2018). This condition is influenced by
a combination of increased haem catabolism and various
underlying promoter polymorphisms in the uridine
diphosphoglucuronyltransferase (UGT1A1) gene, leading to
reduced conjugating activity of this enzyme and therefore,
elevated UCB levels. GS is currently assumed to have little or
no pathological consequences (Bulmer et al., 2018). A
compelling body of evidence has demonstrated that serum
bilirubin, a byproduct of hemoglobin breakdown, has
substantial anti-inflammatory, anti-oxidative and anti-
mutagenic properties (Stocker, 2004; Bulmer et al., 2008; Vitek
and Tiribelli, 2020) and that mildly elevated serum bilirubin
levels are strongly associated with a reduced prevalence of
chronic diseases, such as CVD, Type-2 diabetes and some
cancers (Zucker et al., 2004; Wagner et al., 2015; Bulmer et al.,
2018; Kwon et al., 2018).

One common link between reduced disease risk and increased
UCB concentration is reduced body weight, with consistent
reports in the literature demonstrating significantly reduced
BMI and occasionally also reduced fat mass in GS when
compared to age- and sex-matched controls (Bulmer et al.,
2013; Wallner et al., 2013c; Seyed Khoei et al., 2018).

UCB is formed from the breakdown of haem-containing
proteins (principally hemoglobin) in the liver/spleen by heme
oxygenase, resulting in biliverdin and further enzymatic
transformation by biliverdin reductase to bilirubin.
Unconjugated bilirubin is removed from the blood by the liver
and conjugated by UGT1A1. Conjugated bilirubin is then
transported to the bowel via the bile, where it is enzymatically
deconjugated by glucuronidases produced by gut bacteria and
then further oxidized and reduced, forming stercobilin and
urobilin that can be reabsorbed or excreted in the feces or
urine (Wagner et al., 2015; Hamoud et al., 2018).

Since the gut represents a main location of bilirubin
metabolism, a link between chronically increased UCB levels
and gut health seems likely. We have recently reported on
associations between UCB and colorectal cancer (CRC) risk in
the European Prospective Investigation into Cancer and
nutrition (EPIC) study, whereby serum UCB concentrations
were positively associated with CRC risk in men and inversely
associated in women (Seyed Khoei et al., 2020).
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CRC is the third most common malignancy diagnosed and
the fourth leading cause of cancer-related deaths worldwide
(Arnold et al., 2017), and is expected to increase by a further
60% over the next decade. This increase is estimated to result in
more than 2.2 million additional cases and 1.1 million annual
deaths, by the year 2030 (Rawla et al., 2019).

Established CRC risk factors include high consumption of
red/processed meat, low intake of dietary fibre, alcohol
consumption, smoking, physical inactivity, obesity and height
(World Cancer Research Fund/American Institute for Cancer
Research, 2018). Increasingly, the gut microbiota has been
implicated in CRC. Alterations in gut microbiota composition
have been associated with a growing number of diseases,
including cancer and particularly CRC (Schwabe and Jobin,
2013). More than 20% of the cancer burden worldwide is
attributable to known infectious agents that are often normal
residents of the intestinal microbiota (Zur Hausen, 2009).

Although a number of studies (Brennan and Garrett, 2016;
Ternes et al., 2020) link certain members of the gut microbiota as
causative factors in CRC development, the patho-etiological
intricacies are poorly understood (Fong et al., 2020). Several
mechanisms, including inflammation, bacterial pathogenicity,
genotoxins and oxidative stress have been strongly implicated
(Cheng et al., 2020), all of which have potential links to
bilirubin metabolism.

Surprisingly, to date, potential associations between
(increased) circulating UCB concentrations and the gut
microbiota of adults remain unexplored. Therefore, this study
aimed to evaluate whether (i) individuals with mildly elevated
circulating UCB concentrations (i.e., GS) possess differences in
their gut microbiota compared to age- and sex-matched controls,
and to determine whether (ii) any observed effects are age- or
sex-dependent.
MATERIALS AND METHODS

Participants and Study Design
The “BILIHEALTH” study was designed as an observational
case-control study, at a single centre in Vienna, Austria as
described more detailed previously (Mölzer et al., 2016; Mölzer
et al., 2017).

Briefly, 128 healthy participants between 20 and 80 years of
age were recruited from the general Austrian population. During
the study, eight were excluded for medical reasons. Exclusion
criteria included smoking, excess drinking, routine intake of
medication and nutritional supplements, pregnancy, acute and
chronic (inflammatory/metabolic) diseases, liver diseases,
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present or past neoplasia and organ transplants. Each participant
completed an initial health check-up which covered fasting blood
biochemistry including levels of UCB and liver enzymes, blood
pressure, body weight/-height, and questionnaires.

A total of 80 males and 40 females completed the study. This
sex distribution is representative of the occurrence of GS in the
general population (Wallner et al., 2013a). All participants were
age- and sex-matched, and study group allocation (GS vs
Control, C) was based on the participants’ fasting serum UCB
concentrations (</≥17.1 mM) (Wallner et al., 2013a), as analysed
by High-Performance Liquid Chromatography. Most of the GS
participants showed visible signs of mild jaundice, observable by
a yellowish pigmentation of the skin and the conjunctival
membranes over the sclera. Liver parameters and parameters
of haemolysis were within the normal ranges. Participants were
furthermore allocated to age groups (</≥35 years of age). In
order to support diagnosis of GS, all participants of both study
groups were required to fast the day before participating in the
study, following a 400 kcal fasting protocol (Radu and Atsmon,
2001; Wallner et al., 2013b). Furthermore, a complete overnight
fast of 16 ± 1 hour was required before the day of blood sampling.

The study was approved by the Ethics Commission of the
Medical University of Vienna (No. 1164/2014), was registered in
ClinicalTrials.gov (NCT04792996) and was conducted in
accordance with the Declaration of Helsinki. All participants
provided signed informed consent prior to study participation.

Faeces Sampling and Further
Exclusion of Subjects
Faecal samples were collected at home by the participants and
stored in the refrigerator for not longer than overnight. Samples
were handed over in the morning of the screening day at the
General Hospital of Vienna, aliquoted to approximately 500 mg
in Eppendorf-tubes and stored at -20°C. Eight out of 128
participants were excluded due to exclusion criteria as
mentioned above. In addition, 19 participants and their age-
and sex-matched controls (in total 30) were excluded due to the
lack of faecal sample or undetermined UGT1A1*28-genotype.
Consequently, 90 age- and sex-matched participants, were
considered for statistical analyses.

DNA Extraction From Faeces
DNA from faeces samples was extracted using a Phenol/
chloroform/isoamyl alcohol extraction protocol as previously
described (Griffiths et al., 2000). After bead-beating and
centrifugation, DNA was precipitated from the aqueous phase
by adding 0.1 volume of 3 M sodium acetate and 0.6 volumes of
ice-cold isopropyl alcohol. DNA-pellets were rinsed with 70%
ethanol and eluted in 100 µL TlowE-buffer (10 mM Tris-HCl/
0.1 mM EDTA dissolved in DEPC-treated water). DNA
concentration and quality were determined using a NanoDrop
1000 Spectrometer including ND-1000 operation software set for
nucleic acid DNA-50 (Thermo Fisher Scientific). The ratio of the
absorbance at 260 and 280 nm (A260/280) was used to assess the
purity of DNA and samples were diluted to 50 ng/µL with
TlowE-buffer.
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Multiplex Polymerase Chain Reaction
(Multiplex-PCR) for 16S rRNA
Gene Amplicons
A barcoding-multiplex tandem PCR (Berry et al., 2012) was
performed targeting the V3-V4 region of the bacterial 16S
rRNA gene. Target and barcoding primers were designed
as previously described (Hamady et al., 2008): HBact341F:
5 ’- CCTACGGGNGGCWGCAG-3 ’ and HBact785R :
5’- GACTACHVGGGTATCTA-3’.

The reaction mix contained 2 µL DNA (100 ng), 1x Taq buffer
with KCl (B38), 0.2 mM dNTPs, 2 mMMgCl2, 1 µM forward and
reverse primer, 0.1 µg/µL BSA and 25 mU/µL recombinant Taq
Polymerase (all from Thermo Fisher Scientific). In the two-step
PCR, the first round was performed in triplicates with final
volumes of 20 µL per well and 25 cycles (95°C for 30 sec., 55°C
for 30 sec. and 72°C for 60 sec.) and the second round was
carried out with final volumes of 50 µL by addition of reaction
mix (Taq buffer, dNTPs, MgCl2, BSA and Polymerase as
described before) with 5 µL from first step pool, 2 µL
barcoding primer, and 5 cycles (95°C for 30 sec., 52°C for
30 sec., and 72°C for 60 sec.). Amplicons were purified using
the Zymo Research (ZR-96) sequencing DNA Clean-up Kit
(D4017) and eluted in 20 µL per sample in PCR-grade water.

Preparation and Sequencing
The amplification performance was checked by electrophoresis:
each sample (5 µL with 1 µL 6X DNA Gel Loading Dye (Thermo
Fisher Scientific)) was loaded on 120 mL 1.5% agarose gel
(Biozym, LE Agarose) in 1x TBE (89 mM Tris, 89 mM boric
acid, 2 mM EDTA) with 1.2 µL GelRed and compared to a ladder
(Thermo Fisher Scientific, 1 kb DNA Ladder, ready-to-use).
Electrophoreses was set up with 80 V (BIO RAD, PowerPac
Basic Power Supply) for approx. 60 minutes and analysed with a
Biorad, Molecular Imager Gel Doc XR+ System with Image Lab
Software for bands approximating 500 base pairs considering an
amplicon length of 513 base pairs was expected.

Amplicons were quantified using the Quant-i PicoGreen
dsDNA Assay Kit (Thermo Fisher Scientific) by comparison to
a standard curve measured with an Infinite M200 Microplate
Reader (Tecan Trading AG with i-control™ software).

An equimolar pool of 2x1010 copies of amplicons per sample
was prepared and sent to Mycrosynth AG (Balach, Switzerland)
for sequencing on an Illumina MiSeq system.

Bioinformatics
A total number of 2 840 051 sequences were aligned (Herbold
et al., 2015) using MOTHUR (Schloss et al., 2009) and QIIME
(Caporaso et al., 2010) by the Division of Microbial Ecology,
University of Vienna with an expected amplicon length of 513
base pairs based on a paired end read. Unique sequences
(singletons) were removed and remaining sequences were
sorted according their unique 8 nt barcode. 1 348 195 merged
read pairs were assigned to 749 operational taxonomic units
(OTUs) at species-level, identified using a 97% identity threshold
(Nguyen et al., 2016) and comparing to the SILVA database
(Glockner et al., 2017).
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Sequence data has been deposited in the NCBI Sequence Read
Archive under SRP316524.

UCB Measurements Using
High-Performance Liquid
Chromatography (HPLC)
Circulating UCB levels were measured in serum by HPLC
following a well-established protocol (Wallner et al., 2013b;
Seyed Khoei et al., 2020) using HPLC (HPLC, Merck, Hitachi,
LaChrom, Vienna, Austria), equipped with a Fortis C18 HPLC-
column (4.6 × 150 mm, 3 mm), a Phenomenex SecurityGuard™

cartridges for C18 HPLC-columns (4 × 3 mm), and a photodiode
array detector (PDA, Shimadzu). An isocratic mobile phase
contained glacial acetic acid (6.01 g/L) and 0.1 M n-
dioctylamine in HPLC grade methanol/water (96.5/3.5%) was
used. UCB was extracted from serum by mixing 40 mL serum
with 160 mL mobile phase. After centrifugation, 50 mL of the
supernatant was injected at a flow rate of 1 mL/min.

UGT1A1 Genotyping for TA Repeats
in the UGT1A1*28 Promoter Region
UGT1A1 alleles from whole blood were determined through
melting curves, using QIAsymphony DSP DNA Midi Kits on a
QIAsymphony SP automated system (QIAGEN). 10 mMworking
solutions of LightCyclerFastStart DNA Master HybProbe Mix
and primers were run on a LightCycler 480 Instrument II
(Roche), as described previously by von Ahsen et al. (2000).

Statistical Analyses
Statistical analysis was performed using the computing
environment R version 3.3.2 (R Development Core Team,
2017). Additional packages used were vegan (Oksanen et al.,
2007) for alpha-, beta-diversity-analysis and Adonis/
perMANOVA, cluster (Maechler et al., 2017) with wards
method and indicspecies (Cáceres and Legendre, 2009) for
indicator species analysis. Sequence data were subsampled for
each sample to equal 95% of the counted sequences of the
smallest sample size to avoid any bias from unequal
sequencing depth. Generalized linear models were tested with
the edgeR-package (McCarthy et al., 2012).

Normality was checked using the Shapiro-Wilk test in the
coin-package of R (Hothorn et al., 2006). The non-parametric
multivariate analyses of variance tests were performed by Adonis
function which was set to 9999 permutations. Data are
summarized according to their respective distribution. For
parametric data, means ± SD (standard deviation), for non-
parametric variables, medians ± IQR (inter-quartile range) are
presented. For all statistical analyses, the significance level was
based on P-value ≤ 0.05.
RESULTS

Characteristics of the Study Population
Baseline characteristics of the study participants are presented
in Table 1.
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The GS group had significantly greater serum UCB levels and
a reduced BMI (Table 1A), which was more pronounced in the
older age group (above 35 years). This BMI difference between C
and GS was more evident in females (Table 1B). The significant
difference in UCB between groups was independent of sex
(Tables 1A–C).

Composition of the Gut Microbiota
Isolation and sequencing were successful with Good’s coverage
between 98.5 – 99.7 % (Table 2) and rarefaction curves showed
asymptotic behaviour, indicating that sufficient sequencing
depth had been achieved. 749 OTUs were identified prior to
rarefaction. The Firmicutes/Bacteroidetes ratio, alpha and beta
diversity were not significantly different between C vs. GS-groups
(Table 2 and Figure 1), and PCoA ordination showed no distinct
clusters (Figure 2).

Most abundant phyla (Figure 3A) in C and GS group were
Firmicutes (C vs. GS: 68.4 ± 12.2% vs. 67.6 ± 11.5%, p ~ 0.92),
Bacteroidetes (16.8 ± 10.8% vs. 18.4 ± 10.6%, p ~ 0.77),
Actinobacteria (12.3 ± 8.9% vs. 10.9 ± 10.4%, p ~ 0.77),
Proteobacteria (1.2 ± 1.7% vs. 1.8 ± 3.9%, p ~ 0.77), and
Verrucomicrobia (1.1 ± 3.3% vs. 1.1± 3.4%, p ~ 0.99) (listed in
decreasing order according C-group and abundance above 1%).
At a family level (Figure 3B) Lachnospiraceae (C vs. GS: 35.0 ±
12.4% vs. 34.0 ± 9.5%, p ~ 0.77), Ruminococcaceae (24.2 ± 8.3%
vs. 25.6 ± 7.7%, p~ 0.77),Bifidobacteriaceae (10.8 ± 8.7% vs. 9.5 ± 9.9%, p
~ 0.77), Bacteroidaceae (10.4 ± 8.2% vs. 12.4 ± 8.5%, p ~ 0.71),
Prevotellaceae (3.2 ± 7.1% vs. 2.3 ± 6.6%, p ~ 0.77) and
Erysipelotrichaceae (2.7 ± 3.0% vs. 1.6 ± 1.7%, p ~ 0.40), Veillonellaceae
(2.0 ± 2.8% vs. 1.5 ± 1.8%, p ~ 0.72), Rikenellaceae (1.0 ± 0.9% vs. 1.5 ±
1.6%, p ~ 0.40), Coriobacteriaceae (1.6 ± 1.4% vs. 1.4 ± 1.1%, p ~ 0.77),
Peptostreptococcaceae (1.5 ± 2.2% vs. 1.3 ± 1.4%, p ~ 0.72),
Porphyromonadaceae (1.3 ± 3.1% vs. 1.3 ± 1.3%, p ~ 0.94),
Verrucomicrobiaceae (1.1 ± 3.3% vs. 1.1 ± 3.3%, p ~ 0.99),
Streptococcaceae (1.0 ± 1.4% vs. 1.0 ± 1.4%, p ~ 0.99),
Enterobacteriaceae (0.7 ± 1.7% vs. 1.0 ± 4.2%, p ~ 0.77),
Christensenellaceae (0.6 ± 09% vs. 1.0 ± 1.4%, p ~ 0.58)
were predominant.

Abundances at a genus level (Figure 3C) were more diverse
(listed in decreasing order according to C-group and abundance
above 1%): Faecalibacterium (C vs. GC: 12.5 ± 7.6% vs. 12.8 ±
5.3%, p ~ 0.91), Blautia (11.3 ± 6.5% vs. 10.3 ± 4.0%, p ~ 0.71),
Bifidobacterium (10.8 ± 8.7% vs. 9.5 ± 9.9%, p ~ 0.81),
Bacteroides (10.4 ± 8.2% vs. 12.4 ± 8.5%, p ~ 0.69),
Incertae_Sedis (Lachnospiraceae) (9.3 ± 4.1% vs. 8.1 ± 3.3%,
p ~ 0.69), Pseudobutyrivibri (5.5 ± 4.1% vs. 6.7 ± 4.4%, p ~ 0.69),
Subdoligranulum (3.3 ± 2.4% vs. 3.4 ± 2.8%, p ~ 0.92), Prevotella
(3.0 ± 7.0% vs. 2.1 ± 6.6%, p ~ 0.81), Anaerostipes (3.1 ± 2.9% vs.
2.8 ± 2.4%, p ~ 0.84), Ruminococcus (3.0 ± 2.9% vs. 4.2 ± 3.3%,
p ~ 0.69), Incertae_Sedis (Ruminococcaceae) (2.8 ± 3.5% vs. 2.0 ±
1.3%, p ~ 0.69), Coprococcus (1.7 ± 1.5% vs. 1.7 ± 1.6%, p ~ 0.96),
Dialister (1.7 ± 2.7% vs. 1.3 ± 1.8%, p ~ 0.72), Incertae_Sedis
(Peptostreptococcaceae) (1.5 ± 2.2% vs. 1.3 ± 1.4%, p ~ 0.85),
Dorea (1.4 ± 0.9% vs. 1.3 ± 0.8%, p ~ 0.91), Coprobacillus (1.3 ±
1.8% vs. 0.9 ± 0.8%, p ~ 0.69), Akkermansia (1.1 ± 3.3% vs. 1.1 ±
3.3%, p ~ 1.00), Incertae_Sedis (Erysipelotrichaceae) (1.0 ± 2.2%
vs. 0.6 ± 1.5%, p ~ 0.69), Roseburia (1.0 ± 1.0% vs. 1.1 ± 1.0%,
September 2021 | Volume 11 | Article 701109
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p ~ 0.87), Collinsella (1.0 ± 1.2% vs. 0.9 ± 0.9%, p ~ 0.84),
Alistipes (0.9 ± 0.9% vs. 1.5 ± 1.6%, p ~ 0.69), Streptococcus (0.9
± 1.2% vs. 1.0 ± 1.4%, p ~ 0.91), Lachnospira (0.9 ± 1.15% vs. 1.1
± 1.0%, p ~ 0.71), Oscillibacter (0.9 ± 1.0% vs. 1.1 ± 1.0%, p ~
0.69) and unclassified (Christensenellaceae) (0.6 ± 0.9% vs. 1.0 ±
1.4%, p ~ 0.91).

Gut Microbiota and Bilirubin Phenotype
Microbiota composition did not differ between the groups for all
taxonomic levels and at OTU level based on the GS-phenotype
and age (</≥ 35 years). The factor sex was a significant
determinant of microbial composition at genus level with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
greater observed diversity in females (p < 0.05). Pairwise
testing of the relative abundances of taxa on domain, phylum,
class, family, genus and OTU-level showed no significant
differences for GS-phenotype after adjusting for multiple
testing with BH procedure (false discovery rate) with age, sex,
and BMI as covariates using a generalized linear model.

An indicator species analysis (Table 3) resulted in very low
abundance of OTUs and low association values (≤ 0.512) with a
strong dependency to the rarefaction step performed during
subsampling (described in Statistical Analyses). This low
association values indicate that there is little association
between OTU relative abundances and phenotype.
TABLE 2 | Medians sequencing data and diversity characteristics.

C GS p-value

No. sequences 13793 (3682) 13647 (4821) 0.6
Good’s coverage 0.994 (0.0022) 0.994 (0.0020) 0.9
No. observed OTUs 159.6 (29.8) 163.4 (27.2) 0.2
Chao1 361.6 (78.2) 360.0 (87.8) 0.9
Shannon 3.438 (0.4) 3.520 (0.5) 0.2
inv. Simpson 15.28 (6.4) 15.771 (9.2) 0.3
F/B-ratio 4.52 (6.8) 4.25 (4.5) 0.5
September 2021 | Volume 11 | Article
Medians ± IQR are given. Mann-Whitney-U-statistic shows no significant difference between the control and Gilbert’s syndrome-group. Control (C) group and Gilbert’s syndrome (GS)
group; OTU, Operational taxonomic units, F/B-ratio, Firmicutes/Bacteroidetes-ratio.
TABLE 1 | Demographic description of the study subjects (all subjects/females/males).

A. Baseline characteristics of Gilbert’s Syndrome participants and their matched controls. All subjects

C GS p-value
Participants [n] 45 45 1.00
Sex (m/f) 29/16 29/16
Median age [yrs]D 30.0 (19.0) 31.0 (18.5) 0.91
Participants aged ≤/> 35 yrs [n/n] 27/18 27/18
Age of participants ≤/> 35 yrs [yrs]D 27.0 (6.0)/47.0 (12.25) 27.0 (6.0)/48.5 (13.5) 0.90/0.82
UCB concentration [µM]Ø 9.2 (3.4) 32.6 (9.4) <0.001*
UGT1A1*28 TA repeats [7/6_7/6]□ 3/21/21 40/4/1
BMI [kg/m2]D 23.9 (6.2) 22.2 (3.4) 0.011*
BMI [kg/m2] ≤/> 35 yrs D 22.8 (3.9)/27.2 (4.8) 21.5 (2.8)/22.8 (4.5) 0.135/0.015*

B. Baseline characteristics of Gilbert’s Syndrome participants and their matched controls among females. Female
C GS p-value

Participants [n] 16 16 1.000
Median age [yrs]D 40.0 (16.75) 40.5 (18.50) 0.949
Participants aged ≤/> 35 yrs [n/n] 7/9 7/9 1.000
Age of participants ≤/> 35 yrs [yrs]D 29 (4.0)/46 (13.0) 29.0 (3.5)/48 (12.0)
UCB concentration [µM]Ø 8.6 (3.2) 30.1 (6.6) <0.001*
UGT1A1*28 TA repeats [n 7/6_7/6]□ 1/7/8 16/0/0
BMI [kg/m2]D 23.9 (6.5) 20.6 (3.8) 0.024*
BMI [kg/m2] ≤/> 35 yrsØ 21.0 (0.5)/27.5 (1.7) 21.4 (1.5)/20.7 (4.6) 0.549/0.012*

C. Baseline characteristics of Gilbert’s Syndrome participants and their matched controls among males. Male
C GS p-value

Participants [n] 29 29 1.000
Median age [yrs]D 29.0 (18.00) 29.0 (16.00) 0.944
Participants aged ≤/> 35 yrs [n/n] 20/9 20/9 1.000
Age of participants ≤/> 35 yrs [yrs]D 26 (6.0)/49 (10.0) 26 (5.5)/51 (12.0)
UCB concentration [µM]Ø 9.9 (3.5) 33.9 (10.5) <0.001*
UGT1A1*28 TA repeats [n 7/6_7/6]□ 2/14/13 24/4/1
BMI [kg/m2]D 23.9 (4.9) 22.4 (2.4) 0.101
BMI [kg/m2] ≤/> 35 yrsØ 23.1 (4.4)/26.3 (7.0) 22.3 (2.7)/23.3 (3.6) 0.144/0.235
ØData are expressed as mean value ± SD. DData are expressed as median ± IQR.*p-values ≤0.05 show significant differences (t-test or Mann-Whitney-U-Statistic, respectively); Control (C)
group and Gilbert’s syndrome (GS) group □Insertion of additional TA repeats in the UGT1A1*28 promoter region; 7: Gilbert’s syndrome, 6_7: heterozygous individuals, 6: wild type.
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DISCUSSION

Mild hyperbilirubinaemia (GS) with normal circulating liver
transaminases, biliary markers, and red blood cell counts, is a
benign condition that is highly prevalent among the general
population. Elevated UCB levels are inversely associated with the
risk of chronic diseases including some cancers. Since bilirubin is
in part metabolised in the gut, we investigated whether
participants with mildly increased UCB levels exhibit a
different gut microbiota composition compared to age- and
sex-matched controls. Such differences could help to better
explain the link between lower CRC risk observed in GS
individuals, but could also be linked to the lower risk for
metabolic diseases.

In the present study, gut microbiota composition was
determined using 16S rRNA gene-targeted sequencing, a
popular approach to determine whether there are alterations in
the microbiota linked to disease states (Rebolledo et al., 2017;
Leiva-Gea et al., 2018; Das et al., 2021). Microbial patterns that
are typically associated with proximal or distal CRC could not be
detected in either group. Compared to controls no differences
between alpha and beta diversity and no over- and
underrepresentation of genera were detected in GS individuals.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
The bacterial community in both groups was dominated by the
typical phyla Firmicutes and Bacteroidetes. A difference in the
percentage of Firmicutes and Proteobacteria, which have been
associated with the mucosa of CRC patients (Gao et al., 2015)
was not detected. Similarly, no difference was found in the ranks
of family and genus. While the lack of a statistically significant
association between the microbiota and GS could be due to
cohort size, similar-sized studies have found differences in the
microbiota within disease states (Rebolledo et al., 2017; Leiva-
Gea et al., 2018; Das et al., 2021; Shuntian et al., 2021). As this is a
reasonable cohort size for a pilot study, we conclude that if the
microbiota is affected by GS, it must be a relatively minor effect
on community composition.

In the literature, only four bacteria (Bacteroides fragilis,
Clostridium ramosum, Clostridium perfringens , and
Clostridioides difficile) have been linked to bilirubin
metabolism so far, since they were able to reduce urobilinogen
mixtures, including half-stercobilinogen and stercobilin, under
in vitro and in vivo conditions (Chen and Yuan, 2020). These
species are all common members of the intestinal microbiota
(Vitek et al., 2005; Hamoud et al., 2018).

Although microbiota data of GS have not been published
previously, there are a small number of reports from newborns
A B

DC

FIGURE 1 | Plots of diversity characteristics: (A) Firmicutes to Bacteroidetes ratio, (B) observed species, (C) Shannon’s diversity index and (D) inv. Simpson index
did not differ between the C/GS-groups (p > 0.05). In (A) participant B71 is not shown in C-group due to a F/B-ratio of 131.
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with jaundice, which experience much higher and likely
pathogenic bilirubin concentrations in the blood, when
compared to GS. In jaundiced neonates, Clostridium
perfringens was significantly elevated, which was considered as
feedback on the severe hyperbilirubinemic conditions in the
neonates (Dong et al., 2018). Further, in vitro data show that
bilirubin is protective to the bacterial pathogen Escherichia coli
O157:H7, but highly toxic to the bacterium Enteroccocus faecalis
(Nobles et al., 2013).

Due to non-robust results of our OTU analysis, we could not
reliably identify indicator taxa. Intriguingly, no OTUs classified
to the above-mentioned bacteria were identified as indicators for
GS in this cohort. Regardless of the latter, OTU_295 with a
sequence identity of 90% (366/407 nucleotides with 4 gaps) was
identified with the highest association value (0.521) that can be
assigned to the GS-group. A subsequent BLAST (Zhang et al.,
2000) analysis identified Christensenella minuta strain YIT 12065
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Morotomi et al., 2012) as the species closest to the sequence of
OTU_295. Indeed, Goodrich et al. (2014) had previously
associated this species with lean body mass. As GS individuals
have a comparably lower BMI (Seyed Khoei et al., 2018) this
result could be a first link to a lower CRC and potentially
CVD risk.

Both study groups were generally very healthy, which could
have masked potential microbial patterns. Sex was the only factor
contributing to a slight difference in the composition of the
genus-level microbiota profile, which has also been reported in
other studies (Kim et al., 2020) but the lack of other associations
could also be due to confounding factors in our cohort such as
diet, race, medications or BMI.

Bile plays an important part in bilirubin metabolism. Upon
conjugation, multidrug resistance-associated protein 2
transports conjugated bilirubin into the duodenum via the
biliary tract and passes through the small intestines until it
A B C

FIGURE 3 | Plots of taxonomic profiles for (A) phylum-level, (B) family-level and (C) genus-level from BiliHealth-gut-samples for each group (Controls and Gilbert’s
Syndrome). Abundant taxa with a mean relative abundance >1% are shown. There are no significant differences between C & GS group on all taxonomic levels.
A B C

FIGURE 2 | Plots of Principal coordinates analysis based on Bray-Curtis dissimilarity matrix for rarefied OTUs of C and GS samples and phenotype for (A) all study-
participants and separated for age (B) ≤35 years and (C) >35 years. No distinct clusters are distinguishable.
September 2021 | Volume 11 | Article 701109

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zöhrer et al. Mild Hyperbilirubinemia and Gut Microbiota
reaches the distal ileum and colon. Conjugated bilirubin is then
again deconjugated by bacterial b-glucuronidases. Mainly in the
large intestine, the intestinal microbiota metabolise UCB to
urobilin and stercobilin. However, part of the deconjugated
bilirubin of the bile is reabsorbed as part of the enterohepatic
circulation before reaching the rectum (Bulmer et al., 2011; Chen
and Yuan, 2020). Bile acids in bile are also secreted in the
intestinal lumen and are subsequently re-absorbed in the
terminal ileum and transported back to the liver for recycling.
Some bile acids, however, reach the colon and are modified by
the gut microbiota, which affects their physicochemical
properties as well as inhibitory activity on bacteria. Therefore,
bile acids also shape the composition and function of the
intestinal microbiota. While there is no data available about a
potential differences in bile acid composition within GS subjects,
data from a genome wide analysis show that the UGT1A1 GS
SNP variant rs6742078 is associated with gallstone disease in
men (Buch et al., 2010), which might also affect gut microbiota
composition. More data are needed in future to explore this
question and to better understand the interplay between bile
acids, bile pigments and microbiota composition.

We were not able to analyse UCB and stercobilin in the faeces
of the subjects. Concentrations of both metabolites should be
complementary , cons ider ing previous exper iments
demonstrating an increase in DNA strand breaks in human
cancer cells depending on the concentration of these bile
pigments (Mölzer et al., 2013b). Further, mutagenesis induced
by the food-borne mutagen aflatoxin B1 was abrogated by both
urobilin and stercobilin in the AMES Test. These findings point
towards the importance of these compounds in gut metabolism
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
and the interplay with food derived mutagens, which play a role
in CRC development (Mölzer et al., 2013a).

In conclusion, this study indicates that, in the absence of acute
inflammation or neoplasia, mildly elevated chronic UCB
concentration in the blood in GS, which is associated with
improved metabolic health, is not associated with an altered
gut microbial composition when compared to a healthy age- and
sex- matched control group.
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TABLE 3 | Summary of an indicator species analysis.

Assoc. p-value Closest related species Accession Identity [%] C GS

Mean abundance & sd
[%]

Mean abundance & sd
[%]

C-group

OTU_200 0.509 0.032* Emergencia timonensis strain SN18 NR_144737.1 89 5.8E-02 8.6E-02 2.0E-02 3.3E-02

OTU_258 0.486 0.016* Acetanaerobacterium elongatum strain Z7 NR_042930.1 90 1.9E-02 3.7E-02 1.1E-02 2.1E-02

OTU_230 0.394 0.015* Mitsuokella jalaludinii strain M9 NR_028840.1 99 1.5E-01 5.2E-01 2.3E-03 7.4E-03

OTU_319 0.356 0.034* Olsenella scatoligenes strain SK9K4 NR_134781.1 94 5.0E-02 1.6E-01 4.5E-03 1.6E-02

GS-Group

OTU_295 0.521 0.025* Christensenella minuta strain YIT 12065 NR_112900.1 90 2.6E-02 5.6E-02 4.6E-02 5.9E-02

OTU_392 0.509 0.006** Prevotella intermedia strain B422 NR_026119.1 99 1.3E-02 1.9E-02 2.0E-02 2.3E-02

OTU_465 0.464 0.01** Aggregatibacter aphrophilus strain CIP 70.73 NR_116167.1 99 1.4E-02 1.9E-02 1.6E-02 2.0E-02

OTU_113 0.456 0.026* Rhodospirillum rubrum strain ATCC 11170 NR_074249.1 87 2.0E-02 7.2E-02 2.4E-01 8.8E-01

OTU_109 0.438 0.022* Novispirillum itersonii strain NBRC 15648 NR_113793.1 87 4.4E-02 2.5E-01 2.0E-01 5.7E-01

OTU_163 0.418 0.01** Kiloniella majae strain M56.1 NR_152635.1 87 3.4E-03 8.8E-03 1.1E-01 3.9E-01

OTU_139 0.393 0.034* Bacteroides coprophilus strain CB42 NR_041461.1 99 5.1E-03 2.7E-02 4.9E-01 2.1E+00

OTU_391 0.379 0.033* Spiroplasma alleghenense strain PLHS-1 NR_025697.1 85 2.8E-03 9.8E-03 3.6E-02 9.9E-02

OTU_263 0.378 0.037* Ethanoligenens harbinense strain YUAN-3 NR_074333.1 92 1.3E-02 4.2E-02 2.7E-02 7.6E-02

OTU_471 0.378 0.031* Parabacteroides distasonis strain ATCC 8503 NR_074376.1 98 8.5E-03 4.3E-02 1.5E-02 4.6E-02
September 2021
 | Volume 11 | Article 70110
Table shows assignment of the best-hit result using BLAST to the given OTU-Sequence and their mean relative abundance in the Control (C) group and Gilbert’s syndrome (GS) group
stratified by the result of the multipatt-function of the indicspecies-package. p-values were not adjusted for multiple-testing but tested by permutation option: control = how(nperm=999)
*p-values ≤ 0.05 and **p-values ≤ 0.01.
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