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Abstract: Zebrafish is an emerging model for the research of body fluid ionic homeostasis. In this
review, we focus on current progress on the regulation of Ca2+ uptake in the context of Ca2+

sensing and hormonal regulation in zebrafish. Na+-K+-ATPase-rich cells (NaRCs), the specialized
ionocytes in the embryonic skin and adult gills, play a dominant role in Ca2+ uptake in zebrafish.
Transepithelial Ca2+ transport in NaRC, through apical epithelial Ca2+ channels (ECaC), basolateral
plasma membrane Ca2+-ATPase (PMCA), and Na+/Ca2+ exchanger (NCX), is analogous to
mammalian renal and intestinal Ca2+-absorption cells. Several hormones were demonstrated to
differentially regulate Ca2+ uptake through modulating the expression of Ca2+ transporters and/or
the proliferation/differentiation of NaRC in zebrafish. In addition, the counterbalance among these
hormones is associated with the maintenance of body fluid Ca2+ homeostasis. Calcium-sensing
receptor (CaSR) is expressed in several hormone-secreting tissues in zebrafish, and activated CaSR
differentially controls calciotropic hormones. The major principles of Ca2+ transport and the hormonal
control appear to be conserved from zebrafish to other vertebrates including mammals. The new
knowledge gained from zebrafish studies provides new insights into the related issues in vertebrates.
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1. Introduction

Ca2+ is required for diverse intracellular and extracellular physiological activities, such as
neurotransmission, muscle contraction, and bone remodeling [1,2]; and therefore vertebrates have to
maintain Ca2+ homeostasis in body fluids. In terrestrial vertebrates, kidneys and intestines are the main
organs for Ca2+ uptake. In fishes, the aquatic vertebrates, adult gills and the yolk skin of embryonic
stages are the major organs to absorb Ca2+ from the aquatic environment [3–5]. Ca2+ absorption
in these organs occurs majorly through two pathways in specific epithelial cells: (1) Paracellular
transport, which is the passive diffusion of Ca2+ through tight junctions; and (2) Transepithelial
transport, which actively transports Ca2+ through Ca2+ transporters [3–5]. The genes of tight junctions
are very divergent in fish and their function in ionregulation has not been elucidated completely [6,7].
In contrast, previous studies had clarified the molecular mechanism of transepithelial Ca2+ uptake in
specific epithelial cells, called ionocytes, in fish [8–13].

Zebrafish (Danio rerio), a freshwater (FW) teleost, natively lives in south Asia and is a popular
laboratory animal. Zebrafish is widely used as an animal model to study the development, genetics,
and diseases of humans [14]. Furthermore, zebrafish has been an emerging animal model to explore
the regulatory mechanism of ionic homeostasis in body fluid in recent years [15–17]. This is because
zebrafish has several advantages compared with other species: Firstly, zebrafish can produce several
hundred fertilized eggs daily, and the development and life cycle of zebrafish is fast and short. Secondly,
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the gene expression and function are highly conserved between zebrafish and mammals. Thirdly,
zebrafish has a complete genetic database and is applicable to the manipulation of forward and
reverse genetics. Finally, approaches of molecular and cellular biology and physiology have been well
developed in zebrafish.

Hormonal control is a vital mechanism for body fluid ion regulation. Several hormones
(i.e., parathyroid hormone (PTH) and vitamin D) have been well known in the maintenance of
Ca2+ homeostasis in mammals [1]. However, the function of other hormones (i.e., hydrogen sulfide
(H2S), calcitonin (CT), isotocin, insulin-like growth factor (IGF), and stanniocalcin-1 (STC-1)) on Ca2+

regulation was controversial or unclear. In zebrafish, the function of these calciotropic hormones has
been explored in recent years [18–24]. The expression and/or secretion of calciotropic hormones are
responsive to extracellular Ca2+ levels. Calcium-sensing receptor (CaSR) in specific endocrine organs
senses extracellular Ca2+ levels and modulates the gene expression and/or secretion of calciotropic
hormones in mammals [25]. The effect of CaSR on hormones in zebrafish has also been defined in recent
studies [21,26]. As such, zebrafish studies contribute more physiological background information
about the hormonal control of body fluid Ca2+ homeostasis, thereby providing a more competent
model to explore the related topics in biomedical research. Hence, the present review focuses on
an overview of the mechanisms of Ca2+ regulation and recent progress of their hormonal control
in zebrafish; additionally, we also discuss these findings and some unresolved issues by offering
comparisons with studies on other species.

2. Ca2+ Regulation in Zebrafish

2.1. Ca2+ Uptake in Zebrafish

The kidneys and intestine are vital organs for Ca2+ absorption in mammals. In specific epithelial
cells of these tissues, active transepithelial Ca2+ transport is carried out through the operation of apical
epithelial transient receptor potential cation channel subfamily 5 and/or 6 (TRPV5 and/or 6), the Ca2+

channel, basolateral plasma membrane Ca2+-ATPase (PMCA), and Na+/Ca2+ exchanger (NCX) [1].
In teleosts, the gills (or the yolk skin in embryonic stages) are the main organs (over 90% of whole body)
for Ca2+ uptake [3,15,27,28]. Epithelial ionocytes in the gills and the yolk skin are the specific cells for
ion uptake [3,5,15]. In zebrafish, ionocytes originate from epidermal stem cells and Foxi3a and Foxi3b
are the essential factors for ionocytes differentiation [29]. Zebrafish have at least five types of ionocytes;
H+-ATPase-rich cells (HRCs), Na+-K+-ATPase-rich cells (NaRCs), Na+-Cl−-cotransporter-expressing
cells (NCCCs), K+-secreting cells (KSCs), and SLC26-expressing cells (SLC26Cs) [16,30]. The different
types of ionocytes have their own specific roles in ionregulation [15,16,31]. One of the ionocyte types,
NaRCs, are specifically stained by the specific Na+-K+-ATPase (NKA) α-subunit antibody and are
responsible for the Ca2+ regulation (Figure 1) [5,15].
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text (“The mechanism of Ca2+ uptake in zebrafish” section). ECaC, epithelial Ca2+ channel; KC, 
keratinocyte; NCX1b, Na+/Ca2+ exchanger 1b; NAK.1, Na+-K+-ATPase α1 subunit subtypes (atp1a1a.1); 
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the route of Ca2+ transport in NaRC. 

Figure 1. Na+-K+-ATPase-rich cell (NaRC) in zebrafish. Details of the transport pathways refer
to the text (“The mechanism of Ca2+ uptake in zebrafish” section). ECaC, epithelial Ca2+ channel;
KC, keratinocyte; NCX1b, Na+/Ca2+ exchanger 1b; NAK.1, Na+-K+-ATPase α1 subunit subtypes
(atp1a1a.1); NaRC, Na+, K+-ATPase-rich cell; PMCA2, plasma membrane Ca2+-ATPase 2. Solid and
dashed arrows, the route of Ca2+ transport in NaRC.
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Unlike mammals, zebrafish and other teleosts have only one TRPV5/6 ortholog, epithelium Ca2+

channel (ECaC) [5,8,15]. Furthermore, co-localization of zebrafish ecac and NKA was demonstrated
by using in situ hybridization (ISH) and immunocytochemistry (ICC) [8]. This indicated the specific
expression of ECaC in NaRCs. Other transepithelial Ca2+ transporters, the plasma membrane
Ca2+-ATPase (PMCA) and Na+/Ca2+ exchanger (NCX), were also identified in zebrafish NaRCs [10].
There are six isoforms of PMCA and seven isoforms of NCX identified in zebrafish, and only NCX1b
and PMCA2 are co-expressed with ECaC in the same ionocytes [10]. Among six distinct NKA α-subunit
genes in zebrafish, only atp1a1a.5 is expressed in ECaC-expressing ionocytes [11,32]. Liao et al.
revealed that atp1a1a.1 expression in zebrafish was stimulated by acclimation to a low Ca2+ water,
suggesting that atp1a1a.1 provides the Na+ gradient to drive the operation of NCX1b [11]. Taking these
results together, the model of transepithelial Ca2+ transport in zebrafish NaRC is similar to that in the
kidneys and intestine of mammals.

The ability of Ca2+ uptake is elevated following development of zebrafish [8]. At the same
time, ECaC mRNA expression is gradually increased [8]. When zebrafish embryos were treated with
low- (0.02 mM) and high-Ca2+ water (2 mM Ca2+), respectively, the low-Ca2+ treatment stimulated
the density of ecac-expressing cells, ECaC mRNA expression, and Ca2+ uptake [8,18,33,34]. In adult
zebrafish gills, ECaC mRNA expression was also stimulated by low Ca2+ water treatment [10,34].
Additionally, in vitro study revealed that zebrafish ECaC is a calcium-selective channel capable of
inward calcium transport at physiological Ca2+ concentrations [35], and ECaC knockdown resulted
in decreased whole-body Ca2+ content in zebrafish embryos [18]. However, the mRNA expression
of zebrafish PMCA2 and NCX1b in the gills and embryonic skin appears not to be regulated by
the surrounding Ca2+ levels [10,18,33,34]. It was proposed that PMCA2 and NCX1b, having a
constant-state expression under different ambient Ca2+ levels, play a supporting role for transepithelial
Ca2+ absorption [15]. Plasma Ca2+ level is maintained around a value of 2.5 mM in vertebrates, but
zebrafish continually face changes in environmental Ca2+ concentrations (FW [Ca2+], ~0.01–3 mM) [1,8].
In addition, intracellular Ca2+ levels are far lower than extracellular Ca2+ levels; the intracellular Ca2+

level of gill cells in fish is presumably less than 1 µM [1,3]. For the maintenance of Ca2+ homeostasis,
it is vital to regulate Ca2+ uptake through modulating the ECaC in NaRC of zebrafish.

Examining the transepithelial Ca2+ transport in mammals is challenging because TRPV5
and TRPV6, the major transporters for Ca2+ reabsorption in the kidney, preferentially form the
heteromultimers that exhibit functional redundancy and compensation [36–38]. Zebrafish possess
only a single ortholog of mammalian TRPV5/6 and may be a more appropriate choice to explore the
related issue. Therefore, some studies explored the effect of transpithelial Ca2+ transport on bone
formation, development, and Ca2+ homeostasis by using ECaC-mutant lines or knocking down the
ECaC expression in zebrafish [18,35]. In mammals, the expression of NCX1 is universal and especially
dominant in vital organs such as the heart [39]. In zebrafish, there are two paralogs of mammalian
NCX1, NCX1a and NCX1b. NCX1a is a heart-specific isoform and related to syndrome of cardiac
fibrillations in zebrafish [40]. In contrast to NCX1a, NCX1b is not expressed in zebrafish heart [10,40].
Zebrafish NCX1b is expressed in NaRCs and is related to the Ca2+ extrusion in NaRCs [10]. Therefore,
the subtle difference of zebrafish Ca2+ transporters from that of mammals may allow the use of
the zebrafish model to explore the role of NCX in transepithelial Ca2+ transport without potential
lethal problems.

2.2. Ca2+ Excretion in Zebrafish

In mammals, regulation of the property and/or expression of tight junction and TRPV5 in specific
segments of the renal tubule are related to the Ca2+ excretion [1]. Although gene expression of many
claudin proteins was identified in ion regulatory organs such the gills, kidneys, and skin in zebrafish,
their function in Ca2+ permeability is still unclear [7]. On the other hand, ECaC expression was also
detected in the kidneys in zebrafish [8]. Previous studies indicated the mRNA expression of ECaC in
zebrafish embryos was differently regulated by external Ca2+ levels [8,18,19,21,33,34]. The renal ECaC
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expression may be modulated in zebrafish upon experiencing a Ca2+ challenge, which then further
affects Ca2+ reabsorption. Thus, it results in changes to Ca2+ excretion. Nevertheless, this issue still
requires evidence to support this hypothesis.

3. The Regulation of Ca2+ Uptake in Zebrafish

For body fluid Ca2+ homeostasis, Ca2+ absorption and excretion in Ca2+-regulation organs are
modulated by a complex hormonal network in vertebrates. The action of calciotropic hormones and
their receptors has been elucidated one after another in zebrafish in the past ten years [15,16]. In this
section, we will first emphasize the actions of cortisol, vitamin D, stanniocalcin (STC-1), calcitonin (CT),
parathyroid hormone (PTH), isotocin, hydrogen sulfide (H2S), and insulin-like growth factor 1 (IGF-1)
on the regulation of Ca2+ uptake in zebrafish and the regulatory mechanism behind these actions.
Finally, we will introduce the role of calcium-sensing receptor (CaSR) in the regulation of calciotropic
hormones, and the mutual interplay of those hormones in terms of body fluid Ca2+ homeostasis
in zebrafish.

3.1. The Hormonal Control of Ca2+ Uptake

3.1.1. Cortisol

In mammals, corticoidsteroid hormones, including mineralcorticoid (aldosterone) and
glucocorticoid (cortisol), are produced in the adrenal cortex of mammals and mineralcorticoid is
the major player responsible for body fluid ion regulation [41,42]. Teleosts are unable to synthesis
the aldosterone because of the lack of aldosterone synthase [43]. Therefore, cortisol functions as
the aldosterone in teleosts [3]. In teleosts, corticoid steroid hormones are mainly synthesized in
interrenal tissue of the head kidneys [44]. According to studies of cell experiments, cortisol is able
to stimulate the transcription activity of reporter construct with the teleost glucocorticoid receptor
(GR) and mineralcorticoid receptor (MR) [45–48]. Nevertheless, in vivo study indicated that cortisol
regulates body fluid ion homeostasis via GR rather than MR in zebrafish [33,49–52].

Treatment of cortisol analogs decreased Ca2+ absorption in mammals through suppressing the
expression of TRPV6 and calbindin-D9K in the kidney and duodenum [53,54]. However, cortisol
was shown to be a hypercalcemic hormone in fishes [13,33,55,56]. In zebrafish, low Ca2+ water
treatment increased the mRNA expression of 11β-hydroxylase, the final-step enzyme for cortisol
synthesis, and exogenous cortisol treatment stimulated Ca2+ uptake in zebrafish embryos [33].
Moreover, cortisol treatment stimulated the mRNA expression of ECaC, but not that of PMCA2
and NCX1b, in zebrafish [33]. In the zebrafish morphants with GR translational knockdown, cortisol
treatment did not stimulate ECaC transcript and Ca2+ uptake. On the contrary, MR knockdown did
not affect the hypercalcemic action of cortisol on zebrafish [33]. Additionally, the localization of GR
in NaRCs was demonstrated by using the ISH and/or ICC, and putative glucocorticoid-responsive
element (GRE) was identified in the promoter region of ECaC in zebrafish [33,50]. Hence, cortisol may
stimulate Ca2+ uptake through directly upregulating ECaC mRNA expression. On the other hand,
cortisol was also found to positively regulate gene expression of the receptor and the synthesis enzyme
of vitamin D [33]. As such, cortisol may be able to indirectly regulate Ca2+ uptake through stimulating
other hypercalcemic hormones.

In zebrafish, ionocytes are derived from epidermal stem cells and Foxi3a and Foxi3b are the
essential transcription factors for ionocytes differentiation [29]. Previous studies indicated that
cortisol treatment increased the density of NaRCs but did not change the density of epidermal
stem cells, and GR knockdown resulted in the decreased density of NaRCs in zebrafish [50,57].
Furthermore, the mRNA expression of Foxi3a and Foxi3b was upregulated in both zebrafish
embryos and the cultured gills after cortisol treatment [50,57]. Therefore, cortisol-GR signaling is
involved in the stimulation of Ca2+ uptake through inducing ECaC mRNA expression and NaRCs
differentiation/differentiation.
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3.1.2. Vitamin D

There are two vital enzymes, vitamin D-25 hydroxylase (CYP2R1) and 1α-OHase (CYP27B1),
for the synthesis of vitamin D in mammals. CYP2R1 in the liver converts vitamin-D precursor
into 25-hydroxyvitamin D3 (25(OH)D3), which is then converted to 1α,25-dihydroxytamin D3

(1α,25(OH)2D3), the biological active form of vitamin D, by CYP27B1[58]. In contrast to CYP2R1 and
CYP27B1, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) degrades 1α,25(OH)2D3 in the peripheral
tissues to maintain the level of vitamin D [58,59]. On the other hand, exogenous 1α,25(OH)2D3

treatment caused a feedback regulation for the maintenance of 1α,25(OH)2D3 level homeostasis
through suppressing CYP27B1 and increasing CYP24A1 mRNA expression, respectively, in mammalian
experiments [60–63]. In fishes, the genes of CYP24A1, CYP2R1, and CYP27B1 have also been identified,
and 25(OH)D3 and 1α,25(OH)2D3 were measured in the plasma [64–66]. In a zebrafish study,
exogenous 1α,25(OH)2D3 treatment was also found to decrease CYP27B1 and increase CYP24A1
mRNA expressions, respectively [34]. Hence, the feedback regulation of vitamin D synthesis appears
to be conserved from zebrafish to mammals.

Lin et al. reported stimulation of the mRNA expression of both CYP2R1 and vitamin D
receptor (VDR) by low-Ca2+ water treatment in zebrafish [34]. Low-Ca2+ water treatment stimulated
whole-body 1α,25(OH)2D3 concentration but did not affect CYP27B1 mRNA expression in zebrafish
(Figure 2) [34]. Incubation with 1α,25(OH)2D3 was found to increase whole-body calcium content and
Ca2+ uptake in zebrafish through upregulation of ECaC (but not PMCA2 and NCX1b) mRNA [34].
Hence, vitamin D functions as a hypercalcemic hormone in zebrafish. Vitamin D modulates many
physiological functions via VDR. There are two paralogous VDRs, VDRa and VDRb, in zebrafish [34].
Knockdown of VDRa, but not that of VDRb, resulted in the downregulation of Ca2+ uptake and ECaC
mRNA expression in zebrafish [34]. Additionally, localization of VDRa and NaRCs reinforced the
actions of vitamin D on zebrafish body fluid Ca2+ homeostasis [34]. Taken all together, vitamin D-VDRa
signaling may directly induce ECaC mRNA expression to upregulate the capacity of Ca2+ uptake.
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Figure 2. Effect of environmental Ca2+ concentrations on whole-body 1,25-dihydroxyvitamin D3

(1,25(OH)2D3) content in 3 day post-fertilization (dpf) zebrafish embryos. One to two cell-stage
zebrafish embryos were incubated in low- (0.02 mM Ca2+) and high-Ca2+ (2.0 mM Ca2+) water,
respectively, for three days. The low-Ca2+ (LCa) group showed a higher level of 1,25(OH)2D3 than the
high-Ca2+ (HCa) group. Whole-body 1,25(OH)2D3 content was measured with an ELISA kit (E0467GE,
EIAlab, Wuhan, China). Values are the mean ± SEM (n = 5). Student’s t-test, ** p < 0.01.

3.1.3. Parathyroid Hormone (PTH)

PTH is expressed and secreted from the parathyroid gland (PTG) in mammals [1]. The PTG is
absent in fish; however, the expression of PTH was detected by RT-PCR, ICC, and/or ISH in several
tissues of zebrafish, such as the gills, muscle, neuromast of lateral line, and brain [21,67,68]. There are
two paralogs of PTH, PTH1 and PTH2, in zebrafish [67]. Diluted FW with additional supplement of
CaCl2 was reported to inhibit PTH1 mRNA expression in zebrafish embryos [69]. On the contrary,
PTH1 mRNA expression in zebrafish embryos was stimulated by low ambient Ca2+ level [21,26,68].
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PTH1 positively regulates Ca2+ absorption and ECaC mRNA expression in zebrafish embryos based on
PTH1 gain- and loss-of-function experiments [21]. In addition, treatment with human PTH (1-34 amide)
was shown to increase Ca2+ absorption and ECaC mRNA expression in zebrafish (Figure 3). In a recent
study, knockdown of PTH1 in zebrafish significantly downregulated the number of epidermal stem
cells and caused a concomitant decrease in the number of NaRCs [68]. Therefore, PTH1 enhances Ca2+

absorption by stimulating ECaC mRNA expression and the proliferation/differentiation of NaRCs
in zebrafish. In contrast to PTH1, PTH2 is not modulated at the translation level by ambient Ca2+

level [21,68]. Supporting the above finding, both the calcium content and the gene expression of
Ca2+ transporters (ECaC, PMCA2, and NCX1b) in zebrafish were not changed by PTH2 gain- or
loss-of-function [21]. Therefore, only PTH1 is involved in the regulation of the Ca2+ uptake mechanism
in zebrafish.

There are three types of PTH receptors, PTH1R, PTH2R, and PTH3R, in zebrafish, and zebrafish
PTH1 was capable of activating the PTH1R and PTH3R in vitro study [70]. PTH1R and PTH3R are
expressed in zebrafish gills, but the existence of PTH1R and/or PTH3R in NaRCs is still unknown [68].
In addition, there is no physiological study to clarify the role of these PTH receptors in body fluid Ca2+

homeostasis, and this issue remains to be explored in the future.
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Figure 3. Effect of human parathyroid hormone (PTH) amide on whole-body ECaC mRNA expression
and calcium content in 3-dpf zebrafish embryos. One to two cell-stage zebrafish embryos were treated
with 10 ng/mL human PTH 1-34 amide (H-5964, BACHEM, Torrance, CA, USA) for three days.
The treatment of human PTH 1-34 amide resulted in significant increases in calcium content and ECaC
mRNA expression. Whole-body Ca2+ content was measured by atomic absorption spectrophotometry.
mRNA expression was analyzed by qPCR using the primer sets in the study by previous study [21],
and the values were normalized to β-actin expression. Values are the mean ± SEM (n = 5). Student’s
t-test, * p < 0.05.

3.1.4. Stanniocalcin-1 (STC-1)

STC-1 is a homodimeric glycoprotein hormone and was first identified in fish [71]. In mammals,
STC functions as a paracrine and autocrine and has a universal expression in a range of tissues [71].
Heterogeneous expression of human STC-1 in rat inhibited the intestinal calcium absorption, but the
regulatory mechanism was not clear [72]. In fish, STC-1 is expressed in the corpuscle of Stannius (CS),
a fish-specific endocrine gland attaching to the kidneys. Removing the CS from FW eel resulted in
hypercalcaemia [73]. In contrast, intra-arterial injection of CS crude homogenate in trout caused an
inhibitory effect on Ca2+ uptake [74].

STC-1 expression in zebrafish was significantly stimulated by high-Ca2+ water treatment, and
knockdown of STC-1 enhanced zebrafish Ca2+ uptake [18]. ECaC, but not PMCA2 or NCX1b, appears
to be the regulatory target of the actions of STC-1 in zebrafish according to the finding that only
the expression of ECaC was decreased by STC-1 overexpression [18,24]. To reinforce this notion,
STC-1 transcript was increased in ECaC zebrafish morphants and ECaC mutant zebrafish [18,35].
Thus, STC-1 is a hypocalcemic hormone to suppress Ca2+ uptake function by downregulating ECaC
mRNA expression. STC-1 was recently demonstrated to decrease the capacity of Ca2+ uptake through
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negatively regulating the number of zebrafish NaRCs, which is probably mediated by the transcription
factor of Foxi3a [24]. This provides a new insight into the molecular mechanism of negative action of
STC-1 on the transepithelial Ca2+ uptake. STC receptor has not been identified in animals so far, and
this is a limitation to further understand the action of STC-1 on Ca2+ regulation in mammals.

3.1.5. Calcitonin

Calcitonin (CT) is a type of small peptide produced in parafollicular C cells of the thyroid gland
and may function as a hypocalcemic hormone in mammals [75]. However, some studies have shown
the hypercalcemic action of CT in mammals. Incubation of CT was able to increase Ca2+ absorption by
stimulating NCX activity in the distal tubules of rabbit nephron [76]. In human, infusion of particular
CT concentrations induced hypercalcemia and increased renal Ca2+ reabsorption [77]. As such, the
hypocalcemic function of CT is somewhat controversial in mammals [74]. In fish, CT is mainly
synthesized in the ultimobranchial gland (UBG), the small body of the pharynx [3]. Hypocalcemic
action of CT was reported in several fish species [78–80].

In zebrafish, the mRNA expression of CT in embryos and adult UBG was significantly stimulated
by high-Ca2+ water treatment. The treatment of high-Ca2+ water also increased the mRNA expression
of CT receptor (CTR) in embryos and adult gills [19]. Overexpression of CT resulted in a decrease of
ECaC and an increase of STC-1, respectively, at the mRNA level in zebrafish embryos [19]. Therefore,
CT regulates Ca2+ absorption probably through directly or indirectly (via STC-1) downregulating
ECaC expression. Notably, overexpression of CT induced a short-term hypocalcemia initially and a
long-term hypercalcemia subsequently in zebrafish embryos [19]. The increased mRNA expression
of PMCA2 and NCX1b, probably a result of the upregulated expression of VDR and PTH receptor,
was suggested to contribute to long-term hypercalcemia [19]. These findings offer a new insight into
the biphasic effects of CT on body fluid Ca2+ homeostasis in vertebrates.

3.1.6. Isotocin

Isotocin is the teleost homologue of mammalian oxytocin gene [81,82]. Oxytocin is involved in many
physiological functions, and is primarily produced in neurons of the hypothalamo-neurohypophysial
system in mammals [83]. In fishes, isotocin is expressed in the brain and others tissues including the
gills, ovary, muscle, and skin [20,84–87]. In zebrafish, mRNA expression of isotocin was dominantly
upregulated after acclimation to ion-poor water, and loss-of-function of isotocin resulted in a decrease
of whole-body calcium content with concomitant declines in ECaC mRNA expression and the
number of NaRCs [20]. The mechanism behind this regulation is associated with the decrease
in the number of epidermal stem cells and Foxi3a mRNA expression [20]. Therefore, isotocin
appears to positively stimulate Ca2+ uptake function through increasing ionocytes differentiation
and proliferation. In zebrafish, isotocin receptors were identified and the expression was detected in
gills [20]. Mammalian oxytocin could modulate endocrine action on osmoregulation in mammals [83].
The discovery of zebrafish isotocin’s action on Ca2+ uptake provides some clues to explore novel
functions of mammalian oxytocin in terms of body fluid ionic homeostasis.

3.1.7. Hydrogen Sulfide (H2S)

H2S is a gaseous transmitter and there are two vital cytosolic enzymes, cystathionine-γ-lyase
(CSE) and cystathionine-β-synthase (CBS), for the production of endogenous H2S [88–90]. These two
enzymes are universally expressed in various tissues in mammals. H2S is involved in many
physiological activities including cardiovascular regulation, cytoprotection, inflammation, and cell
energy production [90]. Additionally, several studies revealed that treatment with H2S donors
increased the intracellular Ca2+ level in rat microglial cells, rat aorta endothelial cells, and HeLa
cells [91–93]. In zebrafish embryos incubated with low-Ca2+ water, the treatment of H2S donors
increased whole-body Ca2+ uptake and/or calcium content [23], suggesting the action of H2S on body
fluid Ca2+ homeostasis. Both CBSb and CSE are expressed in zebrafish NaRCs, but only CBSb mRNA
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expression is stimulated by low Ca2+ water treatment [23]. Knockdown of CBSb, but not CSE, evidently
decreased the Ca2+ absorption of zebrafish in low Ca2+ water. Supporting this loss-of-function result,
only the pharmacological inhibition of CBS activity resulted in decreased Ca2+ uptake in zebrafish [23].
There are several putative PKA phosphorylation sites in mammalian TRPV5 and activation of these
sites can enhance channel activity [94,95]. Likewise, H2S, generated by CBSb in NaRCs, may activate
ECaC activity through the PKA-cAMP pathway and then upregulate Ca2+ absorption in zebrafish
based on the pharmacological experiments with the relevant inhibitors.

3.1.8. Insulin-Like Growth Factor 1 (IGF-1)

In mammals, IGF-1, secretion from the liver and/or the local cells, regulates Ca2+ absorption in the
kidneys through increasing vitamin D synthesis, and the physiological actions of IGF-1 are mediated
by the IGF-1 receptor (IGF-1R) [1,96,97]. Mammalian IGF-1R is expressed throughout the nephron,
but the direct effect of IGF-1 on Ca2+ uptake requires further clarification [98–102]. In fish, IGF-1
expression was identified in the branchial ionocytes of tilapia [103,104]. Injection of IGF resulted in
upregulation of both ionocytes’ development and Na,K-ATPase expression in brown trout [105]. IGF-1
is able to stimulate zebrafish cell proliferation through activating the PI3K-Akt signaling pathway [106].
In zebrafish embryos, a phospho-Akt signal was detected in NaRC by ICC [22], and lower-Ca2+ water
treatment increased the number of phospho-Akt signals and NaRCs [22]. Subsequent pharmacological
experiments suggested that the IGF-1R-PI3K-Akt signaling pathway directly regulates Ca2+ absorption
through stimulating NaRC proliferation [22]. These findings bring a novel insight into the action of
IGF-1 signaling on body fluid Ca2+ homeostasis in vertebrates.

3.2. Calcium-Sensing Receptor (CaSR)

The expression and/or secretion of calciotropic hormones are dependent on extracellular Ca2+

level. CaSR, a G protein-coupled receptor, senses the change in extracellular Ca2+ level and is activated
by increased Ca2+ levels in mammals. Activated CaSR differently modulates the calciotropic hormones
(i.e., PTH, CT and vitamin D) for the maintenance of body fluid Ca2+ homeostasis [25]. In fish, CaSR
also functions as a Ca2+ sensor and is activated by the increased extracellular Ca2+ level. In in vitro
study, the activation of tilapia CaSR was enhanced within 5 min when the extracellular Ca2+ level was
raised from 0.5 to 2 or 3 mM [107,108]. Additionally, the expression of fish CaSR was identified in
several hormone-secreting organs [21,26,109,110]. In zebrafish, knockdown of CaSR caused defects
in Ca2+ absorption, skeletal development, and the gene expression of calciotropic hormones and
ECaC [21,26,111]. Furthermore, activated CaSR exerts different actions on PTH1, STC-1, and CT in
zebrafish [21,26]. CaSR is expressed in PTH1-expressing tissues (i.e., the gills and the neuromast of
lateral line) and the CS in zebrafish [21,26]. CaSR knockdown resulted in increased PTH1 mRNA
expression in zebrafish under either a low or high Ca2+ water situation [21,26], indicating the negative
action of activated CaSR on PTH1. In contrast to PTH1 expression, STC-1 mRNA expression was
short-term downregulated in zebrafish casr morphants [21]. Pharmacological experiments with R568,
an allosteric agonist of CaSR, caused upregulation of STC-1 mRNA expression in zebrafish embryos
(Figure 4), demonstrating the positive action of activated CaSR on STC-1 in zebrafish. On the other
hand, the treatment of CaSR agonist did not stimulate CT secretion in rainbow trout [109]. In zebrafish,
GCM2 gain- and loss-of function resulted in upregulation and downregulation, respectively, of CaSR
mRNA expression, which was upregulated and downregulated, respectively, although the CT mRNA
expression was not changed [112]. CT mRNA expression was not regulated by knockdown experiment
of CaSR in zebrafish [21].Taken all together, activated CaSR appears not to be involved in the regulation
of CT in zebrafish.

Several studies have revealed the role of CaSR in regulating cell proliferation in
mammals [113–115]. In zebrafish, CaSR expression was detected in NaRCs by ICC, but knockdown of
CaSR did not change the number of NaRCs in zebrafish embryos (Figure 5) [26]. CaSR knockdown
in zebrafish was known to eventually stimulate the mRNA expression of both PTH1 and STC-1,
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which show reverse influence on NaRCs differentiation [21,24,26,68]. Taking all of this into account,
no effect of CaSR knockdown on the number of NaRCs may reflect a counterbalance between the
actions of PTH1 and STC-1. On the other hand, CaSR is co-expressed with TRPV5 in DCT/CNT,
the specific segments for Ca2+ reabsorption, in the kidney, and activated CaSR is able to directly
regulate TRPV5 activity in mammals [116]. The effect of activated CaSR on zebrafish ECaC activity is
still unknown, and is an important issue to be studied in the future.
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zebrafish embryos. Zebrafish embryos at 3-dpf were treated with 0.5 µM R-568 (sc-361302, Santa Cruz
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(n = 5). Student’s t-test, * p < 0.05.
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Figure 5. Effect of CaSR knockdown on the density of NaRCs in 3-dpf zebrafish embryos. CaSR and
control morpholinos (CaSR and Con MO) [21], respectively, were microinjected into 1–2 cell-stage
embryos incubated in normal freshwater (FW) or high-Ca2+ water (2.0 mM Ca2+). CaSR knockdown
did not regulate the density of NaRCs. Cell counting for the density of NaRCs followed the method of
previous study [24]. Values are the mean ± SEM. (n = 12).

3.3. Mutual Counterbalance of Calciotropic Hormones

Body fluid Ca2+ homeostasis is tightly regulated by the crosstalk of calciotropic hormones in
mammals. In zebrafish, the interplay between calcitropic hormones is a rising topic which has been
recently discussed in a few studies. In a study by Lin et al., knockdown of CaSR caused a short-term
decrease and a subsequent recovery/upregulation in STC-1 mRNA expression in zebrafish embryos;
however, the PTH1 mRNA expression was continuously stimulated in zebrafish casr morphants [21].
As PTH1 expression was downregulated in zebrafish casr morphants, the long-term expression of STC-1
mRNA was no longer upregulated. Furthermore, PTH1 gain-of-function in zebrafish stimulated STC-1
mRNA expression [21]. Therefore, upregulated STC-1 expression in zebrafish casr morphants may
be eventually abolished by the increased PTH1. Reinforcing this notion, STC-1 gain-of-function
in zebrafish enhanced PTH1 mRNA expression [21]. Based on these results, there is a mutual
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counterbalance between the expression, release, and/or action of PTH1 and STC-1, and this interplay
is important for the maintenance of body fluid Ca2+ homeostasis [21].

Cortisol via GR positively regulates the gene expression of the receptor and the synthesis-enzyme
of vitamin D in zebrafish [33]. Exogenous cortisol treatment inhibited and increased STC-1 and CT
mRNA expressions, respectively, in zebrafish embryos [112]; however, a previous study indicated
that increased CT expression was capable of stimulating STC-1 mRNA expression in zebrafish [19].
The finding of upregulated CT expression and decreased STC-1 expression in zebrafish embryos with
cortisol treatment implies a subtle interplay among cortisol, vitamin D, STC-1, and CT, which awaits
further studies in the future.

4. Conclusions and Perspectives

The active transepithelial Ca2+ transport, being carried out through apical ECaC or TRPV5/6
and basolateral PMCA and NCX, is conserved between zebrafish NaRCs and the specific cells of
mammalian kidney and intestine. As discussed in the present review, zebrafish has been an emerging
animal model to explore the mechanisms associated with Ca2+ uptake and hormonal control, and the
findings in zebrafish provide new insight into the related issues in vertebrates. Hormones via their
receptor(s) regulate Ca2+ uptake through direct (via regulating Ca2+ transporter) and/or indirect (via
modulating the other calciotropic hormones) routes (Figure 6). However, the evidence for the receptors
of some hormones in NaRCs in zebrafish are still unclear. Additionally, more research is needed to
elucidate the mutual counterbalance among calciotropic hormones (and the receptors) in zebrafish.
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Figure 6. A proposed model for the actions of calcitropic hormones on zebrafish NaRCs.
Calciotropic hormones are suggested to directly and indirectly (via the effector hormone(s)) regulate
the cell proliferation/differentiation and the mRNA expression or activity of ECaC in NaRCs.
CaSR, calcium-sensing receptor; CBSb, cystathionine-β-synthaseb; CS, corpuscle of Stannius; CT,
calcitonin; CTR, calcitonin receptor; ECaC, epithelial Ca2+ channel; GR, glucocorticoid receptor; H2S,
hydrogen sulfide; IGF, insulin-like growth factor; IGF1R, insulin-like growth factor 1 receptor; NaRC,
Na+-K+-ATPase-rich cell; PTH1, parathyroid hormone 1; PTHR, parathyroid hormone receptor; STC-1,
stanniocalcin1; STCR, stanniocalcin receptor; VDRa, vitamin D receptor A.
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