
1. Introduction
Groundwater is one of the most critical natural resources and plays an important role in day-to-day human life 
and economic development. It is the largest freshwater resource on earth (Foster & Chilton, 2003). However, 
the presence of naturally occurring arsenic (As) in groundwater is known to affect fluvial sedimentary aquifers 
worldwide (Ravenscroft et al., 2009). The occurrence of As in groundwater is widespread in the Indian subcon-
tinent, especially in West Bengal, India (McArthur et al., 2004; Nath et al., 2009) and Bangladesh (Chakraborti 
et al., 2002; van Geen et al., 2003). The use of As-contaminated groundwater for drinking and irrigation has 
caused widespread public health issues (Smith et al., 2000). The primary route of As exposure to humans is 
through drinking of water and consuming vegetables and food grains, particularly rice, contaminated by As 
(Rahman et al., 2011). Consequently, the World Health Organization (WHO) has set an As concentration safety 
guideline of a maximum of 10 μg/L in drinking water.

Abstract Arsenic (As) is a well-known carcinogen and chemical contaminant in groundwater. The 
spatial heterogeneity in As distribution in groundwater makes it difficult to predict the location of safe areas 
for tube well installations, consumption, and agriculture. Geospatial machine learning techniques have been 
used to predict the location of safe and unsafe areas of groundwater As. We used a similar machine learning 
technique and developed a habitation-level (spatial resolution 250 m) predictive model to determine the risk 
and extent of As >10 μg/L in groundwater in the two most affected districts of Assam, India, with an aim to 
advise policymakers on targeted interventions. A random forest model was employed in Python environments 
to predict the probabilities of As at concentrations >10 μg/L using intrinsic and extrinsic predictor variables, 
which were selected for their inherent relationship with As occurrence in groundwater. The relationships 
between predictor variables and proportions of As occurrences >10 μg/L follow the well-documented processes 
leading to As release in groundwater. We identified potential As hotspots based on a probability of ≥0.7 for 
As >10 μg/L, including regions not previously surveyed and extending beyond previously known As hotspots. 
Of the total land area (6,500 km 2), 25% was identified as a high-risk zone, with an estimated 155,000 people 
potentially consuming As through drinking water or cooking food. The ternary hazard probability map 
(showing high, moderate, and low risk for As >10 μg/L) could inform policymakers on establishing newer 
drinking water treatment plants and providing safe drinking water connections to rural households.

Plain Language Summary We developed a habitation-level predictive model to identify the 
extent of arsenic risk in areas of the two most affected districts of Assam, India, based on an understanding 
the relationships between intrinsic and extrinsic predictor variables and As concentration in groundwater. We 
identified a large area potentially unsafe for the installation of tube wells for water use, which has implications 
for public health as, in many localities, groundwater is the sole drinking water source. We estimated that about 
155,000 people have been potentially exposed to As concentrations >10 μg/L. The hazard probability map 
generated in this study could be used by policymakers for targeted well-testing campaigns, as it highlights 
where inhabitants must consider switching their wells for safe water access. As a mitigation strategy, we 
identified the region where authorities must consider providing treated piped water connections to rural 
households.
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In India and Bangladesh alone, the consumption of groundwater with elevated As has probably killed hundreds 
of thousands of people prematurely and exposed millions more to a range of ailments (Flanagan et al., 2012). 
Arsenic in groundwater and its clinical manifestation was first reported in West Bengal, India, in 1984 and was 
later characterized as the “greatest mass poisoning in human history” by WHO (Saha, 1995). Three decades 
later, a survey of drinking water collected in the homes of many rural households documented that 40 million 
people in Bangladesh alone were still consuming drinking water with As concentrations >10  μg/L (BBS & 
UNICEF, 2014). This alarming finding reflects failures toward implementing effective intervention strategies. 
The installation of shallow, private wells has continued unabated but without sufficient knowledge of whether the 
wells are safe for use, since sedimentary structure is extremely complex and the distribution of As in the aquifers 
is extremely heterogeneous (McArthur et al., 2004; Nath et al., 2008; van Geen et al., 2003).

The occurrence of As in the Brahmaputra flood plain (BFP) groundwater, in Assam, India, was reported much 
later (Borah et al., 2009; Chetia et al., 2011; Singh, 2004). Singh (2004) reported As concentrations >50 μg/L 
in 20 of the 30 districts of Assam. The study in the Bongaigaon and Darrang districts of the BFP demonstrated 
As enrichment in groundwater ranging from 5 to 606 μg/L with 66% of the analyzed groundwaters containing 
an As concentration above the Indian drinking water standard and WHO guideline value of 10 μg/L (Enmark & 
Nordborg, 2007). Mahanta et al. (2015) reported As concentrations >10 μg/L in 29% of the tested wells based 
on a state-wide survey of 56,180 tube wells. Verma et al. (2016) and Choudhury et al. (2018) reported that the 
high As concentration in groundwater is associated with thick clay capping at the top of the aquifer. Choudhury 
et al. (2018) further suggested that the thick clay layer inhibited flushing of the aquifer, which resulted in high 
As concentrations in groundwater due to longer sediment-water interactions. Goswami et al. (2014) also reported 
elevated As concentrations in distinct locations in Majuli, a river island.

The sedimentological history of the BFP is quite similar to the As-contaminated regions of Bangladesh. There-
fore, conclusions about the source, extent, and mobilization mechanism of As found in Bangladesh could be 
partly applicable to the BFP. However, the aquifer in the BFP region is much less perturbed from the agricultural 
use of groundwater (CGWB, 2013), which was one of the most critical factors in the development of high As in 
Bangladeshi groundwater (DPHE, 2001). A lack of resources has prevented the comprehensive blanket testing of 
As in groundwater in the state of Assam, India. Therefore, mapping the spatial extent of the aquifer contaminated 
with As is urgently needed, considering the hazards to human health posed by and the fact that inhabitants rely 
heavily on groundwater for their domestic water needs.

Here, we developed a machine learning algorithm to predict the local-scale distribution of As in groundwater 
by establishing a statistical relationship between As occurrences and environmental predictors (intrinsic and 
extrinsic). A systematic machine learning algorithm would not only predict the local-scale distribution of As 
in groundwater but also, through policy intervention, inform the villagers of the status of their wells, including 
whether their water is safe or unsafe for consumption.

Machine learning approaches have previously been adopted for groundwater contamination prediction studies 
in India, such as for the states of Gujarat (Wu et al., 2021) and Uttar Pradesh (Bindal & Singh, 2019), as well 
as for the entire country (Mukherjee et al., 2021; Podgorski et al., 2020). Likewise, this study focused on risk 
determination using geostatistical machine learning approaches to identify the extent of elevated in As concen-
trations in the two most affected districts of Assam, India, where a previous study showed that As concentrations 
in groundwater increased with distance from the river (Choudhury et al., 2018). This pattern of this As occur-
rence is the opposite of that in the downstream areas of Bangladesh (DPHE, 2001; van Geen et al., 2003). Such 
an observed pattern makes this study unique and highlights the challenges of in delineating the spatial extent of 
elevated groundwater As concentrations. Additionally, we conducted this study at the habitation level with a finer 
spatial resolution in a smaller area. This finer resolution study allows the model to characterize the groundwater 
As occurrences with greater certainty, produces a more accurate model prediction, and enables the proper imple-
mentation of mitigation measures for greater public health benefits.

2. Study Area
The study area, Jorhat and Golaghat district, lies on the southern bank of the Brahmaputra River in Assam, 
including the river island Majuli (a recently created district in Assam). The total area is approximately 6,500 km 2 
(Figure  1), and the total population is 2.5 million. These areas have been reported to contain elevated As 
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Figure 1. The study area map shows the location of measured As concentrations (n = 3,600) in groundwater. The administrative boundaries of sixteen subdistricts 
(blocks) are also shown. The inset map showing the study site within Assam, India.
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concentrations and to be the most affected among the districts in Assam (Mahanta et al., 2015). The study area 
is a part of the Brahmaputra River floodplains and consist of younger and older alluvial sediment depositional 
environments. The area is encircled by the Brahmaputra River to the north, the Naga Patkai Hill range to the 
south, and the Mikir Hills to the west.

The average rainfall is 2,818 mm, the temperature ranges between 6°C and 38°C, and the mean relative humidity 
is between 92% and 98%. The Brahmaputra River, and its tributaries, Dhansiri, Bhogdoi, and Kakodonga, drain 
the study area (CGWB, 2013). The alluvial deposits, characterized by light to dark gray colored sands, silts, and 
clay, are mainly confined to the floodplain areas of the Brahmaputra River and its tributaries (CGWB, 2013). The 
inhabitants of the study area are highly dependent on groundwater to meet domestic water requirements, while 
irrigated water use is low (CGWB, 2013).

3. Methodology
3.1. Model Environment

The predictive model was implemented in the Python programming language using a random forest machine 
learning algorithm (Pedregosa et al., 2011). The probabilistic relationships between the intrinsic and extrinsic 
predictors and As concentration in groundwater were determined. The random forest model is an ensemble of 
decision trees. The decision tree algorithm uses a supervised learning method for classification and regression 
and is a non-parametric method (Rokach & Maimon, 2008). The role of a decision tree is to grow, as target varia-
bles are split into consecutive nodes by predictor variables with a conditional statement starting from a root node 
through to a decision node and ultimately to a leaf node where the decision is being made about an instance. The 
decision to split the target data set is based on the importance of a predictor variable and its associated condi-
tions. The choice and condition of the predictors to split the data sets are based on how best a predictor decreases 
the randomness or entropy in the input target samples. The best split is selected based on the lowest Gini scores 
attained after the split.

In a random forest model, each tree uses a different randomly selected subset of predictor variables (typically 
the square root of the total number of predictor variables) and a random selection with the replacement of data 
rows (bootstrap aggregating or bagging). Because of data replacement, roughly one-third of the data are not used 
in growing a tree. Randomness is introduced during the creation of trees to promote uncorrelated forests, avoid 
multicollinearity among predictors and improve model performance (Ho, 1995). The randomness is created in 
such a way that each tree is grown using different sample data sets, including a different set of predictor variables. 
Each tree makes its prediction, and these predictions are then averaged in the case of regression or the majority 
votes in the case of classification to produce a single outcome. The random forest model takes care of multicol-
linearity among the predictors because not all variables are used simultaneously in decision trees (Podgorski 
et al., 2020).

3.2. Target Variable: Arsenic in Groundwater

We compiled the measured As concentrations in groundwater for the two most affected districts of Assam from 
two sources (Choudhury et al., 2018; Mahanta et al., 2015). The lack of available geolocated data from other 
areas have restricted this study to these areas. These data were generated through a combination of measurements, 
including in the field using test kits and in the laboratory using high-resolution inductively coupled plasma mass 
spectrometry. For modeling, the data were aggregated to grids of a spatial resolution of 250 m by using the 
geometric mean of concentrations. The extent of the grids was exactly the same as the GeoTIFFs of the predictor 
variables, such that the grids could be stacked exactly on top of the GeoTIFFs, which avoids grids intersecting 
with the predictor data sets' raster grid. The gridded As values were then converted into binary form by assign-
ing all As concentrations meeting the WHO guideline of ≤10 μg/L to zero and all concentrations >10 μg/L to 
one. The binary conversion of the data was done to determine the extent and total number of people exposed to 
elevated As to aid policymakers in their decision-making regarding priority area for health intervention studies 
(Podgorski et al., 2020).



GeoHealth

NATH ET AL.

10.1029/2021GH000585

5 of 15

3.3. Predictor Variables

The occurrence and spatial extent of groundwater As were modeled through a statistical relationship of the influ-
ence of intrinsic and extrinsic predictors and As concentrations within the study area. In total, 26 spatially contin-
uous predictor variables (precipitation, temperature, potential evapotranspiration, aridity, topsoil– and subsoil– 
organic carbon, sand, silt, clay, cation exchange capacity, pH, bulk density, and coarse fragments, fluvisols, slope, 
elevation, distance to the river, topographic wetness index, and land use/land cover) were used in developing the 
model. A detailed list of predictor variables and the data sources are presented in Table 1. The chosen predictor 
variables can be broadly classified into climate variables, soil (topsoil and subsoil) characteristics, hydrology, 
and land use/land cover. The spatial resolution of the predictor variables was mostly 250 m, except for climate 
variables, which were 1,000 m, and distance to the river and topographic wetness index, which were both 500 m. 
We resampled those coarser-resolution data sets to finer resolution using spatial interpolation techniques.

The predictor variables were selected based on their relationships to the process of accumulation and dissolution 
of As in groundwater (Podgorski et al., 2020; Podgorski & Berg, 2020; Mukherjee et al., 2021). The soil param-
eters, estimated at a 2.0-m depth, can create geochemical environments favorable for As release. The enriched 
concentrations of organic carbon in soils favor the development of reducing conditions that result in As release in 
the aquifer. Flat surface topography indicates a low hydraulic gradient, sluggish groundwater flow, and extended 

Predictors Spatial resolution References

Precipitation 30arc-sec (∼1,000m) Fick and Hijmans (2017)

Temperature 30arc-sec (∼1,000m) Fick and Hijmans (2017)

Potential evapotranspiration (PET) 30arc-sec (∼1,000m) Trabucco and Zomer (2018)

Aridity 30arc-sec (∼1,000m) Trabucco and Zomer (2018)

Topsoil organic carbon 250m Poggio et al. (2021) (SoilGrids)

Subsoil organic carbon 250m SoilGrids

Topsoil sand 250m SoilGrids

Subsoil sand 250m SoilGrids

Topsoil silt 250m SoilGrids

Subsoil silt 250m SoilGrids

Topsoil clay 250m SoilGrids

Subsoil clay 250m SoilGrids

Topsoil cation exchange capacity 250m SoilGrids

Subsoil cation exchange capacity 250m SoilGrids

Topsoil pH 250m SoilGrids

Subsoil pH 250m SoilGrids

Topsoil bulk density 250m SoilGrids

Subsoil bulk density 250m SoilGrids

Fluvisols 250m SoilGrids

Topsoil coarse fragments 250m SoilGrids

Subsoil coarse fragments 250m SoilGrids

Elevation 30m Farr and Kobrick (2000)

Slope 30m Computed from elevation.

Distance to river 15arc-sec (∼500m) Lehner et al. (2008)

Topographic wetness index 500m Hengl (2018)

Land use/land cover Polygon Roy et al. (2016)

Note. The data source and spatial resolution are provided.

Table 1 
The List of Predictor Variables Used in the Development of Random Forest Model
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sediment-water interactions (Nath et al., 2005). Young alluvial sediments, such as a high fluvisols probability, 
indicate the presence of Holocene sediments, which have been associated with high As concentrations (McArthur 
et al., 2011).

The values of the predictor variables were extracted at the centroid location of each grid pixel containing known 
(for model development) and unknown (for prediction) As concentrations. During the development of the random 
forest model, the environmental predictors were statistically evaluated (Pearson correlation coefficient) and veri-
fied the statistical significance (p-value <0.05) of the association with the percentage of grid-averaged As values 
exceeding 10 μg/L. This was done by organizing the data sets into 12 bins, each containing an identical number 
of observations. The percentage of As measurements >10 μg/L in each bin was then calculated. Sturges' formula 
(1 + log2n) was adopted to determine the optimal number of bins (Sturges, 1926). The statistical significance of 
the predictors (mean values) in each bin and the percentage of As concentrations >10 μg/L were checked before 
being included in the model. During model development, the data set was randomly divided into training (80%) 
and testing (20%) samples by preserving the ratio of high and low As values through stratified sampling.

3.4. Modeling and Validation

The random forest model was developed in the Python programming language using the “Scikit-learn 1.0.1” 
package (Pedregosa et  al.,  2011). The scikit-learn package is efficient and straightforward in predictive data 
analysis, and the user can tune several hyperparameters to improve the model's accuracy and efficiency. We 
developed the model by growing 1,000 trees and five predictors for each tree using a training data set. The testing 
data set was used to crossvalidate the model and determine the accuracy in the prediction of low (≤10 μg/L) and 
high (>10 μg/L) As concentrations. The probability values of the occurrence of an As concentration >10 μg/L 
in groundwater for the entire study area were determined by applying the model to 18 spatially continuous and 
statistically significant predictor variables.

A mean decrease in accuracy and a mean decrease in Gini scores were computed during the model development 
of each tree grown to evaluate the importance of predictor variables. The mean decrease accuracy and mean 
decrease Gini score were higher for the more important predictor variables used in the model. Gini node impurity, 
a measure of misclassification, was calculated for every split based on the probability of samples belonging to 
a single class. Predictors and the corresponding criterion that provided the best splits (i.e., the most information 
gained, or the least randomness attained) in the samples were selected first, which was based on the values of the 
lowest Gini score, that is, the largest difference in Gini scores before and after the splits. Gini purity indicates 
the homogeneity of the samples obtained after a split by a specific variable condition (Breiman et al., 1984). The 
importance of the variable increases as the Gini impurity decreases. The decrease in accuracy is calculated on 
out-of-bag (OOB) samples by randomly mixing the data for a particular predictor in the OOB samples. A predic-
tor variable is considered to be highly important if the model's accuracy suffers upon removal of that variable.

Accuracy, sensitivity (i.e., true positive rate), and specificity (i.e., true negative rate) values were also calculated. 
A cutoff value was used to distinguish between high and low As hazard areas. The cutoff value was selected as 
the value at which the sensitivity and specificity of the model become equal. The predictive power of the model 
was evaluated by using the area under the receiver operating characteristic (ROC) curve. The standard deviations 
of classification outcome from each tree during the development of the forest were estimated for analyzing the 
model uncertainty. A low standard deviation indicates the greater certainty or predictive power of the model. 
Pearson residuals were also calculated to test model under- and over-predictions.

3.5. Estimations of the Total Area and Exposed Population

Population data were collected from the WorldPop website for 2020 at a spatial resolution of 1 km (www.world-
pop.org). The total land area and the population exposed to elevated As concentrations (>10 μg/L) in drinking 
water were computed after generating ternary risk maps from the modeled probability.

Three risk levels were considered based on the cutoff values. The cutoff value was determined after plotting the 
sensitivity and specificity values for probabilities between 0 and 1 (Figure 2). The cutoff point was chosen as the 
point at which the sensitivity and specificity values intersect. Such a method avoid bias toward either a true posi-
tive rate or false positive rate (i.e., predicting high or low As concentrations, respectively; Podgorski et al., 2020). 

http://www.worldpop.org/
http://www.worldpop.org/
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High (probability ≥0.7), moderate (probability > cutoff point but < 0.7), and low (probability < cutoff point) risk 
levels were adopted to identify the vulnerable zones (i.e., regions where the As exposure level is too high). This 
breakdown of vulnerable zones will aid in decision-making, with regard to prioritizing locations for immediate 
interventions, providing safe water access, and generating community awareness.

A three-level hazard area map was used to estimate the number of at-risk populations living in different subdis-
tricts (i.e., community development blocks): the estimation was made by multiplying the total populations of each 
risk area with the modeled probabilities. The total at-risk populations were further refined based on the propor-
tion of people living in urban and rural areas according to Integrated Management Information System (IMIS) 
reports (Integrated Management Information System, 2021) and the rate of use of untreated groundwater (0.25) 
in the study area. The rate of use of untreated groundwater use was determined based on surveys of homemade 
sand filters and whether such a filter lowered the As concentrations below 10 μg/L or not. We observed that 25% 
of the households were consuming drinking water with As concentrations >10 μg/L.

The coverage of piped water supply schemes (PWSS) was also assessed to 
better understand the percentage of households that have access to either safe 
or unsafe water in each subdistricts. The PWSS house connectivity data were 
retrieved directly from the IMIS reports (Integrated Management Informa-
tion System, 2021).

4. Results and Discussion
4.1. Arsenic Prediction and the Strength of the Model Development

The results based on a 10-fold cross-validation on the test data set using the 
developed random forest model are provided in Table 2. The area under the 
ROC curve (AUC) was used to determine the strength of our binary (high and 
low) classification made by the random forest model. The AUC value gener-
ally ranges between 0.5 and 1. The values close to 1 indicate a perfect model, 
while a value of 0.5 indicates a no better than random chance occurrence. 
The AUC has been computed using different probability cutoff values (Fawc-
ett,  2006). AUC values of 0.89 indicate excellent model performance and 
are comparable to several other groundwater quality predictions at both the 
regional and country scale. An AUC value of 0.84 was reported for fluoride 

Figure 2. The classification strength. (a) ROC curve with an AUC of 0.89, which indicates the discriminative power of the random forest model. (b) True-positive rate 
(sensitivity), true-negative rate (specificity), and accuracy against the different cutoff values to identify the best conditions in predicting low and high As concentrations 
in the study area.

Actual class

Predicted class 0 1

0 208 36

1 37 198

Accuracy 0.848

Cohen's kappa 0.695

Sensitivity 0.846

Specificity 0.849

Positive predicted value 0.843

Negative predicted value 0.852

Prevalence 0.511

AUC 0.89

Note. The probability cutoff value is 0.51.

Table 2 
The Confusion Matrix and Statistics of the Random Forest Model Developed 
Based on Eighteen Significant Predictor Variables
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prediction in the entire country of India (Podgorski et al., 2018), while for As, AUC values of 0.71–0.83 have 
been reported in Gujarat (Wu et al., 2021), and 0.755 in Uttar Pradesh (Bindal & Singh, 2019). The test data set 
was also used to calculate our model's overall accuracy, which was 0.85, following 10-fold crossvalidation. In 
addition to that, the overall accuracy value was very close to the accuracy value computed with the OOB samples 
(0.83). The no information rate was 0.5042 (p-value < 2.0 × 10 −16), which is significantly low compared to the 
accuracy obtained in this model. The no information rate is equivalent to the accuracy that could be achieved 
without a model (Podgorski et al., 2020). The no information rate is similar to the dominant class of the training 
data set, that is, the percentage of As ≤10 μg/L (50.5%) for this study. Cohen's kappa value was 0.695, indicating 
stronger reliability and substantial agreement of the model.

The conversion of As values from 3,600 point locations to spatially averaged 250-m grid locations produces 
high-density data points covering much of the study regions where 85% of the population resides. The grid-av-
eraged 2,400 locations were found to distribute uniformly throughout the study area covering populated regions, 
suggesting any unlikely bias in the model prediction by providing excess weight to the environmental conditions 
in some areas (Podgorski et al., 2020). Such a situation can occur if the study area is very large, with an imbalance 
in sampling density (Podgorski et al., 2020). Compared to other studies, our study site is very small and limited to 
one major river basin (Bindal & Singh, 2019; Podgorski et al., 2020). Therefore, one single random forest model 
should effectively account for the heterogeneity in the geochemical environments and produce a reliable outcome. 
This reliable outcome has been made possible using large sets of predictor variables representing climate, hydrol-
ogy, soil characteristics, and land use/land cover to define the different geochemical conditions, either favorable 
or unfavorable, for As release in the aquifer.

The predicted probability identified known As-rich areas near the foothill regions of the Naga-Patkai range 
(Figure 3a). The model also identified previously unknown areas, such as parts of the Golaghat South, Morangi, 
Jorhat East, Jorhat Central, and Kaliapani subdistricts. Chetia et al. (2011) reported As concentrations >10 μg/L 
in 8 out of 19 wells surveyed in Morangi subdistricts. Chetia (2010) also reported elevated As concentrations in 
the Borpathar and Sarupathar villages, located at the northern tip of the Golaghat South subdistricts, coinciding 

Figure 3. Maps showing the (a) Probability of As >10 μg/L in groundwater in the study area predicted by random forest model. The red filled circles represent grid 
locations of model underprediction, and blue filled circles represent grid locations of model overprediction based on Pearson residuals of predicted probability of As 
>10 μg/L, (b) Standard deviation of predicted class (either 0 or 1) in each grid location.
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with areas of high predicted probabilities for As >10 μg/L. These areas lack 
sampling for As measurements, and no public geolocated records were avail-
able for use in the model. The model highlights the advantages of machine 
learning techniques that can handle large data sets with many predictors 
and still produce an excellent outcome by utilizing the statistical relation-
ships of predictors and As concentrations (Podgorski et al., 2020; Podgorski 
& Berg, 2020). The predicted outcome can be effectively used in targeted 
well-testing campaigns in areas where the probability of As >10 μg/L is high 
to confirm potential threats to public health.

The standard deviation of the predicted classes for each of the 1,000 decision 
trees is shown in Figure 3b. The standard deviation values can be used to 
assess model uncertainty in the final predicted class. The data showed that 
the areas with a high predicted probability of As >10 μg/L have a low stand-
ard deviation in the predicted class. At the same time, the areas with slightly 
higher standard deviations are associated with medium to high predicted 
probability. These areas are in the Majuli, Ujani Majuli, and Golaghat South 
subdistricts, where the sampling for As in groundwater is lacking. Goswami 
et  al.  (2014) did report As concentrations >10  μg/L in Majuli and Ujani 
Majuli subdistricts. They observed isolated regions of elevated As concentra-
tions that coincide with the regions of moderate to high probabilities deter-
mined by our model. However, due to the unavailability of location informa-
tion, we could not incorporate these data into our model.

Pearson residuals of the predicted probability of As >10 μg/L were also used 
to identify the locations of model under and overpredictions. The results 
showed that the predictions made by the model show good agreement since 

the Pearson residuals in most of the grid locations were within the considered range (i.e., Pearson residuals 
between <2 and >−2) (Ayotte et al., 2006). But in a handful of grid locations, the Pearson residuals were either 
>2 or < −2, suggesting slight over and underpredictions by the model, respectively (Ayotte et al., 2006). These 
grid locations could form outliers within high and low As sites (i.e., low-high and high-low outliers) since the 
subsoil silt and topsoil clay concentrations (two important predictors) are comparable to the areas predicted to 
contain high and low As concentrations, respectively.

4.2. Association Between Environmental Predictors and the Spatial Distribution of Arsenic

The Gini impurity and accuracy scores averaged over all trees grown in the forest were used to determine the 
importance of the predictor variables (Figure 4). The results showed greater importance of subsoil silt and all 
climate variables (i.e., precipitation, potential evapotranspiration, aridity, and temperature) in the model predic-
tion. In addition to those variables, topsoil silt, elevation, and subsoil clay showed strong importance in the model 
prediction. The least important variables for model prediction were subsoil pH, topsoil pH, and slope.

The strength of the relationships between predictor variables (the average in each bin) and As concentrations 
(the percentage of As measurements >10 μg/L) was tested using Pearson correlation coefficient (R) and p-value 
(95% confidence level) (Figure 5). The strongest R values were found with topsoil clay, subsoil clay, topsoil 
silt, subsoil silt, topsoil organic carbon, subsoil organic carbon, topsoil cation exchange capacity, subsoil cation 
exchange capacity, elevation, and fluvisols (Figure 5). These variables had R values >0.88 (either positive or 
negative) and showed statistical significance at p-values <0.05. In addition, precipitation, temperature, potential 
evapotranspiration, topsoil pH, and distance to the river also showed stronger relationships with the percentage of 
As measurements >10 μg/L. Subsoil and topsoil sand showed well-defined troughs, with the lowest proportion of 
As measurements >10 μg/L coinciding with mean values of 38 and 34 weight %, respectively (Figures 5i and 5j). 
These variables were also tested in developing the final model since the random forest algorithm is highly effec-
tive in capturing nonlinear relationships between predictor and response variables (Ryo & Rillig, 2017).

Our model depends strongly on the subsoil silt content, and a negative relationship with elevated As concentra-
tions signifies the occurrence of high As concentrations in older floodplains. High subsoil silt content was mostly 

Figure 4. The importance of the predictor variables in relation to mean 
decrease in Gini and mean decrease in accuracy as calculated by the random 
forest model.
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found to localize in the areas close to the current river channel (Figures S1 and S2 in Supporting Information S1). 
Higher silt content in soils indicates the deposition of fresh sediments by the river (Ahmed et al., 2004). Silt is 
highly reactive and produced by mechanical weathering; therefore, the presence of high silt content indicates more 
active sorption sites for As adsorption (Amini et al., 2008) and lack of As in the water. However, we observed a 
higher occurrence of subsoil clay further away from the current river channel and found it to be associated with 
elevated As concentrations(Figures S3 and S4 in Supporting Information S1). The observation of greater clay 
fractions and clay capping to greater aquifer depths supports the hypothesis of As leaching to groundwater and the 
lack of monsoonal dilution by rainwater. Such an observation increases the chance of extensive sediment-water 

Figure 5. (a)–(x) The relationships between predictor variables and percentages of grid-averaged As concentrations 
>10 μg/L in 12 equally sized bins (except for topsoil and subsoil pH). Pearson correlation coefficients (R) with a statistically 
significant p-value (95% confidence level) are shown.
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interactions and minimal flushing (Choudhury et al., 2018). Therefore, the composition of the aquifer materials 
is vital to the occurrence of As in groundwater (Bindal & Singh, 2019).

Our model shows the high importance of climate variables, which is consistent with the findings of Podgorski 
and Berg (2020), who suggested that climatic factors control the release of As in aquifers. Low precipitation and 
evapotranspiration are associated with a high percentage of As >10 μg/L in tube wells, suggesting less recharge 
and greater sediment-water interactions. Low precipitation favors the reduced flow of groundwater in the aquifer, 
and the lack of dilution effects by infiltrating rainwater increases the likelihood of As accumulation in groundwa-
ter over an extended time (Rodríguez et al., 2004). The combined effect of precipitation and evapotranspiration 
could favor As release due to saturated conditions and the formation of reducing environments for As release 
(Podgorski & Berg, 2020). The lack of flushing and dilution, as suggested by the higher radiocarbon ages of 
groundwater in high As sites, is consistent with the preservation of a larger pool of exchangeable As and, there-
fore, the maintenance of higher As concentrations (Choudhury et al., 2018).

Elevation shows moderate importance in our model (Figure S5 in Supporting Information S1). However, the 
relationship between elevation and the percentage of As >10 μg/L is highly significant and is positively corre-
lated. This finding suggests that the high As in groundwater is occurring in elevated areas, that is, further away 
from the river channel, which is in contrast to the association between low elevation and As concentrations 
>10 μg/L in Bangladesh (Shamsudduha et al., 2008). Interestingly, our previous studies showed the occurrence 
of brown (oxidized) sands near the river channel, suggesting flushing of the aquifer near the river, while reduced 
(gray) sands were observed in As-enriched elevated terrain bordering the Naga-Patkai Hill ranges (Choudhury 
et al., 2018).

4.3. Arsenic-Hazard Probabilistic Zones

The estimated As risk areas and population exposed were computed based on the probability cutoff of 0.51 
(Figure 6). The probability of As >10 μg/L was grouped into three categories (high, moderate, and low-risk 
zones). The population map shows a cluster of densely populated localities within the high-risk zone (Figure 6b), 

Figure 6. (a) Ternary As hazard probability map based on the predicted probability (high risk: ≥0.7, moderate risk: 0.51–0.7, and low risk: <0.51). (b) The density of 
population (per km 2) living in high-risk areas.
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indicating a potential significant public health concern. The high-risk zones 
are predominantly located south of the Brahmaputra River and beside the 
Naga-Patkai foothill ranges. The moderate risk areas typically extend from 
the high-risk zones toward the river, including the island of Majuli. The 
low-risk zone is mainly located near the river channel, yet isolated low-risk 
pockets are located in moderate-risk zones. In addition to that, a large part of 
the Golaghat South subdistrict is within the low-risk zone, which is bordered 
by Naga-Patkai hill ranges on the east and Mikir hills on the west. These areas 
are located at a higher elevation with greater slopes, and are thus favorable for 
greater aquifer flushing and unfavorable for As release to groundwater. Simi-
larly, a study by Puzari et al. (2015) and NPCB (2018) reported As concen-
trations <10 μg/L in Dimapur, Nagaland, located at the southern tip of the 
Golaghat South subdistrict (Figure 3a). These studies support our prediction 
of a low probability of As >10 μg/L in groundwater in these areas.

The total population potentially exposed to As concentrations >10 μg/L is 
shown for each subdistrict (Figure 7). Based on the probability (a cutoff score 
of 0.51), a total of approximately 115,000 people in moderate-risk areas 
(probability scores between 0.51 and 0.70) and a further 155,000 people in 

high-risk areas (probability scores ≥0.70) may be directly or indirectly exposed to As concentrations >10 μg/L. 
Most of the exposed populations in high-risk areas live in four subdistricts: Titabor (a total of 42,000 people), 
Jorhat (a total of 26,750 people), Golaghat East (a total of 25,500 people), and Gomariguri (a total of 24,000 
people). The people in these four subdistricts require immediate public health interventions: targeted well-testing 
and the provision of safe water access.

5. Public Health Implications
The results of this study effectively demarcate the high- and low-risk areas in the two most affected districts of 
Assam, as well as the moderate-risk areas in the district of Majuli, whose inhabitants are relatively poor. The 
hazard probability map and risk model of the occurrence of As concentrations in groundwater exceeding the 
WHO guideline of 10 μg/L will be helpful for policymakers in managing the aquifer sustainably, since agricul-
tural use of groundwater is negligible compared to the As-contaminated areas in Bangladesh (CGWB, 2013; 
Zahid & Ahmed, 2006). In the short term, local administration can target the regions having the greatest As 
risk (probability ≥0.70) and can educate local inhabitants on the potential health effects of consuming high As 
drinking water. Moreover, a targeted well-testing campaign could help identify wells contaminated with As. Such 
a campaign would inform inhabitants as to whether they need to switch their drinking water sources to a safer 
tube well to reduce As exposure. Well-testing and subsequent well-switching have been effective in lowering 

population-level As exposure in Bangladesh (Jamil et  al.,  2019; van Geen 
et al., 2002). In the long term, policymakers, with support from the Govern-
ment of India or other sources, could target exposed regions by implementing 
additional water treatment plants.

Based on the analysis of PWSS providing treated drinking water by the 
government, we identified that the high-risk subdistricts Gomariguri, 
Morangi, Golaghat East, and Golaghat South in Golaghat district are the 
least connected to household tap waters (Figure 8). Likewise, the Titabor, 
Jorhat East, and Jorhat subdistricts in Jorhat districts are the least connected 
to household tap waters. These findings suggest a greater risk of As exposure 
in rural households in high-risk areas due to the lack of household tap water 
connection. In the two moderate-risk subdistricts, Majuli and Ujani Majuli, 
more than 85% of households are connected to PWSS tap water that provides 
safe water access (Figure 8). This is a significant achievement on the part of 
the government in providing safe water access to rural inhabitants. Though 
treated piped water is provided through public tap water connections in most 
high-risk subdistricts, it is possible that a lack of awareness regarding the 

Figure 7. The total population, living in high and moderate risk areas, 
potentially exposed to As concentrations >10 μg/L in sixteen subdistricts of 
the study area.

Figure 8. Percent household access to treated water through a piped water 
supply schemes (network public and private connections) and no access to 
treated water in sixteen subdistricts of the study area.
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use of treated water and the distance to public tap water may increase the likelihood that private tube wells are 
installed to meet water needs. Therefore, it is important to increase awareness among the public in these high-
risk subdistricts that it is possible to gain access to this safe drinking water via household connection. The local 
government could subsidize the costs associated with house connections, as many rural inhabitants might not be 
able to afford the costs. By doing so, the local governments would be able to accurately address the public health 
concerns and sustainably use groundwater by discouraging the installation of private tube wells.

6. Conclusion
The hazard probability map presented in this study provides insights into the locations and areas where inhab-
itants are potentially being exposed to elevated As concentrations in groundwater. The hazard probability map 
is also useful for finding appropriate locations to install community drinking water wells and treatment facili-
ties to provide safe water access. The hazard probability map can inform policymakers on targeted well-testing 
campaigns for mitigation and highlights where inhabitants must consider testing their wells for As contamination. 
The habitation-level predictive model can be used to inform villagers and generate community awareness about 
the potential impact of elevated As in groundwater through active participation. As mitigation strategies, we iden-
tified areas where authorities must consider providing safe water connections to rural households.

The availability of groundwater As testing data from newer areas would undoubtedly help strengthen the predic-
tive power of the model, particularly data from Morangi, Golaghat South, Kaliapani, and Majuli, where the 
data are almost absent for training the model. The hazard probability map presented here does not account for 
the role of aquifer depths in relation to the spatial pattern of As. In general, As concentration was found to vary 
with sediment age and depth of the tube wells. In addition, time could be incorporated into the model since As 
concentrations in tube wells change with the seasons. A spatio-temporal model could provide further insights into 
understanding aquifer contamination and modeling the threats to public health.
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