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ABSTRACT

The MITOchondrial genome database of
metaZOAns (MitoZoa) is a public resource for
comparative analyses of metazoan mitochondrial
genomes (mtDNA) at both the sequence and
genomic organizational levels. The main character-
istics of the MitoZoa database are the careful
revision of mtDNA entry annotations and the possi-
bility of retrieving gene order and non-coding region
(NCR) data in appropriate formats. The MitoZoa re-
trieval system enables basic and complex queries at
various taxonomic levels using different search
menus. MitoZoa 2.0 has been enhanced in several
aspects, including: a re-annotation pipeline to
check the correctness of protein-coding gene pre-
dictions; a standardized annotation of introns
and of precursor ORFs whose functionality is
post-transcriptionally recovered by RNA editing or
programmed translational frameshifting; updates
of taxon-related fields and a BLAST sequence
similarity search tool. Database novelties and the
definition of standard mtDNA annotation rules,
together with the user-friendly retrieval system
and the BLAST service, make MitoZoa a valuable
resource for comparative and evolutionary
analyses as well as a reference database to assist
in the annotation of novel mtDNA sequences.
MitoZoa is freely accessible at http://www.caspur
.it/mitozoa.

INTRODUCTION

The mitochondrial genome (mtDNA) of Metazoa is a
major target of studies focused on phylogenetic recon-
structions, population genetics and molecular evolution
(1). Whole-genome sequencing projects of this relatively
small and mostly circular molecule have been undertaken
since the development of the Sanger sequencing method
(2,3) and have seen an explosive increase with the estab-
lishment of next-generation sequencing technologies (4–8).
To date, over 4000 entries described as complete mito-
chondrial genomes are collected in the EMBL nucleotide
database (release 108), with about 10 000 additional
entries corresponding to human mt genome variants.

The MITOchondrial genome database of metaZOAns
(MitoZoa; MZ; http://www.caspur.it/mitozoa) is a unique
resource that provides manually curated data on gene an-
notation, gene order, gene content and non-coding regions
(NCR) of complete and nearly-complete (�7 kb) mtDNA
entries of all available metazoan species. One representa-
tive entry is present for those metazoan species/subspecies
for which the mtDNA has been sequenced in several in-
dividuals (9).

Most mtDNA databases focus only on metazoan sub-
groups. For example, AMiGA collects only arthropod
mtDNA sequences (10); MamMiBase focuses on
mammals (11); HmtDB and Human mtDB on human
(12,13); MitoFish on fishes (http://mitofish.aori.u-tokyo
.ac.jp/). Only the no longer updated OGRe (14) and the
currently non-functional Mitome (15) databases collected
complete mtDNAs of all metazoans. In addition,
the NCBI Organelle Genome Resource (16,17) and
GOBASE (18) databases contain all mitochondrial and
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chloroplastic genomes from all taxonomic groups.
However, GOBASE and the Organelle Resource do not
attempt to address, or fail in the correction of the large
number of misannotations present in mtDNA entries
(1,9,14,19). On the contrary, MitoZoa collects sequences
from all metazoan species, and systematically identifies
and resolves gene misannotations. It also offers several
additional types of information and search options
absent in other available mtDNA databases (9). Indeed,
an associative retrieval system provides a set of tools to
carry out basic and complex queries. Thus, MitoZoa users
can easily retrieve gene order, NCR sequences, NCR
location data, gene/genome sequences, reannotation infor-
mation and other mito-genomic characteristics, for a given
metazoan taxon or for congeneric species.

MitoZoa has already proved to be a useful tool for the
scientific community, particularly for studies using
mtDNA as a phylogenetic marker (20–23), but also for
molecular evolutionary (24,25) and evolutionary ecology
analyses (26) including studies on the parallel evolution of
minimal mt rRNA secondary structures in metazoans, and
on the development of software for environmental
metagenomics analyses.

MitoZoa presents several innovative features compared
to other mtDNA databases, including a user-friendly re-
trieval system with one general and three specialized
search menus (9). Innovative features of MitoZoa,
already described in (9), include:

(1) Extensive controls and correction of gene anno-
tations using a mtDNA-specific re-annotation
pipeline.

(2) Standard messages and new entry fields, unambigu-
ously reporting all modifications and data enrich-
ments of the original entries, and making these
changes easily searchable by MitoZoa users. The
‘MitoZoa Reannotation Summary’ (MRS) is one of
the main novelties of the EMBL-like MitoZoa entry
format.

(3) NCRs of any size are annotated under the new
‘NCR’ FTkey, thus they can be retrieved with the
specialized ‘NCR Menu’ using several selection
criteria.

(4) Gene names are standardized using hidden aliases,
thus all sequences of a given gene can be simply
retrieved using the ‘Gene Content Menu’.

(5) The mtDNA gene order is stored as a string of
standardized gene names using a FASTA-like
format. Thus, entries sharing a given gene order
can be retrieved with the ‘Gene Order Menu’.

(6) mtDNAs of congeneric species can be easily selected
by the ‘General Search Menu’, thanks to the creation
of the new ‘ConGeneric’ field.

Several new features have been introduced in MitoZoa
2.0, including: (i) the implementation of a sequence
similarity search service by BLAST; (ii) the improvement
of the gene re-annotation strategy and of the related
pipeline; (iii) the inspection of protein-coding genes;
(iv) the systematic and standardized annotation of
introns and ‘precursor ORFs’ post-transcriptionally

restored by RNA editing or programmed translational
frameshifting (PTF) (27,28); and (v) updating of entries.

NEW FEATURES IN MITOZOA 2.0

BLAST service

The MitoZoa web resource now includes a dedicated
BLAST page. The BLAST service allows sequence simi-
larity searches not only against the MitoZoa database
(i.e. the full ‘mtDNA’ sequence of each MitoZoa entry)
but also against five additional MitoZoa-derived data sets
(Table 1). Each of these additional data sets contains func-
tionally homogeneous mitogenomic ‘sub-sequences’, such
as NCRs or gene categories. Moreover, each sequence of
these five additional data sets is described in the header by
the entry Accession number, the species name and also the
MitoZoa-defined standardized gene name or NCR code
(Table 1). These gene names/NCR codes will greatly help
the use of BLAST results for annotation of newly
produced mt sequences, and for re-annotation of
existing mtDNA sequences.
It should be emphasized that all BLAST data sets

derived from MitoZoa are automatically updated in
concert with MitoZoa. As an example, Table 1 reports
the size of the BLAST data sets built from MitoZoa
release 9.1. The BLAST service uses the most recent
version (2.2.25) of the BLAST+package (29,30).

Quality checks of protein-coding gene annotation

Unlike the previous MitoZoa reannotation pipeline (9),
MitoZoa 2.0 now includes specific checks that verify the
correctness of protein-coding gene (CDS) annotations. As
a result, possible CDS name errors are fixed and CDS
boundaries are also significantly improved.
The quality check pipeline involves both automatic and

manual steps, described in detail in Supplementary Data.
In particular, examination of CDS multi-alignments
allows the detection of two types of CDS inconsistencies
resolved in MitoZoa in the following ways:

. Modification of the CDS boundaries: by shifting the
annotated start/stop codon, we can recover highly
conserved N/C-terminal protein regions identified in
the CDS multi-alignment of a given large taxon.
Similarly, we can also eliminate extra N/C-terminal
protein regions not present in all other multi-aligned
CDS. Thus, the encoded protein is accordingly length-
ened or shortened.

. Warning message on ‘loss of highly conserved
aminoacidic regions(s) that can be recovered by frame-
shift(s)’: highly conserved protein region(s) identified
in certain multi-alignments are lost in some CDS but
can be easily recovered by CDS frameshift(s). Most of
such CDS frameshifts are likely due to inaccurate
sequencing, as they are located close to sequencing
error hot spots (i.e. long homopolymers >8 nt).
However, other frameshift cases cannot be easily ex-
plained and could represent real losses of functional
regions. Thus, we have not modified the boundaries of
these CDS but have highlighted them in the MRS
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(‘MitoZoa Reannotation Summary’) field using a
specific warning message (see figure 1 of the online
MitoZoa Help). Consequently, MitoZoa users can
easily select these CDS, and are warned to pay
special attention to the analyses of these CDS and
their possible flanking NCRs.

Our CDS quality check strategy identified a total of 207
CDSs that need ‘modifications of name/boundaries’, and
107 CDS that invoke a warning on the ‘loss of highly
conserved aminoacidic regions’ (Table 2). We emphasize
that most CDS modifications and warning notes cause
the disappearance of flanking NCRs or gene overlaps. In
addition, 4 CDS errors have effects on the determination
of gene order (‘gene name’ and ‘gene strand’ modifications
in Table 2). Finally, 9 CDSs were likely incorrect because
they showed multiple internal stop codons (Table 2).
Therefore, the CDS re-annotation process has significant
consequences on the CDSs themselves (and their use in
phylogenetic reconstruction), the determination of
flanking NCRs, and even on the overall gene order.
As a final point, we would emphasize that CDS

re-annotation has required the definition of specific
criteria for mt CDS determination based on the

peculiarities of the mt transcriptional and maturation
processes (31–33). These criteria can be also regarded as
tentative rules for the standardization of mt CDS annota-
tion and are detailed in the Supplementary Data.

Standardized annotation of introns and frameshifts

Group I and II self-splicing introns as well as frameshift
sites post-transcriptionally resolved by RNA editing or
programmed translational frameshifting (PTF) (27,28,34)
occur in some protein-coding genes of few metazoan taxa.
However, original entries often contain non-standard an-
notations of these phenomena, rendering automated
parsing difficult. In MitoZoa 2.0, we have implemented
a specific pipeline, detailed in the Supplementary Data,
to identify and standardize such annotations.

These CDS peculiarities are now clearly recorded in
the MRS field with appropriate standardized messages
(see figure 1 of the Online MitoZoa Help), thus they can
be easily retrieved by MitoZoa users. Moreover, we have
created a new FTkey ‘prec_ORF’ in order to annotate
all ‘precursor ORFs’ with frameshift site(s) corrected
by RNA editing or PTF. This new FTkey allows the
automatic retrieval and analysis of these ‘precursor
ORF’ sequences. As discussed in the Supplementary
Data, we have used the ‘prec_ORF’ annotation to study
the reliability of the currently hypothesised RNA editing/
PTF cases. Thus, we are confident that this MitoZoa
novelty will help the correct annotation of future cases
of RNA editing/PTF.

In the current MitoZoa release, we have identified and
annotated 40 CDS with introns and 198 CDS with frame-
shift sites (see Supplementary Tables S1–S3).

MitoZoa format novelties

For each MitoZoa entry, the gene order is reported in a
FASTA-like format as a string of standardized gene
names (9). In MitoZoa 2.0, the gene order format has
been improved adding to the header a token that indicates
the linear topology (L) or the partial status (P) of the
entry. This novelty helps to identify linear and partial
mtDNAs from the inspection of gene order header. It
can be advantageous to users interested in extensive
analyses of the gene order in large taxonomic groups.

MitoZoa entry updates

Pre-existing MZ entries are now updated at each new MZ
release. This update is essential to allow reliable entry

Table 2. Inconsistencies of protein-coding genes (CDS) corrected or

pointed out with a warning message in MitoZoa Release 9.1

CDS inconsistency No. of
CDS

No. of
entries

Modification of name 2a 1a

Modification of strand and boundaries 2b 1b

Modification of boundaries 203 184
Internal stop codons resolved by adding a ‘join’c 9d 8
Unusual start codon resolved by deleting a ‘join’c 2e 2e

Warning on ‘loss of highly conserved regions’ 107 84
MitoZoa Release 9.1 27 022 2894

aExchanged annotation between atp8 and atp6 in the snake Anilius
scytale (FJ755180, v2 EMBL entry).
batp8 and nad3 of the gastropod Platevindex mortoni (GU475132).
cSpecial cases of the category ‘modification of boundaries’. The ‘join’
operator, defined by GenEMBL, is used to exclude internal positions
from CDS or other FTkeys.
dIn nad2 of the gastropod Ilyanassa obsoleta (NC_007781), the addition
of the ‘join’ operator is also accompanied by modification of the start
codon position. In all remaining cases, the CDS boundary modification
consists of only the addition of the ‘join’ operator.
eIn both cases (DQ340844 and NC_000844), the presence of the join
operator was due to the hypothesis of the existence of a four-base start
codon in cox1, recently rejected by experimental data (32).

Table 1. Mitochondrial data sets searchable with BLAST, together with the data set size in MitoZoa Release 9.1

Data set name FTkey used as data set source Additional data to the sequence header No. of sequences

mtDNA Full entry mtDNA 2894
CDS_nt CDS Standard gene name 37 022
tRNA tRNA Standard gene name 61 228
rRNA rRNA Standard gene name 5699
NCR� 25 nt NCR� 25 nt NCR codea 8761
Protein CDS translation, excluding pseudogenes Standard gene name 37 016

aThe NCR code defined by MitoZoa relates to species, flanking genes and NCR length (in bp). See also the online MitoZoa Help.
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selections with the Taxonomy, the Organism Species (OS)
and the ConGeneric (CG) fields of the ‘General Search
Menu’.

In particular, the update of the Taxonomy field is indis-
pensable because it comes from the Taxonomy database
(http://www.ncbi.nlm.nih.gov/taxonomy), where even
high taxonomic levels are frequently reorganized by
NCBI curators. Furthermore, the OS field of existing
entries are sometimes modified by the authors of entries
owing to revised taxonomic assignment of the biological
sample used for sequence production. Specific
standardized messages are added to the MRS field to
track these changes and allow easily retrieval (see figure
1 of the online MitoZoa Help).

As an example of the extent of MZ entry update, the
migration of the 2633 pre-existing entries from MitoZoa
Rel. 7 to Rel. 8 involved changes of 300 entries (11.4%) in
the OC field, and 65 entries (2.5%) in the OS field (plus
OC, if necessary).

Miscellanea

The MZ re-annotation pipeline includes some completely
manual steps involving literature check, evaluation of
unusual mtDNA characteristics, and de novo annotation
of interesting entries. All these steps depend on curator
expertise and are time-consuming. Thus, we have set up
specific file formats and scripts to assist curators. Some
examples of manually revised entries are reported in
Supplementary Table S4.

The previous MitoZoa list of the mt genetic codes
has been updated adding a new genetic code absent
in the translation table list compiled by the NCBI
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc
.cgi). This code, named ‘5bis’, has been recently identified
in the nematode Radopholus similis by Jacob et al. (35).

SUMMARY AND FUTURE DIRECTIONS

MitoZoa provides carefully revised annotations of all mt
gene categories, thus it ensures high accuracy of gene
sequences, NCRs and gene order data extracted from
MitoZoa. Moreover, all corrections and improvements
of the entries are indicated by standardized messages
(mainly located in the MRS field), further assisting
MitoZoa users in the analysis of the revised elements.

The Mitozoa retrieval system permits the easy selection
both of highly studied mt protein-coding genes and some
often overlooked mt features such as NCR sequences and
gene order, even for large taxonomic data sets. Among
these features, NCR sequences and gene order data are
difficult or impossible to retrieve from other mt databases.
Indeed, MitoZoa permits flexible queries not feasible by
any other system. For example, the selection of the teleost
L-strand replication origin sequences can be achieved
through the ‘NCR Menu’ searching for all NCRs longer
than 20 bp, located between trnN and trnC, and belonging
to the taxon Teleostei. Likewise, all metazoan mtDNAs
having the mammalian-distinctive ‘WANCY’ region can
be simply extracted through the ‘Gene Order Menu’

searching for entries having the ‘trnW -trnA -trnN -trnC
-trnY’ gene string.
We believe that both the correction of annotation

inconsistencies and the user-friendly retrieval system
makes Mitozoa a valuable resource for researchers inter-
ested in phylogenetic reconstructions and also in peculiar
aspects of mtDNA evolution. MitoZoa could also direct
the mitochondrial community to new investigations,
thanks to the emphasis on taxa/genes characterized by
problematic annotations or unusual features. Finally, the
implementation of the BLAST sequence similarity search
could make MitoZoa a reference database for the anno-
tation of novel mt genomes, and the definition of widely
shared mt annotation rules whose requirement has been
often invoked in the past (19). Indeed, as stressed in the
section on CDS quality check, the correction of gene
boundaries requires the definition of general annotation
rules based on the knowledge of the mt transcription and
translation processes.
In the future, we plan to develop new tools for the

examination of gene order and to implement services for
the analyses of retrieved sequences (programs for sequence
multi-alignment, prediction of secondary structures, etc).
Suggestions from MitoZoa users on new options for data
visualization and extraction will be also taken into
account.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S4.
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