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Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently
identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts
in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an
annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and
a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based
method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for
the entity recognition task, 2–5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks.

1. Background

Biomedical literature provides extensive information that is
not covered in other knowledge resources and the amount of
information produced and published in articles and patents
is growing at a fast pace, thus the manual analysis and anno-
tation of the literature is a tedious, time-consuming, and
costly process. Fortunately, this process has been addressed
by text-mining systems that have already shown to be helpful
in speeding up some steps of this process [1]. Normally,
the first step of text-mining systems is the identification of
named entities in text. This is a crucial step and includes
the tasks of named entity recognition and entity resolution.
Named entity recognition comprises the identification of
the text boundaries that limits a string referring to a target
category, such as chemicals [2]. Entity resolution takes as
input the strings identified in the previous task, in order to
find exactly which chemical each string corresponds to, by
mapping each of them to a reference database entry.

Most efforts in entity recognition and resolution have
been made in the identification of protein and gene named
entities in the literature. The performance of systems tackling
such tasks has been measured in competitions such as the
BioCreative challenge [3, 4], TREC Genomics Track [5] and
the NLPBA challenge [6]. However, few efforts have been

made on the recognition and resolution of other terminolo-
gies, partly due to the lack of annotated corpora and the high
costs associated to its generation. One of such cases is chemi-
cal terminologies, a field that suffers from the lack of available
corpora but can benefit immensely from text mining. For ex-
ample, chemical metabolites are essential for proteomics and
transcriptional network studies, areas that benefit greatly by
text-mining systems [7, 8].

There are two main specific challenges in chemical entity
recognition: the first is the potential infinite number of com-
pounds since new chemicals are constantly being synthe-
sized; the second is the high ambiguity in chemical represen-
tation, with a single chemical being described in publications
by trivial names, systematic names, registry numbers or for-
mal descriptions like formulas. Therefore, the creation and
maintenance of chemical terminologies is a complex task [9].

Named entity recognition systems employ two main ap-
proaches [10].

(i) Dictionary-based approaches require domain termi-
nologies to find matching entities in the text. This
approach, however, depends on the availability and
completeness of these terminologies and is limited
to the entities contained in them and given the vast
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amount of possible chemical compounds, the termi-
nologies are always incomplete. On the other hand,
terminologies are also ambiguous, since some terms
are common English words which will produce false
positives. An advantage of this approach is that entity
resolution is directly obtained by the name entity
recognition task, since each entity recognized is in-
herently linked to an individual term of the terminol-
ogy. Advanced techniques used by these approaches
include enhancement of the input terminologies by
integrating and normalizing different databases, im-
proving string-matching methods more suited for the
target class of entities, and the development of rules
for postprocessing to refine the results.

(ii) Machine-learning-based approaches require an an-
notated corpus which is used to learn a model that
can be applied for named entity recognition in new
text. Systems using this approach use named entity
recognition as a classification task that tries to predict
if a set of words represent an entity or not. The bot-
tleneck of this approach is the availability of an anno-
tated corpus large enough to enable the creation of an
accurate classification model, and the need for an en-
tity-resolution module for mapping the recognized
entities to database entries.

Earlier efforts in chemical entity recognition include the
comparison between a dictionary-based approach and a ma-
chine-learning-based approach. Namely, a study compared a
dictionary-based segmentation method with Naı̈ve Bayesian
classification methods for recognizing chemical names using
the Unified Medical Language System (UMLS) Methasaurus
for training and testing [11]. The Naı̈ve Bayesian method
obtained the highest result, 97% accuracy, but it was trained
and tested in a single lexicon terminology (UMLS) and bio-
medical literature contains a much less standardized chem-
ical nomenclature. A dictionary-based system using a set of
rules that rely upon lexical and dictionary information was
reported having 90% F-measure in identifying chemical
compounds [12], but evaluation was performed in only 55
abstracts selected by acetylation-related keywords which does
not provide a sound evidence for how extensible these results
are in a larger and broader corpora. Wren [13] developed
a first-order Markov Model to distinguish chemical names
from words using the ChemIDplus database [14] as positive
training and reports an average precision of 83% in extract-
ing chemical terms from MEDLINE abstracts. Klinger et al.
[15] presents a machine-learning approach based on condi-
tional random fields (CRF-), and a performance of 80–85%
F-score. However, this system is for detection of systematic
(IUPAC-like) chemical names, where it is usual for a chem-
ical to be referenced by the trivial name or other synonyms.
Oscar3 is an open-source system that uses an extensible inter-
nal lexicon and several natural language-processing methods
for the automated annotation of chemicals in biomedical
journal articles, reporting an F-score of 80% [16]. Whatizit
is a popular text-processing system capable of identifying a
wide variety of biomedical terms, including chemicals, by us-
ing several pipelines, each one based on a terminology [17].

One of the available pipelines is based on Chemical Entities
of Biological Interest (ChEBI).

ChEBI is a freely available dictionary of molecular enti-
ties, containing also groups (parts of molecular entities) and
classes of entities that enable ChEBI to be organized as a
chemical ontology, structuring molecular entities into sub-
sumption classes, and defining the relations between them
[18]. It is not as comprehensive as other dictionaries but is
manually curated which guarantees high quality. The ulti-
mate goal of ChEBI is to provide and promote a gold stan-
dard for annotation of molecular entities, which comprises
a controlled vocabulary (standardized and unambiguous ter-
minology), graphical representations of molecular structure
(clear and unambiguous 2D diagrams), and defined logical
relationships between concepts (ontology). Each entry of
ChEBI is identified by a unique identifier, a name, and when
appropriate a definition and synonyms.

Despite the lack of available annotated corpora to pro-
mote and evaluate chemical entity identification systems, a
joint team of curators from ChEBI and the European Patent
Office has manually annotated chemical named entities in a
set of 40 patent documents. This annotated corpus was re-
leased http://chebi.cvs.sourceforge.net/viewvc/chebi/chapati/
patentsGoldStandard/ in 2009 as a gold standard to aid the
development of text-mining tools.

Due to the release of a gold standard of patent documents
and the increasing availability of high-quality chemical
terminologies such as ChEBI, we decided to develop a novel
chemical entity identification system to assess how the avail-
ability of this new domain knowledge can enhance the per-
formance of text-mining systems. Thus, the contributions of
this paper are the following:

(i) the development of a chemical named entity recogni-
tion method based on a machine learning approach;

(ii) an entity-resolution method that maps recognized
entities to the ChEBI database based on lexicon simi-
larity approach;

(iii) the enrichment of mapped entities in the gold stan-
dard of patent documents;

(iv) a performance assessment of our system in compari-
son to the results obtained by the popular text mining
system, Whatizit.

2. Results

In this section, we will present an assessment of our machine-
learning-based method in comparison to the dictionary-
based method, Whatizit. Both methods were applied to the
gold standard, but only 47% of the total amount of named
entities of this corpus were mapped to ChEBI at that time by
the curators. However, since that time, the size of the ChEBI
dictionary has almost doubled in the number of compounds.
Thus, we decided that an enrichment in the mapping of the
annotated entities was necessary to significantly improve the
amount of chemical named entities mapped to ChEBI.

Both tasks of chemical entity identification process have
been evaluated using the enriched gold standard. In the first
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Figure 1: Example of mapping enrichment in the corpus. The first line shows the original entities corpus, where one entity was not mapped
to ChEBI. On the second line, we show the corpus after enrichment, where that entity could be mapped.

task, named entity recognition, we evaluated the ability of
each method to recognize chemical named entities in text.
In the second task, chemical entity resolution, we assess the
ability of each method to map the recognized chemical enti-
ties to the ChEBI database, that is, associating a correct and
unique ChEBI identifier to each named entity recognized.

2.1. Gold Standard. The gold standard of patent documents
was developed to promote the enhancement of text-mining
tools for identifying chemicals not only in patents but also
within all biomedical literature.

This manually annotated corpus contains a total of
18,061 chemical entities recognized in its 4,985 sentences.
When possible, the curators included a mapping from the
recognized chemical entities to a ChEBI identifier, achieving
a total of 8,528 mappings to ChEBI identifiers, that is, 47.2%
of the total amount of chemical entities. The relatively low
amount of mappings is not only due to the novelty inherent
to patent documents, but also because ChEBI is still a recent
project under rapid growth.

To increase the amount of available mappings, we check-
ed all previously unmapped entities in the gold standard for a
valid ChEBI identifier in an up-to-date release of ChEBI. We
were able to increase by 13.7% the amount of mappings to
ChEBI, that is, to 9,696 entities, 53.7% of the total entities in
the gold standard. Figure 1 shows an example of a sentence
containing two chemical entities, from which only one was
originally mapped to ChEBI (methyl chloride). After our
enrichment process, the second entity (dimethyl sulphate)
was also mapped. Our enriched version of the gold standard
is also publicly available on demand.

2.2. Named Entity Recognition. Typically, the evaluation of
named entity recognition considers exact matching (correct
matching of both the left and the right boundary of the nam-
ed entity) as the most precise assessment. However, exact
matching is very strict and sometimes a relaxed assessment,
such as partial matching, can produce more useful results
[19]. Partial matching evaluation is the most relevant for
tools targeted at semisupervised tasks, such as aiding curators
in finding target entities through literature analysis. In these
cases, a partial identification is sufficient to successfully high-
light the presence of entities for manual validation. In par-
tial matching, correct recognition is assumed when any frag-
ment of the named entity is correctly identified in the text.
We assessed the results against exact matching criteria,
and also against relaxed matching criteria such as the left
matching, right matching, left/right matching, and partial

matching. The results were obtained for the two chemical
entity recognition methods: the dictionary-based method
using the Whatizit tool and our machine-learning-based
method (see Section 5 for their description). Table 1 shows
these results in the chemical entity recognition task.

For all assessments, our machine-learning method per-
formed better than the dictionary-based method (scoring F-
measures on average∼20% than those obtained with the dic-
tionary-based method). The dictionary-based method rec-
ognized a similar number of entities to the ones present in
the gold standard (18,683). The machine learning method re-
cognized a lower amount of entities (13,832), however, with
a much higher precision and recall. Assessments against the
right boundary consistently yielded slightly better results
than the assessments against the left boundary, for both
methods. For the exact matching evaluation, the dictionary-
based method obtained an F-measure of 32%, while our ma-
chine-learning method obtained 57%, that is, having both
much higher precision and recall. For a partial matching, a
top F-measure of 77% was achieved by our machine-learning
method, while the dictionary-based method achieved 70%.
Both methods had a similar recall and the difference was
made by the higher precision of the machine-learning meth-
od (20% higher precision).

The difference in the performance between the two
methods might be explained by the fact that several entities
in the annotated corpus do not have a valid ChEBI identifier
(i.e., they do not yet exist in the ChEBI dictionary). That
makes it impossible for a ChEBI dictionary-based method to
find those entities that account for almost 50% of the total
entities in the annotated corpus. The machine-learning
method does not have this bottleneck and is suited to identify
novel compounds not yet present in the database, and thus
to aid in database extension. However, to avoid this bias,
we analyzed the entity recognition performance only con-
sidering the entities in ChEBI, that is, using only the subset
of entities manually mapped to ChEBI in the annotated
corpus (9,696 out of the 18,061). Table 2 shows these results
obtained for both methods.

We can check that now the amount of entities recognized
and mapped by the machine-learning method (using the
entity resolution method described in Section 5) is similar
to the number of entities mapped to ChEBI in the corpus.
Even under these conditions, the machine-learning method
continues to perform better than the dictionary-based meth-
od, on average an F-measure ∼15% higher. However, the
amount of true positives is very similar for both methods and
the decisive factor is the higher amount of false positives (low
precision) generated by the dictionary-based method.
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Table 1: Evaluation of entity recognition, full gold standard of 18,061 chemical entities. Results of named entity recognition for each
assessment and method are shown in this table. The dictionary method recognized a total of 18,683 entities while the machine-learning
method recognized 13,832 entities. True positives (TP) is the amount of entity recognitions that agree with the gold standard for each
assessment. Values of precision, recall, and F-measure are presented.

Assessment Method TP Precision Recall F-measure

Exact matching Dictionary 5,868 31.41 32.49 31.94

Machine learning 9,094 65.76 50.35 57.03
Left matching Dictionary 6,868 36.76 38.03 37.38

Machine learning 9,892 71.53 54.77 62.04
Right matching Dictionary 8,015 42.90 44.38 43.63

Machine learning 10,419 75.34 57.69 65.34
Left/right matching Dictionary 9,015 48.25 49.91 49.07

Machine learning 11,217 81.11 62.11 70.35
Partial matching Dictionary 12,780 68.40 70.76 69.56

Machine learning 12,328 89.15 68.26 77.32

Table 2: Evaluation of entity recognition, subset of the gold standard composed by 9,696 chemical entities that contain a mapping to ChEBI.
Results of entity identification (named entity recognition and resolution) for each alignment and method are shown in this table. The
dictionary method recognized and mapped a total of 18,683 entities while the machine-learning method recognized and mapped 10,681
entities. True positives (TP) is the amount of entity recognitions that agree with the gold standard for each assessment. Values of precision,
recall, and F-measure are presented.

Assessment Method TP Precision Recall F-measure

Exact matching Dictionary 5,651 30.25 58.28 38.83

Machine learning 5,830 54.60 60.13 57.23
Left matching Dictionary 5,913 31.65 60.98 41.67

Machine learning 6,084 56.98 62.75 59.72
Right matching Dictionary 6,158 32.96 63.51 43.40

Machine learning 5,948 55.70 61.34 58.39
Left/right matching Dictionary 6,435 34.44 66.37 45.35

Machine learning 6,307 59.07 65.05 61.91
Partial matching Dictionary 7,654 40.97 78.94 53.94

Machine learning 6,703 62.78 69.13 65.80

2.3. Entity Resolution. In this task, we aim at mapping the
recognized chemical entities to the appropriate term in the
ChEBI database. The evaluation consists in comparing the
mappings produced by both automatic methods with the
manual mappings in the gold standard. This means that a
true positive is not only a chemical entity that has been cor-
rectly recognized, but also correctly mapped to a ChEBI
identifier. Thus, in order to measure the difference in perfor-
mance between the two methods, both were tested against
the subset of entities manually mapped to ChEBI in the cor-
pus. Table 3 shows the results achieved by both methods
in correctly recognizing and mapping chemical entities to
ChEBI.

We can see that the F-measure yielded by our methods
is consistently higher than the one of the dictionary-based
method by 12–14%. These results are dependent of the entity
recognition results, shown in Table 2, since a true positive in
Table 3 means that it must be also a true positive in Table 2.
Thus, a new assessment was made to evaluate only the enti-
ty-resolution task. It consists in restricting the resolution task
to the chemical entities that have been correctly recognized
simultaneously by both methods. The number of entities

recognized is the intersection of the entities correctly recog-
nized by both methods. Table 4 shows the results from this
assessment.

We see that entity-resolution results are similar for both
methods, with a slight advantage for our entity-resolution
method described in Section 5.

3. Discussion

3.1. Named Entity Recognition. Table 1 shows that our ma-
chine-learning method outperforms the dictionary-based
method at all evaluations and assessments, with the excep-
tion of the recall for a partial matching assessment where the
dictionary-based method obtains a slightly better result with
∼2% better recall, but at the cost of 11% decrease in preci
sion. However, there are entities annotated in the gold stan-
dard for which no ChEBI identifier could be given by cura-
tors even after enrichment, which indicates its absence from
the dictionary and the impossibility of the dictionary-based
approach to find those entities, thus lowering the recall of the
dictionary-based method.
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Table 3: Evaluation of entity identification, subset of the gold standard composed by 9,696 chemical entities that contain a mapping to
ChEBI. Results of entity identification (named entity recognition and resolution) for each alignment and method are shown in this table.
The dictionary method recognized and mapped a total of 18,683 entities while the machine-learning method recognized and mapped 10,681
entities. True positives (TP) is the amount of entity recognitions that agree with the gold standard and for which the mapping also agrees
with the gold standard. Values of precision, recall, and F-measure are presented.

Assessment Method TP Precision Recall F-measure

Exact matching Dictionary 4,530 24.25 46.72 31.93

Machine learning 4,783 44.79 49.33 46.95

Left matching Dictionary 4,559 24.40 47.02 35.13

Machine learning 4,972 46.56 51.28 48.81

Right matching Dictionary 4,592 24.58 47.36 32.36

Machine learning 4,885 45.75 50.38 47.95

Left/right matching Dictionary 4,621 24.73 47.67 32.57

Machine learning 5,074 47.52 52.33 49.81

Partial matching Dictionary 5,185 27.75 53.48 36.54

Machine learning 5,202 48.72 53.65 51.07

Table 4: Evaluation of entity resolution, subset of the gold standard composed by 9,696 chemical entities that contain a mapping to ChEBI.
Results of entity resolution for each assessment and method are shown in this table. Have been considered for this evaluation only the entities
successfully recognized by both methods. For an exact matching assessment, the amount of entities successfully recognized by both methods
was 3,668. For the left, right, left/right, and partial matching assessments, that amount was correspondingly 4,022, 4,082, 4,455, and 5,286
entities. True Positives (TP) is the amount of those entities for which the resolution was correct, that is, the mapping agrees with the gold
standard. Values of precision, recall, and F-measure are presented.

Assessment Method TP Precision Recall F-measure

Exact matching Dictionary 3,079 83.94 31.76 46.08

Machine learning 3,206 87.40 33.07 47.98

Left matching Dictionary 3,215 79.94 33.16 46.87

Machine learning 3,381 84.06 34.87 49.29

Right matching Dictionary 3,191 78.17 32.91 46.32

Machine learning 3,467 84.93 35.76 50.33

Left/right matching Dictionary 3,327 74.68 34.31 47.02

Machine learning 3,650 81.93 37.64 51.59

Partial matching Dictionary 3,861 73.04 39.82 51.54

Machine learning 4,273 80.84 44.07 57.04

This issue was addressed by the evaluation whose results
are shown in Table 2, where only the subset of entities in
the gold standard that are mapped to ChEBI were used. The
recall of the dictionary-based approach does increase to val-
ues similar to those of the machine-learning approach, but
precision remains much lower which is a drawback for F-
measure. Independently of the type of assessment, both sys-
tems are able to identify about 60–70% of the chemical enti-
ties, but precision is consistently higher for the machine-
learning method (15–25% higher).

To understand this difference in precision, we analyzed
the most common recognition errors of both systems, and
found that some of the most frequent entity recognition er-
rors of the dictionary-based method include terms such as
can, group, and all, which are common English words wide-
ly used in a nonchemical context and accounted as false posi-
tives. In fact, those terms are listed in ChEBI as synonyms
of calcium(0) (CHEBI: 29320), group (CHEBI: 24433), and
allose (CHEBI: 37690), respectively, but are never used in the

corpus in a chemical context. These entity recognition errors
contribute to the low precision of the dictionary-based
method.

A systematic annotation error of the machine-learning
method is the annotation of R as a chemical entity. Although
this term is used in the corpus to represent generic chemical
groups, it was not considered by the curators as a chemical
entity. Frequent annotation errors of both approaches in-
clude terms that are in fact chemical entities, such as serine,
drug, and water. However, in the case of serine, it is used fre-
quently in one of the documents in the context of a protein
(serine protease) and thus curators decided not to consider it
a chemical entity during manual annotation. The other two
terms were also not considered by the curators given their
low information content, which might lead to under-anno-
tation in the corpus.

When looking at the assessment against the right bound-
ary alignment, several chemical groups have been partially
identified. In the case of the dictionary-based method, for
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instance, the terms acid, amine, and ester have been frequent-
ly recognized but the correct left boundary was not. The ma-
chine-learning approach deals much better with these exam-
ples and can usually identify both boundaries of acid ter-
minating entities. However, the machine-learning approach
frequently makes this mistake with other terms such as alkyl
and aryl. The right boundary is correctly identified while the
left one is not, mostly due to the complexity of the annotated
term (e.g., substituted or nonsubstituted lower alkyl). These
terms are not identified by the dictionary-based method, be-
cause only alkyl group and aryl group are terms in ChEBI. For
the left boundary assessment, no systematic errors have been
identified.

3.2. Entity Resolution. The difference between the true posi-
tives of Tables 2 and 3 shows that for the exact matching as-
sessment 80% of the entities recognized by the dictionary-
based method have been correctly mapped to ChEBI, and
82% using our methods. This shows that our methods per-
form slightly better than the dictionary-based method in the
entity identification process.

We analyzed the resolution of entities that failed by the
dictionary-based method and found that the mapping for
these three terms trehalose, nicotine, and mannitol were the
most frequent errors. These terms were manually annotated
with the ids CHEBI: 27082, CHEBI: 18723; CHEBI: 29864,
respectively, and their name is the term itself. However, those
terms have been annotated by the dictionary-based meth-
od as α, α-trehalose (CHEBI: 16551), (S)-nicotine (CHEBI:
17688), and D-mannitol (CHEBI: 16899), respectively. This
happened because those terms contain the original term
listed as a synonym. In these cases, the curators tended to
selected the more generic term while the dictionary-based
method the most specific and common form of the molecule.

In the case of the machine-learning method, those terms
were correctly mapped, but at the top of the most frequent
errors, we find the terms CN and OH. These terms were man-
ually annotated as cyano group (CHEBI: 48819) and hydroxy
group (CHEBI: 43176), but erroneously mapped as unun-
bium atom (CHEBI: 33517) and ethanol (CHEBI: 16236).
Neither of the entries in ChEBI contain the original term
listed as a synonym but instead have listed –CN and –OH.
Those terms (with the hyphen) should have been used in-
stead, so they could properly represent the entities as chemi-
cal groups. The used terms (without the hyphen) make it
hard to correctly map the entities to ChEBI. The dictionary-
based method does not even recognize these terms as chem-
ical entities.

In Table 4, a comparison was made about the efficiency of
the entity resolution of both methods, because only named
entities correctly recognized by both approaches are consid-
ered and the focus of evaluation is the performance of the
mapping of those named entities. Precision of the resolution
is around 80% higher with an exact matching assessment and
decreasing for more relaxed assessments. The precision of
our entity-resolution method is consistently higher (3–7%)
than the precision of the dictionary-based method.

4. Conclusions

Our work started by enriching the mapping of chemical enti-
ties to ChEBI in a manually annotated gold standard corpus
of patent documents. This enabled a proper evaluation of
entity-resolution tasks in addition to entity recognition tasks.
Using this corpus, we developed a machine-learning method
for chemical named entity recognition and we compared its
performance against the popular dictionary-based method,
Whatizit.

Results show that the dictionary-based method can al-
ready provide competitive results in recognizing chemical
named entities, obtaining an F-measure of up to 70%. How-
ever, our machine-learning method outperformed the dic-
tionary-based method, by having an ∼20% average increase
in the F-measure. A known drawback of dictionary-based
methods is the inability to recognize entities not present in
the dictionary used, and many such entities were present in
the corpus. So we tested both systems using only the subset of
entities in the corpus to which curators had assigned a ChEBI
identifier. Still, the machine-learning method outperformed
the dictionary-based method with a ∼15% average increase
in the F-measure.

The dictionary-based method intrinsically performs the
resolution of the recognized entities, but for the machine-
learning method a resolution method is required. Thus, we
developed a resolution method based on lexical similarity
for mapping chemical entities to ChEBI, which was used to
perform the resolution of the recognized chemical entities
by our machine-learning approach. This method has shown
to be effective, surpassing the dictionary-based method in
entity-resolution task by 2–5% in F-measure.

Analyzing the process of entity identification (combined
recognition and resolution tasks), the machine-learning
method combined with lexical similarity outperformed the
dictionary-based method by an average of ∼15% F-measure.

Overall, we demonstrated that a completely dictionary
independent machine learning entity recognition method
and a lexical similarity resolution method can surpass dic-
tionary-based methods in recognizing chemical compounds
and mapping them to the ChEBI database. In addition, our
method has the ability to find novel entities and aid in the
extension of chemical data resources. The top result of 77%
F-measure is a promising result and makes this system useful
in semisupervised tasks.

Future work will focus on automatically reducing the
number of recognition errors, by taking advantage of the on-
tology structure of ChEBI. To this end, we will explore the
fact that a given document has a limited focus, and thus will
contain chemical entities which are somehow related to each
other. Using semantic similarity methods over the ChEBI on-
tology, we expect to measure the confidence on an automatic
entity identification by its semantic similarity with other en-
tities also identified in the text [20].

5. Methods

5.1. Dictionary-Based Method. Dictionary-based methods
normally create lists containing synonyms and term variants
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Figure 2: Example of Whatizit. The first line shows a small example of an input to whatizit. The second line shows the output, where the
identified entities were marked and mapped to ChEBI identifiers.

from existing data resources and match them to the litera-
ture. This approach relies on the availability and complete-
ness of terminologies to find matching entities in the text.
Whatizit is a popular text processing system that performs
exact matching between the terms in a lexicon and the terms
in the literature. Several lexicons are available in Whatizit
to use through pipelines that annotate most kinds of bio-
medical entities. ChEBI is one of the dictionaries available
in Whatizit, through the pipeline whatizitChebiDict.

The pipeline whatizitChebiDict can be accessed by web
services, taking as input an XML file which consists of the
text we want to process between text tags. As output Whatizit
provides the XML file with the recognized entities between
ne tags, the entity resolution is given by the corresponding
ChEBI identifiers assigned as attributes to the tag.

Figure 2 shows an example of a piece of text given to
Whatizit through the whatizitChebiDict and the correspond-
ing result of entity identification.

5.2. Machine-Learning Method. Conditional random fields
(CRFs) [21] have been very successfully used in biomedical
named entity recognition tasks [22], so we decided to use the
CRF implementation of MAchine Learning for LanguagE
Toolkit (MALLET) [23] for the development of our ma-
chine-learning method. MALLET is a Java-based package for
statistical natural language processing, document classifica-
tion, clustering, topic modeling, information extraction, and
other machine-learning applications to text.

The first step in the entity recognition process is the split-
ting of the text into a sequence of tokens. The tokenization
was performed using a specifically adapted tokenizer for
chemical text proposed by [24].

A set of tags was defined in order to properly denote the
boundaries of the named entities present in the corpus. The
set of tags is composed of five tags, namely, NO (nonchemical
token), NE (single-token chemical entity), S-NE (start token
of a multi-token chemical entity), M-NE (middle token of a
multitoken chemical entity), and E-NE (end token of a mul-
titoken chemical entity). For example, the sentence “. . .an
oligomeric amdioamine salt and an amidoquat. . .” would be
correctly tagged by the sequence of tags NO, S-NE, M-NE,
E-NE, NO, NO, NE.

Each token is represented as a feature set (plus the correct
tag in the training), which includes the stem of the token,
prefix and suffix of the token and indication if the token is a
number.

For example, for the excerpt “. . .cosmetic compositions
containing colostrum, tocopherols, zinc oxide and hyaluronic

acid . . .” (the chemical entities present are in italic) the list
of tokens obtained by the tokenizer and the feature sets are
shown in Table 5.

A richer feature set could be used, especially with the aid
of chemical data resources that can provide, for instance,
the information if the token is included in the dictionary,
and other data such as frequencies for chemical suffixes and
prefixes. The efficiency of the case-based method can certain-
ly be improved using this richer sets of features that take
advantage of the knowledge provided by such chemical re-
sources, but for this study, we were interested in a fully dic-
tionary independent approach to be compared with a fully-
dictionary-based approach, so no dictionary-based features
were used.

The CRF implementation uses a sequence of sets of such
features, plus a label (for the documents in the training set)
for the training step. The resulting model can then be used to
predict the label of another sequence of features (the testing
set).

In the chemical entity recognition performed by our ma-
chine learning approach, each one of the 40 documents was
annotated using a model generated using the remaining 39
documents as a training data, using a leave-one-out crossval-
idation approach.

The output of this method contains the chemical named
entities that could be identified but does not map those enti-
ties to the ChEBI dictionary. An entity-resolution method is
required to perform the mapping of the identified entities.

5.3. Entity-Resolution Method. The entity-resolution method
we used is an adaptation of our lexical-similarity method
used in the ontology matching algorithm BLOOMS [25]
which in turn is based on FiGO, a methodology for finding
GO terms in text [26]. It takes as input the string identified
as containing a chemical compound name and returns the
ChEBI identifier it corresponds to along with a confidence
score. The method is composed of two sequential approach-
es: exact match and partial match.

In the exact match, we determine if the input string con-
tains any descriptors of ChEBI terms, that is, their names
and synonyms. If an exact match is found, the corresponding
ChEBI identifier is returned along with a confidence score.
Here, we used a confidence score of 1, when the match is
to the name of a term, and of 0.8 when the match is to a
synonym.

If no exact match is found, the partial match method is
run. It relies on shared words between the input string and
the ontology terms names and synonyms. In a preprocessing
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Table 5: Example of a sequence of features, and the corresponding label (Tag).

Token Stem Prefix Suffix Number Tag

cosmetic cosmet cos tic No NO
compositions composit com ons No NO
containing contain con ing No NO
colostrum colostrum col rum No NO
tocopherols tocopherol toc ols No NE
zinc zinc zin inc No S-NE
oxide oxid oxi ide No E-NE
and and and and No NO
hyaluronic hyaluron hya nic No S-NE
acid acid aci cid No E-NE

step, the ontology vocabulary (the set of all textual informa-
tion contained in an ontology in the form of names and syn-
onyms) is processed through tokenization and removal of
stopwords, to generate the list of ontology words. Then, the
evidence content of each ontology word is calculated as the
negative logarithm of the relative frequency of a word in the
ontology vocabulary:

EC(w) = − log f (w), (1)

where f (w) is the frequency of the word in the vocabulary of
an ontology.

The final frequency of a word corresponds to the number
of terms that contain it in their descriptors (names or syn-
onyms). This means that a word that appears multiple times
in the descriptors of a term is only counted once, preventing
bias towards terms that have many synonyms with similar
word sets. The evidence content of ontology words and the
presence of words in ontology terms are stored in a database
to support the partial match algorithm.

When the partial match algorithm is run, the input string
is processed in a similar fashion, via tokenization and stop-
word removal. Then, ontology descriptors that share words
with the input string are retrieved as partial matches. The
final score, SimPM, for each partial match between the input
string and a term descriptor is given by a Jaccard similarity,
which is calculated by the number of words shared by the
two concepts, over the number of words they both have, with
each word being weighted by its evidence content:

SimPM = desc×
∑

w∈(input∩td) EC(w)
∑

w∈(td) EC(w)
, (2)

where desc is a weighting factor corresponding to whether
the match is made to a term’s name or synonym, w are the
ontology words contained in the input string and descriptor
of the term (td), and EC is the evidence content of a word.
Here, we used a desc value of 1 for matches to names and of
0.8 for matches to synonyms. SimPM provides a measure of
the relevance of the words shared by the input string and the
term descriptor versus the total relevance of words in the
term’s descriptor. The partial matches are ranked by this
score, and the method returns the ChEBI identifier corre-
sponding to the descriptor with the highest score, for each
input entity.
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