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Abstract
Soil cadmium (Cd) contamination has attracted a great deal of attention because of its detri-

mental effects on animals and humans. This study aimed to develop and compare the per-

formances of stepwise linear regression (SLR), classification and regression tree (CART)

and random forest (RF) models in the prediction and mapping of the spatial distribution of

soil Cd and to identify likely sources of Cd accumulation in Fuyang County, eastern China.

Soil Cd data from 276 topsoil (0–20 cm) samples were collected and randomly divided into

calibration (222 samples) and validation datasets (54 samples). Auxiliary data, including

detailed land use information, soil organic matter, soil pH, and topographic data, were incor-

porated into the models to simulate the soil Cd concentrations and further identify the main

factors influencing soil Cd variation. The predictive models for soil Cd concentration exhib-

ited acceptable overall accuracies (72.22% for SLR, 70.37% for CART, and 75.93% for

RF). The SLR model exhibited the largest predicted deviation, with a mean error (ME) of

0.074 mg/kg, a mean absolute error (MAE) of 0.160 mg/kg, and a root mean squared error

(RMSE) of 0.274 mg/kg, and the RF model produced the results closest to the observed val-

ues, with an ME of 0.002 mg/kg, an MAE of 0.132 mg/kg, and an RMSE of 0.198 mg/kg.

The RF model also exhibited the greatest R2 value (0.772). The CARTmodel predictions

closely followed, with ME, MAE, RMSE, and R2 values of 0.013 mg/kg, 0.154 mg/kg, 0.230

mg/kg and 0.644, respectively. The three prediction maps generally exhibited similar and

realistic spatial patterns of soil Cd contamination. The heavily Cd-affected areas were pri-

marily located in the alluvial valley plain of the Fuchun River and its tributaries because of

the dramatic industrialization and urbanization processes that have occurred there. The

most important variable for explaining high levels of soil Cd accumulation was the presence

of metal smelting industries. The good performance of the RF model was attributable to its
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ability to handle the non-linear and hierarchical relationships between soil Cd and environ-

mental variables. These results confirm that the RF approach is promising for the prediction

and spatial distribution mapping of soil Cd at the regional scale.

Introduction
Cadmium (Cd) is a toxic metal element that causes extensive concern because of its extremely
harmful effects on animals and humans [1]. Due to the low permissible exposure limit of Cd,
overexposure may occur even in situations in which trace quantities of Cd are found and can
result in metal fume fever, chemical pneumonitis, pulmonary edema, and death [2]. Cd accu-
mulation through the food chain is also harmful to animal and human health. Especially in
southern China and northeastern Vietnam, the problem of human exposure to Cd via rice
(Oryza sativa) intake is of increasing concern [3,4]. The natural concentration of Cd in soils is
relatively low; Cd comprises only approximately 0.1 mg/kg of the Earth’s crust, and its concen-
tration mainly depends on the geochemistry of the parent material [5,6]. Consequently, soil Cd
contamination primarily results from a variety of human activities. Mining [7], smelting [8],
electroplating, and scrap metal recycling are coincident with the most important sources of
environmental pollution by metals and metalloids [9,10]. Therefore, the challenge is to under-
stand the spatial distributions and high local variabilities in soil Cd concentrations that are
caused by the influences of human activities. Such understanding is needed for the preparatory
work for remediation. Thus, the evaluation and application of deterministic environmental fac-
tors to model the spatial distributions of soil properties (including soil Cd) has been proposed
to be an efficient methodology that can serve as an alternative solution to expensive and waste
of time soil sampling [11–14].

Numerous statistical techniques for estimating the spatial distributions of soil properties at
different scales have been developed and tested within a digital soil-mapping (DSM) frame-
work [15]. In these techniques, linear regression is one of the most frequently used model
because of its simplicity, efficiency, and straightforward interpretation [16]. Linear regression
models assume that the relationships between the predictor variables and response variables
are linear. However, the relationships between soil properties and environmental parameters
are often complex and non-linear due to the influences of many factors, such as climate, parent
material, topography, and human activities [17]. Machine-learning techniques, such as classifi-
cation and regression tree (CART) analysis, have been proposed to overcome the shortcomings
of linear regression models and to account for the non-linear relationships between soil proper-
ties and environmental parameters. CART models can use a wide range of data types and
improve the prediction accuracies of spatial models [18,19]. Compared with CART, random
forest (RF) modeling, which was developed from CART, is more robust, more resistant to over-
fitting, and less sensitive to noise in the data [20].

All of these predictive models require an understanding of the factors that control the distri-
butions of the predicted soil properties. Several studies have focused on land use and Cd accu-
mulation in the soil [21–25] because land use data are readily available and extensive and
generally represent the impacts of human activities on the soil environment. However, due to
lack of detailed description of human activities on the land, land use variables do not always
have the ability to play a role in soil Cd prediction [26,27]. When land use variables are
employed, significant differences in soil Cd concentrations according to different land use
types, for example, woodlands, paddy fields, orchards, vegetable fields, and industrial areas, are
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expected. However, the impacts of human activities are too complex to be represented by such
coarse land use categories, particularly in the rapidly developing area of eastern China. More
detailed information regarding land use, including industrial components, factory distribu-
tions, transportation, and urbanization, should be incorporated to predict the spatial distribu-
tions of soil Cd concentrations [17].

In the present paper, we tested three empirically based models, i.e., a stepwise linear regres-
sion (SLR) traditional linear regression model and two machine learning tools, CART and RF,
in the prediction and mapping of the spatial distribution of the soil Cd concentration in Fuyang
County. The objectives of this study were to develop and compare the performances of the
three models in the estimation of the soil Cd content using factors that likely influence soil Cd
concentrations and to identify the likely sources of this contamination.

Materials and Methods

Ethics statement
All research involved in this study complied with the laws of the People’s Republic of China,
and permission for the field experiments in Fuyang County was obtained from the Agricultural
Bureau of Fuyang County. The study site did not involve endangered or protected species.

Site description
The study site was located in Fuyang County in northern Zhejiang Province, which is one of
the most economically developed provinces in China (Fig 1). This county (119°25000@-120°
19030@ E, 29°44045@-30°11058.5@N) has an area of 1,831 km2 and a landscape characterized by
a mountain and valley topography. The elevation ranges from 1.6 to 1,063.4 m. In recent
decades, urbanization and industrialization have occurred at an unprecedented pace in Fuyang
County. In the study area, paper mills, metal smelters, hardware machinery factories, and
building material factories have been extensively developed. Moreover, the total number of
motor vehicles has rapidly increased, and heavy traffic exists throughout the study area [28].

Data collection
Soil samples (n = 276) were collected from the agricultural land across the study area in 2005
based on the uniformity of plot distributions and the land use types in the study area (Fig 1).
Each of the samples were collected at a depth of 0–20 cm from five sampling points within 5 m
around a specific sampling location and then mixed. A global positioning system (GPS) was
used to precisely locate every sampling location. All samples were air dried at room tempera-
ture. Stones and plant residuals in the soil samples were manually removed, and the soil sam-
ples were then ground to pass through a 2 mm sieve. These samples were analyzed for soil
organic matter (SOM), pH, and Cd. The soil pH was determined with a pH meter with a soil/
water ratio of 1:2.5, and the SOM was determined using the K2Cr2O7-H2SO4 oxidation
method. Total Cd was determined by digesting the soil sample with a mixture of nitric acid
(HNO3) and perchloric acid (HClO4) followed by measurements, which were determined by
inductively coupled plasma mass spectrometry (Agilent 7500a, USA) [29]. The accuracy of
determinations was checked using national standard product (GBW 07401). The quality con-
trol gave good precision (S.D.< 10%) for all samples. Detection limit for total soil Cd concen-
trations was 0.02 mg/kg.

A digital elevation model (DEM) with a 25 m spatial resolution and land use data including
information on the land use types (Fig 2a), industry types (Fig 2b), and town center and main
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highway (Fig 2c) for the year 2005 were obtained from the Bureau of Land and Resources of
Fuyang County.

Model construction
The sampling locations were added to an ArcGIS 10.0 (ESRI Inc., Redlands, CA, USA) geoda-
tabase in which the soil properties were associated with the sampling points. The point location
layer was intersected with the land use data and the DEM to obtain the independent variables,
and the soil Cd concentrations were the dependent variables. Based on a review of the literature
[14,17,30–34], we selected a priori 16 environmental variables (Table 1) which represent soil
properties, topographic, and anthropogenic activities to explain the spatial variability in the
soil Cd concentration.

Pioneering research on soil Cu, Zn, Pb, and Cd contamination in Fuyang County by Zhang
et al. (2008 and 2009) [17,28] demonstrated that Fuyang’s soil was elevated in Cu, Zn, Pb, and
Cd in the areas where industrial plants, towns, and roadways were concentrated. Thus, in our
study, the distances to different kinds of industry plants, highways, and town centers were used
as important predictors of soil Cd concentrations. Besides, it is reported that application of
manure, fertilizers, pesticides, and herbicides were closely linked with soil Cd accumulation
[17], therefore agricultural land uses were also selected in analysis. As a result, five main land
use categories were classified in the study area. These were vegetable field, paddy field, dryland,
forests and orchard. Again, soil properties and topography are two key factors determining nat-
ural contents and transport processes of soil Cd. Nevertheless, the measured Cd concentrations
were ranged from 0.006 to 2.216 mg/kg with the mean values of 0.322 ± 0.394 mg/kg in the
study area. 68.8% of the measured values exceed their according background values of 0.14 mg/
kg for Cd in soil at Zhejiang Province and 30.1% of the samples are higher than the Chinese
Environmental Quality Secondary Standard for Soils of 0.3 mg/kg (GB 15618–1995) [24].
Highly elevated Cd concentrations coupled with its high spatial variability suggest that

Fig 1. Study area location and sampling points.

doi:10.1371/journal.pone.0151131.g001
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Fig 2. Spatial distribution of the soil Cd concentrations in relation to the (a) land use types, (b)
industry types and (c) town center andmain highway.

doi:10.1371/journal.pone.0151131.g002
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anthropogenic inputs may be the primary source of Cd in the study area. This has indicated
that anthropogenic factors are more likely to predict soil Cd concentrations than natural fac-
tors. Thus, we only selected pH, SOM, and elevation in analysis as representative factors of nat-
ural environment. Moreover, soil pH and organic matter influence soil Cd concentrations
because they are strongly correlated with the solubility and mobility of soil Cd. And elevation
is usually the most readily available among topographic variables. In this study, soil pH were
ranged from 4.40 to 8.31, with the mean value of 6.06; SOM ranged from 0.57 to 6.50%, with
the mean value of 3.12%; and elevation ranged from 4.43 to 146.26 m, with the mean value of
37.66 m (data in S1 Dataset).

Stepwise linear regression. Following a method developed by Montgomery [35], we
constructed a SLR model that predicted soil Cd concentrations in the study area with environ-
mental features. Because the original data failed the Kolmogorov-Smirnov normality test
(P< 0.05), they were log transformed to ensure a normal distribution. Then, the construction
of SLR model was conducted in SPSS1 (Version 16.0) software.

Following the removal of the variables that were not statistically significant, the SLR param-
eter estimates were conducted again. ELE, pH, Dmetal, and Dtown were retained in the model.
To apply the estimate parameters across the study area, raster data layers for all of the predictor
variables (i.e., ELE, pH, Dmetal, and Dtown) were created. Within ArcGIS, the soil pH distri-
bution was interpolated by ordinary kriging, which is a commonly used interpolation method.
Raster datasets were created for Dmetal and Dtown by the Euclidean Distance tool in ArcGIS.
To match the spatial resolution of the DEM used in the study, a 25 m2 cell size was used in the
construction of all raster layers. Additionally, only areas described as agricultural land were
retained in the dataset. Areas described as built-up lands and water bodies were removed from
the dataset due to no soil was present there.

Table 1. The environmental variables selected for model calibration.

Environmental variable Abbreviation Unit Type Mean Minimum Maximum

(a) Soil data

pH pH - Continuous 6.06 4.40 8.31

Soil organic matter SOM % Continuous 3.12 0.57 6.50

(b) Elevation ELE m Continuous 37.66 4.43 146.26

(c) Land use types

Vegetable field a Lu_Veg - Binary - - -

Paddy field a Lu_Pad - Binary - - -

Dryland a Lu_Dry - Binary - - -

Forests a Lu_For - Binary - - -

Orchard a Lu_Orc - Binary - - -

(d) Distance to industry

Metal smelter Dmetal km Continuous 9.07 0.05 30.69

Hardware machining Dhardware km Continuous 3.39 0.04 11.38

Building materials Dbuild km Continuous 7.43 0.03 26.91

Chemical materials Dchemical km Continuous 6.24 0.06 18.50

Paper mills Dpaper km Continuous 10.73 0.04 40.58

Other industry Dother km Continuous 34.27 0.34 59.43

(e) Distance to highway Droad km Continuous 3.10 0.002 21.97

(f) Distance to town center Dtown km Continuous 3.14 0.33 8.81

a Binary variable (0 for absence and 1 for presence).

doi:10.1371/journal.pone.0151131.t001
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Based on the parameters that resulted from the SLR, the raster calculator tool in ArcGIS was
used to predict the distribution of soil Cd concentrations. The resulting raster dataset reflected
the spatially distribution of log-transformed Cd concentration values. Finally, the resulting ras-
ter dataset was reclassified in ArcGIS such that the cells reflected a binary dataset of values that
exceeded or below the Chinese soil Cd guide limit of 0.3 mg/kg (Fig 3a). The construction of
the binary dataset was conducted for two reasons: (1) to facilitate the follow-up management
and (2) for comparison with the CART model, which separates the Cd values into classes.

Classification and regression tree. Classification and regression tree (CART) is a
machine-learning algorithm that can be used to split a complex decision into several branched
and simplified decisions and may lead to an easier solution [36]. The trees are grown by recur-
sively partitioning a dataset of the dependent variable into a series of binary subsets. Compared
to SLR and other traditional general linear models, one potential advantage of CART is the
ability to discover unexpected and fresh patterns in non-normal and complex data.

In the CART model, the Cd concentration for each sample was categorized as either low
(0–0.3 mg/kg) or high (> 0.3 mg/kg) and used as a target variable, and the 16 environmental
variables were utilized as model inputs. The CART analysis was conducted with the R statistical
software using the rpart package [37]. Next, the prediction rules calculated by the CART model
were translated into a series of branched and simplified statements that were constructed using
the raster calculator tool in ArcGIS. The resultant map revealed the areas in which the soil Cd
was predicted to exceed the Chinese soil Cd guide limit of 0.3 mg/kg (Fig 3b).

Random forests. Developed from CART analysis, which produces a single tree, random
forests (RF) combine a forest of uncorrelated trees created with the CART procedure [38].
Each tree is constructed by a randomly selected subset of training data. The remaining training
data, which are called “out-of-bag”, are used to estimate prediction error and variable impor-
tance [39]. Three training parameters, i.e., (i) the number of trees to grow (ntree), (ii) the
number of predictor variables used to split each node (mtry), and (iii) the minimum number
of observations at the terminal nodes of the trees (nodesize), were set to 1,000, 12, and 5,
respectively.

We used the randomForest package in the R environment to create an RF model based on
the 222-sample training dataset [20]. Next, the model was applied to a continuous ASCII data-
set that contained the same independent variables used to construct the RF model. The output
result from the randomForest package was an ASCII format file and then was converted to a
raster dataset using ArcGIS. Finally, the raster dataset was reclassified to a binary map that also
displayed the areas in which the soil Cd was predicted to exceed the Chinese soil Cd guide limit
of 0.3 mg/kg (Fig 3c).

Validation
To evaluate the model performances, 54 sampling points (Fig 1) were randomly selected from
the original 276 soil samples as the validation samples using the subset features tool of the
Geostatistical Analyst extension in ArcGIS. The accuracy assessment was based on analysis of
the error matrix, which was a square array of dimensions n × n (n was the number of classes).
This matrix revealed the relationship between the estimated and measured Cd concentrations.
The total accuracy and the kappa coefficient were selected to evaluate the prediction accuracy
[17]. The former is the ratio of the total number of correctly predicted Cd concentrations to
the total number of validation samples (n = 54), and the latter uses all of the information in the
error matrix and ranges from 0 to 1. A value of 1 implies perfect agreement, and values below 1
imply less than perfect agreements. Fleiss [40] characterized kappa coefficients below 0.40 as
poor, 0.40 to 0.75 as fair to good, and over 0.75 as excellent. Additionally, the mean error (ME),
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Fig 3. (a) SLR, (b) CART, and (c) RF predictions of Cd in agricultural soils in Fuyang County. The areas
in red are predicted to exceed the Chinese soil Cd guide limit of 0.3 mg/kg.

doi:10.1371/journal.pone.0151131.g003
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root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determina-
tion (R2) were calculated to assess the accuracy of the predicted Cd concentrations [11,41].

Results and Discussion

Relative importance of the predictor variables
The estimated ELE, pH, and Dmetal parameters were all highly significant at the P< 0.001
level, and Dtown was significant at P< 0.05 (Table 2). The constant of the model was also sig-
nificant at the P< 0.001 level. These results indicated that ELE, pH, Dmetal, and Dtown sub-
stantially influenced the spatial distribution of Cd concentrations.

The simulated tree model contained 8 terminal nodes and 7 independent variables, includ-
ing Dmetal, pH, SOM, ELE, Dbuild, Dtown, and Droad. Dmetal was the most important factor
for classifying the statuses of Cd contamination (Fig 4). Samples located less than 0.7 km from
any metal smelter that influenced soil Cd concentration were predicted to contain Cd concen-
trations that exceeded the Chinese soil Cd guide limit of 0.3 mg/kg.

The variations in the misclassification error and the numbers of terminal nodes as the pre-
dictors were excluded one by one from the constructed CART models and are listed in Table 3.
The numbers of terminal nodes for the 7 tree models were within the range of 7 to 9, which
indicates that these similarly complicated tree models did not grow too tall or overly complex.
Based on the magnitude of the increase in the misclassification error, Dmetal was the most
important variable for explaining the spatial variations in the Cd concentrations. This finding
was unsurprising for statistical and theoretical reasons. Statistically, the Pearson correlation
identified between the Cd concentrations and Dmetal values was significant (P< 0.01), which
indicated that Dmetal was a good predictor of Cd concentration. Theoretically, this high corre-
lation can be ascribed to the strong relationship between soil Cd accumulation and metal
smelting industries. It is reported that nonferrous metal industry is strongly correlated with
soil Cd contamination throughout the world [42–45], and such metal smelting is one of the pil-
lar industries in Fuyang County. Large quantities of Cd were released into the surrounding
environment due to intense emissions of smelting gases and improper disposal of solid wastes
[46]. The contributions of the remaining predictors to the models were more or less the same
because their exclusions marginally increased the misclassification error. These findings indi-
cate that although these variables influenced soil Cd accumulation, they did not exhibit signifi-
cant effects on Cd accumulation compared with Dmetal.

It was difficult to judge the importance of each predictor in the RF model because RF algo-
rithms do not reveal the functional relationships between the target and predictor variables.
Due to this limitation in interpretability, RF models are called “black box” approaches [41].

Spatial prediction and Cd concentration mapping
The predictions of the Cd levels in the agricultural soils based on the SLR, CART, and RF mod-
els are displayed in Fig 3. Generally, the three prediction maps were similar and realistic in

Table 2. Estimated parameters of the SLRmodel.

Variable Parameter Std. error t value p-value

Constant -3.619 0.379 -9.541 0.000

ELE -0.007 0.002 -4.314 0.000

pH 0.473 0.061 7.79 0.000

Dmetal -0.038 0.008 -5.012 0.000

Dtown -0.087 0.035 -2.503 0.013

doi:10.1371/journal.pone.0151131.t002
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terms of the spatial patterns of Cd contamination. The areas in which the soil Cd concentration
exceeded 0.3 mg/kg were primarily located in the alluvial valley plain of Fuchun River and its
tributaries. This finding clearly reflected the effects of industrial operations, especially metal
smelting activities, on soil Cd accumulation because these areas were industrially well devel-
oped according to the statistical data (Fig 2b). Moreover, the most dramatic urban sprawl
occurred in these regions (Fig 2c). Rapid urban expansion also explained the high Cd concen-
trations [33] in these areas. In contrast, the areas in which the soil Cd concentration was below
0.3 mg/kg were distributed in the higher-altitude areas, and this pattern could be partly
explained by presence of indigenous forests that are hundreds of years old in these areas.

The area predicted to exceed the Chinese soil Cd guide limit of 0.3 mg/kg varied among the
models. The SLR model predicted the smallest area (32.69 km2 or 1.8% of the total modeled

Fig 4. CARTmodel developed to predict Cd in agricultural soils in Fuyang County. The lengths of the lines or "branches" are proportional to the
variance explained, and longer branches explain more variance. Below: 0–0.3 mg/kg; Above: > 0.3 mg/kg.

doi:10.1371/journal.pone.0151131.g004
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area) that would exhibit a soil Cd concentration above 0.3 mg/kg, whereas the RF model pre-
dicted the greatest area (89.30 km2 or 4.9%), and the CART model predicted a medium area
(68.39 km2 or 3.8%) that would exceed 0.3 mg/kg.

The CART model predicted a contaminated area of more than twice the size of that pre-
dicted by the SLR. This difference may have resulted from the application of a rule in the
CART model that states that the soil Cd will be above 0.3 mg/kg within 0.7 km of any metal
smelter regardless of the other environmental factors. This rule is consistent with the observa-
tions from the sampled data in that elevated levels of Cd were found next to metal smelters (Fig
2b) and also with other studies that have documented serious risks of Cu pollution within
1,500 m of metal smelters [17]. The RF model predicted an even larger area of contamination
than the CART model, which may be attributable to the RF model’s advantage in handling
complex data relationships [11]. In the present study, the relationships between soil Cd accu-
mulation and the influences of human activities were nonlinear and hierarchical and were
revealed by the SLR and CART models. In contrast to the SLR model, the RF model required
no assumptions regarding the relationships between soil Cd concentration and influencing fac-
tors and handled the nonlinear and hierarchical relationships without such assumptions.

Performances of the three models
The validation dataset (n = 54) was used to test the performances of three models. For the SLR,
39 of the 54 validation samples were correctly classified, which resulted in a total accuracy of
72.22% (Table 4). The kappa coefficient, which represents the inter-rater agreement for quali-
tative (categorical) items, was 0.4048, which indicated a fair to good prediction accuracy from
the SLR. Regarding the CART, 38 of the 54 validation samples were correctly classified, which
resulted in a total accuracy of 70.37% (Table 4). The kappa coefficient was 0.3949, which indi-
cated a very close to good prediction accuracy of the CART. The RF model correctly classified
41 of the 54 validation samples, which resulted in an overall accuracy of 75.93% (Table 4). The
kappa coefficient was 0.5050, which indicated the prediction accuracy of the RF model was the
greatest among the three models.

Fig 5 compares the observed and predicted soil Cd concentrations using the validation data-
set. This figure also displays the prediction error indices derived from the independent valida-
tions of the soil Cd concentrations using the validation dataset. Positive ME values indicate
that the models underestimated the Cd concentration. Specifically, the SLR model exhibited
the greatest tendency for underestimation, with an ME of 0.074 mg/kg, whereas the RF model
exhibited the lowest tendency for underestimation, with an ME of 0.002 mg/kg (Fig 5). Statisti-
cally, the MAE is a quantity used to measure the differences between predictions and eventual
outcomes. The SLR model exhibited the largest predicted deviation, with an MAE of 0.160 mg/

Table 3. The relative importance of the variables for explaining soil Cd variation as indicated by varia-
tions in misclassification errors and the numbers of terminal nodes in the CARTmodel following the
exclusion of predictors.

Variable Misclassification error rate Number of terminal nodes

Missing Dbuild 8.11% 9

Missing ELE 9.01% 9

Missing Dtown 9.91% 8

Missing SOM 10.36% 7

Missing Droad 10.36% 8

Missing pH 10.81% 7

Missing Dmetal 13.51% 8

doi:10.1371/journal.pone.0151131.t003
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kg, whereas the predictions of the RF model (MAE 0.132 mg/kg) were closest to observed val-
ues (Fig 5). Moreover, the RF model exhibited the lowest RMSE (0.198 mg/kg) and the highest
R2 value (0.772). Compared with other studies [11,41,47], the R2 value of the RF model in the
present study was slightly higher. This difference may have resulted from differences in the
study areas, topographies, sampling strategies, or quantities and qualities of the utilized envi-
ronmental variables. Hence, the RF method was optimal for predicting the Cd concentrations
of the unvisited locations in this context, followed closely by the CART model, which produced
predictions with ME, MAE, RMSE, and R2 values of 0.013 mg/kg, 0.154 mg/kg, 0.230 mg/kg
and 0.644, respectively. The SLR model produced the poorest prediction results, as indicated
by the highest values for these three error indices (ME = 0.074 mg/kg, MAE = 0.160 mg/kg,
and RMSE = 0.274 mg/kg) and the lowest R2 (0.542) in the three models (Fig 5).

The models described above are most likely applicable to other county-scale regions, such
as counties in southeastern China with similar urbanization and industrialization processes,
although the accuracies of the models may depend on regional characteristics. The SLR model
provides a convenient and reasonable method when data sources are limited. The RF model
predicted the largest contaminated area. It may be less likely to exclude possible Cd contamina-
tion and more protective of environment. However, when working with environmental manag-
ing departments, the CART is the preferred method due both to its high accuracy and a series
of statements that predict pollution classes which are convenient for translation into public
policy.

Conclusions
In the present study, the RF method was found to be the best method for spatially predicting
and mapping soil Cd concentration patterns in Fuyang County, China. The accuracy of the RF
model was satisfactory, and the prediction map produced by the RF method revealed a realistic
spatial pattern of soil Cd contamination. Compared to the SLR, the RF model performed much
better in predicting and mapping the spatial distribution of soil Cd because the RF model profi-
ciently handled the nonlinear and hierarchical relationships between the soil Cd and the main
influencing factors. This result confirmed the reliability of the use of RF to model and predict
the spatial distribution of soil Cd using environmental variables. This approach could be
selected as an alternative methodology to reduce the cost of intensive soil sampling.

Furthermore, analysis of the importance of each variable identified the presence of metal
smelting industries as the most important variable for explaining high soil Cd accumulation in
the study area. Intense emissions of smelting gases and improper disposal of solid wastes were
most likely responsible for the high Cd concentrations in the soils. The requirement of remedi-
ation approaches such as phytostabilization and phytoextraction by hyperaccumulator plants

Table 4. Error matrices for the SLR, CART and RF predictions of the soil Cd concentrations.

SLR CART RF

Low High Low High Low High

Low 27 5 23 9 25 7

High 10 12 7 15 6 16

Accuracy (%) 72.97 70.59 76.67 62.50 80.65 69.57

SLR: total accuracy: 72.22% and kappa coefficient: 0.4048. CART: total accuracy: 70.37% and kappa coefficient: 0.3949. RF: 75.93% and kappa

coefficient: 0.5050. Low: 0–0.3 mg/kg; High: > 0.3 mg/kg

doi:10.1371/journal.pone.0151131.t004
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Fig 5. Performances of the SLR, CART, and RFmodels in the prediction of soil Cd concentrations.

doi:10.1371/journal.pone.0151131.g005
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practices in local areas threatened by Cd [48,49]. Our findings could provide necessary infor-
mation for policy makers in land use management and effectively prevent further Cd pollution.
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S1 Dataset. Original data of model construction.
(XLS)
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