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Abstract
Background Alzheimer's disease (AD) is one of the most common causes of dementia in old people. Neuronal deficits such 
as loss of memory, language and problem-solving are severely compromised in affected patients. The molecular features of 
AD are Aβ deposits in plaques or in oligomeric structures and neurofibrillary tau tangles in brain. However, the challenge 
is that Aβ is only one piece of the puzzle, and recent findings continue to support the hypothesis that their presence is not 
sufficient to predict decline along the AD outcome. In this regard, metabolomic-based techniques are acquiring a growing 
interest for either the early diagnosis of diseases or the therapy monitoring. Mass spectrometry is one the most common 
analytical platforms used for detection, quantification, and characterization of metabolic biomarkers. In the past years, both 
targeted and untargeted strategies have been applied to identify possible interesting compounds.
Aim of review The overall goal of this review is to guide the reader through the most recent studies in which LC–MS-based 
metabolomics has been proposed as a powerful tool for the identification of new diagnostic biomarkers in AD. To this aim, 
herein studies spanning the period 2009–2020 have been reported. Advantages and disadvantages of targeted vs untargeted 
metabolomic approaches have been outlined and critically discussed.
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1 Introduction

Alzheimer's disease (AD) is a progressive untreatable neu-
rodegenerative disorder, which impairs the integrity of brain 
cells, making gradually the individual who is affected, una-
ble of a normal life. AD is the fifth leading cause of death for 
people aged 65 and over (Alzehimers Associacion, 2019). 

Presently, more than 47 million people are estimated to be 
living with dementia worldwide with a projection to rapidly 
reach 75 million by 2030 and 135 million by 2050 (Alze-
himers Associacion, 2019). Characteristics of the disease 
are the progressive loss of memory, reasoning, judgment, 
and language, to such an extent that interferes with daily life 
and personal activities. Intermediate stages between normal 
ageing and AD, defined as subjective memory complaint 
(SMC) and mild cognitive impairment (MCI), have been 
studied and characterized (Rami et al., 2010).

AD is a complex disease and several could be the factors 
involved in its pathogenesis. These factors could be divided 
in three different groups: genetic factor, non-genetic factors 
and environmental and aging factors (Fig. 1).

The pathological hallmarks in AD are the formation 
and brain accumulation of extracellular beta-amyloid (Aβ) 
deposits, as oligomeric soluble structures or plaques, and 
intraneuronal neurofibrillary tangles containing hyper-
phosphorylated tau protein (Huang, 2012). Aβ aggregates 
and tau tangles promote synaptic deficits and enhance 
inflammatory processes and oxidative stress (Reiman 
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et  al., 2006). Although the exact cause of AD is still 
debated, the accumulation of Aβ in the brain provided a 
rational basis to hypothesize that it represents an initi-
ating factor in AD pathogenesis, activating a cascade of 
events that progresses with tau-tangle formation and ends 
in neurodegeneration (Attems & Jellinger, 2014; Bailey 
et al., 2004; Farkas & Luiten, 2001; Love & Miners, 2016; 
Matrone et al., 2008, 2009; Oakley, 2006). Nevertheless, 
the lack of correlation between Aβ deposits/tau tangles 
accumulation in brain and neuronal degeneration, the 
amyloidogenic hypothesis is still object of an extensively 
compelling research (Iannuzzi et al., 2020; La Rosa et al., 
2015; Leonenko et al., 2019; Matrone, 2013; Matrone 
et al., 2019, 2020; Poulsen et al., 2015, 2017).

In line with the amyloidogenic hypothesis, in the early-
onset familial AD (EOAD) forms genetic mutations in APP 
or Presenilin1/2 (Fig. 1) (http:// www. alzfo rum. org/ mutat 
ions) genes cause an increase in Aβ42 production with a 
higher propensity for aggregation and/or with changes in 
the ratio of Aβ42/Aβ40 formation (http:// www. alzfo rum. org/ 
mutat ions). (Zhang et al., 2017).

On the other side, the majority of AD cases (90%–95%) 
are late-onset Alzheimer disease, (LOAD) which are “spo-
radic” and with no apparent familial recurrence. (Van Cau-
wenberghe et al., 2016). Several other mechanisms, different 
from Aβ accumulation, have been also reported to contribute 
to LOAD, such as hypertension, dyslipidemia, hypercho-
lesterolemia, IGF/insulin resistance disorders, obesity and 
diabetes, thus suggesting to refer to LOAD as a metabolic 
disease (Leonenko et al., 2019; Van Cauwenberghe et al., 
2016).

Gender difference also has a considerable impact on the 
onset of AD. Indeed, more than 60% of AD individuals are 
composed of post-menopausal women, and the presence of 
ApoE4 allele makes women more vulnerable in develop-
ing AD early (Rahman et al., 2016). Moreover, many stud-
ies linking nutrients intake and the risk of AD are rapidly 
increasing in the literature (Angeloni et al., 2020; Bracko 
et al., 2020; Gu et al., 2010; Shishtar et al., 2020; Veurink 
et al., 2020).

1.1  Progress in diagnostic criteria: biomarkers 
in Alzheimer’s disease

The latest National Institute on Aging and Alzheimer’s 
Association (NIA-AA) 2018 guidelines, have underlined 
the importance to assess three different biomarkers before 
AD diagnosis. This has been classified as the A/T/N system, 
where “A” refers to amyloid β (Aβ), that can be assessed 
by either PET imaging of amyloid plaques or cerebrospinal 
fluid (CSF) of Aβ42 or the Aβ42 to Aβ40 ratio; “T” refers to 
tau pathology and can be measured by CSF phosphorylated 
tau or tau PET imaging of parenchymal neurofibrillary tan-
gles; “N” refers to neurodegeneration and can be evaluated 
as elevated levels of CSF total tau, decreased glucose metab-
olism detected by FDG-PET imaging, and brain atrophy by 
using structural MRI (Jack et al., 2018). Additionally, recent 
reports indicate that the pathophysiological process of AD is 
detectable in CSF and the imaging markers for up to 20 years 
before dementia appears. (Jack et al., 2018; Sperling et al., 
2014). In fact, the challenge in effectively treating AD, and 
yet perhaps the greatest promise, consists in the possibil-
ity to find biomarkers for the early detection, allowing the 

Fig. 1  Risks factors in AD
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design of a personalized therapeutic approaches for each 
patient and the monitoring of the therapeutic response dur-
ing the treatment. To achieve this goal a powerful bioanalyti-
cal pipeline should be used (Hampel et al. 2018).

Metabolomics strategies have the power to compare the 
metabolome in biological samples under normal conditions 
with altered states promoted by diseases, including AD. 
Common analytical techniques used for this purpose are 
nuclear magnetic resonance (NMR) and liquid chromatog-
raphy—mass spectrometry (LC–MS). Indeed, very recently, 
NMR-based metabolomics analysis of biological fluids has 
provided models to discriminate among subjects with dif-
ferent stages of AD (Di Costanzo et al., 2020). Neverthe-
less, in the last decade, there has been enormous progress 
in LC–MS-based metabolomics, providing researchers with 
a variety of choices for chromatographic separation, ioni-
zation, and mass analyzers. These technologies have been 
applied in several clinical investigations for the identification 
of potential biomarkers for different pathologies (An et al., 
2020; Cho et al., 2020; Huang et al., 2020; Pinto et al., 2020; 
Tang et al., 2020; Wilkins, et al. 2018; Yin & Xu, 2014).

In the present review we focused our attention on the 
most recent metabolomics studies (2009–2020) oriented to 
the discovery of AD’s biomarkers using LC–MS platforms. 
We classified the studies according to the approach used, 
targeted or untargeted, highlighting advantages and disad-
vantages of both approaches. Moreover, we evaluate the 
perspective for metabolomics in the complex and important 
pursuit of biomarkers for AD. Dissecting metabolic differ-
ences in the biofluids of AD patients may prospect the possi-
bility to identify specific pathways within specific subgroups 
of patients, guiding the way to a personalized medicine.

2  Metabolomics studies

Metabolomics studies applying untargeted approach have 
been important for the selection of potential biomarker for 
AD (Wilkins et al., 2018). The wide number of metabolites 
that have been studied, especially using LC–MS/MS plat-
forms, could help in shed light on alteration in metabolic 
pathway in AD paving the way to possible novel diagnostic 
tools. Herein, in almost all of the works carried out with 
metabolomics, the data collected were analyzed using mul-
tivariate statistical modeling.

2.1  Untargeted metabolomics studies

Several previous studies have demonstrated the presence 
of altered lipid profile in different stages of AD. The first 
attempt to identify biomarkers using metabolomics in 
serum of AD patience was carried out by Purandare et al. 
in 2009. To achieve their goal, the authors used both a gas 

chromatography time of flight mass spectrometry (GC-
TOF–MS) and a LTQ Orbitrap to carried out the complete 
metabolic profiling of the serum samples (Purandare et al., 
2009).

In the same year, Greenberg and colleagues investigate 
potential biomarkers for AD in human plasma.by UPLC-
QTOF-MS was performed on a small set of samples (28 AD 
and 10 controls). Due to the high levels of inter- and intra-
subject variability and the small number of samples they 
were unable to identified a statistically significant biomarker. 
However, they identified several plasma metabolites worthy 
of further research, suggesting that lipid metabolites (includ-
ing bile acids) could be promising biomarkers (Greenberg 
et al., 2009).

Nine potential biomarkers were identified by UPLC-QqQ-
MS on plasma samples from 20 AD patients and 20 healthy 
controls. Among the potential target there were lysophos-
phatidyl cholines (LPCs), tryptophan, dihydrosphingosine, 
phytosphingosine and hexadecasphinganine (Li et al., 2010). 
Further investigation on AD’s lipid profiling has be done 
by Han et al. (2011). They investigated over 800 specific 
lipid molecules in 26 AD patients and 26 normal controls 
by multi-dimensional mass spectrometry (shotgun). Consist-
ently with the previous findings, eight sphingomyelin spe-
cies (containing long aliphatic chains), were significantly 
lower in AD compared to aged-matched controls (Han et al., 
2011).

Oresic et  al. (2011) were able to characterized AD 
patients by diminished ether phospholipids, phosphatidyl-
cholines, sphingomyelins and sterols by UPLC-TOF–MS on 
plasma samples. They also showed the predictive power of 
2,4-dihydroxybutanoic acid for AD progression (p = 0.0048) 
(Oresic et al., 2011).

Non targeted metabolomic approach based on capillary 
electrophoresis–mass spectrometry (CE–TOF–MS) has been 
used to generate a predictive model for Alzheimer disease. 
Ibanez et al. (2012) studied the metabolic difference in cere-
bral-spinal fluid samples obtained from 85 AD patients with 
different cognitive status (73 samples to build the predictive 
model and 12 samples for its validation). Their predicted 
model is based on 14 metabolites and has a reported diag-
nostic accuracy of 83%. Moreover, choline, dimethylargi-
nine, arginine, valine, proline, serine, histidine, creatine, car-
nitine, and suberylglycine were identified as possible disease 
progression biomarkers (Ibanez et al., 2012).

Inoue et al. (2013) proposed a brain metabolic profiling 
using UPLC coupled with time-of-flight mass spectrometry 
analysis. Significant differences in the levels of spermine and 
spermidine were identified comparing data from 10 AD with 
10 controls (Inoue et al., 2013).

Whiley et al. (2014) investigated plasma lipids in AD, 
the initial metabolic screening involving both UPLC-QTOF-
MS, and NMR spectroscopy. Plasma from 3 different groups 
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was screened: individuals with AD, individuals with MCI, 
and age-matched controls (NC). In details, the authors used 
10 NC, 13 AD, 12 MCI for the screening phase, while 49 
NC, 42 AD and 50 MCI were involved in the validation step. 
The authors detected abnormal phosphatidylcholine levels 
(PCs) in plasma of AD individuals. In detail, they identified 
3 PCs: PC16:0/20:5 (p < 0.001), PC16:0/22:6 (p < 0.05), and 
PC18:0/22:6 (p < 0.005), that were not previously linked to 
AD that could possibly interact with brain amyloid deposit 
and have a crucial role in AD. These 3 PCs are therefore 
believed to be a potential biomarkers and easy target for 
biochemical assay development (Whiley et al., 2014).

In the same year, González-Domínguez and co-authors 
carried out the first comprehensive characterization of serum 
phospholipids alterations in subjects with AD. A total of 19 
NC samples and 17 Ad samples were included in the study. 
The phospholipids profiling was carried out by shotgun 
metabolomics on UPLC-QTOF-MS platform (González-
Domínguez et al., 2014). Furthermore, they used ICP-MS to 
detect phosphorus-containing compounds. As results, signif-
icant disorders in lipids concentration were detected, encom-
passing alterations in phosphatidylcholines, phosphatidyle-
thanolamines, plasmenylcholines, plasmenylethanolamines 
and lysophospholipids.The authors proposed a panel of these 
phospholipids according to their VIP score and taking into 
account only variables with VIP values higher than 1.5. The 
authors proposed a multifactorial origin for these alterations 
involving overactivation of phospholipases, increased anab-
olism of lysophospholipids, peroxisomal dysfunction and 
inequalities in the levels of saturated/unsaturated ratio of 
fatty acids (González-Domínguez et al., 2014).

Wang et al. (2014) investigated altered metabolites in 
plasma samples of AD patients applied a comprehensive 
analysis using both UPLC-QTOF-MS platform and a GC-
TOF–MS. In this study, 57 AD patients, 58 MCI patients, 
and 57 normal controls were included. ROC analysis and 
logistic regression were used for the data analysis to reveal 
the most qualified biomarker. A panel of six metabolites: 
arachidonic acid, N,N-dimethylglycine, thymine, glutamine, 
glutamic acid, and cytidine with an AUC of 1.00 were 
selected to discriminate AD subjects. While, five metabo-
lites: thymine, arachidonic acid, 2-aminoadipic acid, N,N-
dimethylglycine, and 5,8-tetradecadienoic acid with AUC of 
0.998 (95% CI 0.993, 1.000) discriminate the MCI subjects. 
Furthermore, the authors carried out statistical analysis to 
find possible biomarker that can distinguish between subject 
with ApoEε4( +) mutation carriers and non-carriers. No dif-
ferences in the plasma metabolic profiles in the AD group 
(p = 0.390) and in the MCI (p = 0.539), group compared to 
control subjects, was found (Wang et al., 2014).

Takayama et al. in 2015 (2015) described a new untar-
geted UPLC-QqQ-MS method for analyzing chiral metabo-
lites, in particular aminoacids, in brain of 10 AD subjectes 

and 10 NC. Natural amino acids usually belong to the 
L-series, nevertheless the presence of the D-enantiomers can 
be related to a specific pathology. Takayama’s method relies 
on chiral derivatization of homogenate from AD’s brain fol-
lowed by triple quadrupole-mass spectrometry analysis. The 
study highlighted that 9 compounds belonging to the class 
of carboxylic acid and 15 belonging to amines class, could 
be suitable biomarker candidates in the AD brain. However, 
validation steps are needed for this study (Takayama et al., 
2019).

In the same year, Ansoleaga et al. (2015), analyzed the 
alteration of purine metabolism in brain of 58 AD patients 
compared with 34 control. They applied real time PCR (RT-
PCR) for functional genomic and mRNA expression levels. 
UPLC-QTOF-MS platform was used to analyze brain extract 
samples. Alterations of purine metabolism’s enzymes were 
detected by RT-PCR. The statistical analysis of the QTOF 
data identified altered levels of dGMP, glycine, xanthosine, 
inosine diphosphate, guanine, and deoxyguanosine. The 
alteration of purine metabolism may affect the export of 
triphosphates nucleoside to extracellular space (Ansoleaga 
et al., 2015).

Paglia and co-authors studied alteration in post-mortem 
frontal cortex from AD’s patients by lipidomics and metabo-
lomics using an UPLC-QTOF-MS platform for an unbiased 
approach (Paglia et al., 2016a). For this study a high resolu-
tion mass spectrometer in data-independent mode (MSE) 
was used. Thirty-four altered metabolites belonging to six 
metabolic pathways were capable to distinguish AD from 
negative control. In details, the metabolic pathways were: 
(i) alanine, aspartate, and glutamate metabolism, (ii) argi-
nine and proline metabolism, (iii) cysteine and methionine 
metabolism, (iv) glycine, serine, and threonine metabolism, 
(v) purine metabolism, and (vi) pantothenate and CoA bio-
synthesis (Paglia et al., 2016a).

In the same year another study on serum samples of 75 
subjects with AD, 17 MCI and 45 NC was conducted by 
Gonzalez-Dominguez et al. (2016). To achieve this goal, 
the samples were investigated by UPLC-QTOF-MS. Com-
pounds were annotated by matching the high-resolution 
mass data with those available in metabolomics databases. 
After statistical analysis the most relevant alterations in AD 
subjects several discriminant metabolites were found for the 
first time in the phospholipids and sphingolipids metabo-
lism. In particular, decreased levels of oleamide (p = 0.025), 
histidine (p = 0.039) and monoglycerides together with 
increased level of phenylacetylglutamine were also found 
in AD subjects. The authors suggested that the lower levels 
of histidine are probably due to its involvement in the anti-
inflammatory response to the disease (Gonzalez-Dominguez 
et al., 2016).

Liang and co-authors investigate the differences in saliva 
metabolites from MCI and age-matched AD subjects using 
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an untargeted metabolomic approach based on fast ultra-
high performance liquid chromatography coupled with TOF 
(FUPLC-TOF–MS) (Liang et al., 2016). For this study 583 
saliva samples from subjects with MCI and 660 samples 
from AD patients were investigated. The statistical analy-
sis disclose a total of 10 metabolites can distinguish among 
AD and the MCI group. These candidate biomarkers were 
highlighted using VIP-score (VIP > 12 and p < 0.01): Cyti-
dine (VIP = 14.34), Sphinganine-1-phosphate (VIP = 40.45), 
3-dehydrocarnitine(VIP = 21.18), Phenyllactic acid 
(VIP = 35.11), Pyroglutamic acid (VIP = 16.96), L-glutamic 
acid (VIP = 16.80), Ornithine (VIP = 36.62), L-tryptophan 
(VIP = 12.66), Inosine (VIP = 25.88) and Hypoxanthine 
(VIP = 18.29. In addition, the author performed a ROC anal-
ysis and Cytidine, sphinganine 1-phosphate, and 3-dehydro-
carnitine had the areas under curve (AUC) values of 0.995, 
0.934, and 0907, respectively, showing an high discrimina-
tion power and confirmed the potential value for diagnosing 
AD. In particular, cytidine had a sensitivity of 99.7% and a 
specificity of 97.3% for diagnosing AD (Liang et al., 2016).

Proitsi and colleagues, recently performed the largest 
untargeted plasma lipidomics investigation for AD biomark-
ers (Proitsi et al., 2017). They performed the analysis on 
a UPLC-QTOF-MS system and data analyzed by univari-
ate and multivariate analysis methods. MRI of whole brain 
of AD patients was also performed. As result, cholesteryl 
esters/triglycerides and phosphatidylcholines were related to 
disease progression and brain atrophy. One of the metabo-
lites strongly associated with AD was the PC 40:4. In addi-
tion, an unknown compound with m/z 367, was associated 
with an increased risk for AD. All together, these findings 
helped to extend knowledge of AD progression mechanisms 
(Proitsi et al., 2017).

An untargeted metabolomics on saliva samples was car-
ried by Huan et al. (2018) using a HPLC-FTICR-MS plat-
form. A total of e 109 samples were analyzed, in details 35 
CN, 25 MCI, 22 AD in the screening phase and 10 CN, 10 
MCI, 7 AD for the validation phase. Metabolites from NC, 
MCI and AD subjects were derivatized by dansylation. The 
metabolites where identified by the comparison of the spec-
tra with those already reported in the human metabolome 
database (HMDB) and in the evidence-based metabolome 
library (EML) using the software My Compound ID. The 
data analysis was conducted using machine-learning statisti-
cal techniques. With this workflow the authors (Huan et al., 
2018) highlighted clear differences of metabolic changes 
across the three clinical conditions. However, the separation 
between NC and MCI samples was not significant. Pheny-
lalanyl-proline, urocanic acid, phenylalanyl-phenylalanine, 
and tryptophyl-tyrosine (95% CI 0.711–0.939) were capable 
to diversify the AD from the NC. While phenylalanyl-pro-
line, alanyl-phenylalanine and phenylalanyl-glycine (95% CI 
0.743–0.986) ratio differentiated AD from MCI. This study 

on salivary biomarker provided insight in AD development 
and was an excellent opportunity for clinical applications 
(Huan et al. (2018).

In 2019, lipidomics analysis of serum samples from 
the Alzheimer’s Disease Neuroimaging Initiative baseline 
(ADNI) cohort 1 (226 NC, 392 MCI and 188 AD) was car-
ried out by Barupal and co-authors using a UPLC-QTOF-
MS (Barupal et al., 2019). The study was performed to 
investigate metabolic disorders that might contribute to AD 
onset and development. In details, the authors investigated 
both individual lipid and sets of lipids to find out eventual 
correlations with disease diagnosis, CSF markers of disease 
αβ 1–42, CSF total tau and cognitive decline and brain atro-
phy. For the data analysis the authors applied Spearman-rank 
correlation–based matrices and Kolmogorov–Smirnov test 
for P-value distributions. The statistical analysis highlighted 
that free fatty acids and acylcarnitines were positively cor-
related with both SPARE-AD and total tau in CSF. For these 
metabolites, the average Spearman correlation coefficient 
rho across sets was 0.63 with a vary between 0.19 < ρ < 0.82. 
This finding fortify the idea to use these serum lipids as 
biomarkers for neurodegeneration. Moreover, from the same 
analysis, notable associations of omega-3 and omega-6 lipids 
levels and AD diagnosis was found. Finally, the authors sug-
gested the roles of genetic variations, drugs, and diet on the 
metabolism of MUFA and PUFAs in AD should be further 
investigated (Barupal et al., 2019).

2.2  Targeted metabolomics studies

Targeted assays are focused on a small panel of promising 
metabolites whose chemical identity is known before data 
acquisition, and their absolute quantitation is accomplished 
by isotopically-labelled internal standards or by using the 
standard addition method (Broadhurst et al., 2018). Even 
though this approach is not suitable for the discovery of 
novel biomarkers, it is appropriate for the validation of pre-
viously proposed.

Czech et al. (2012) performed a metabolic target analysis 
on 79 AD and 51 healthy controls by using HPLC-QqQ-MS. 
Their analysis showed that increased cortisol and cysteine 
level are related to AD, as well as reduced level of uridine. 
Specificity and sensitivity was increased when the 3 bio-
marker were used together to identify AD cases (Czech 
et al., 2012).

Liu et al. studied the metabolic profile of two groups of 
subjects (23) affected with AD with different mean age: 80 
or 60 years. The authors used HPLC–MS/MS platform to 
asses L-arginine content in different brain tissues. The study 
highlighted that concentrations of L-arginine were altered 
in relationship with age and AD. In addition, the activity of 
nitric oxide synthase and arginase were altered with age and 
in AD in a region-specific manner of the brain. However, 
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the authors suggested that more in depth studies are needed 
(Liu et al., 2014).

The previous study highlighted the possible importance 
of lipids alterations in the AD’s development. Thus, lipid 
metabolites appear to be highly useful to develop diagnostic 
tools for AD and MCI.

Klavins et al. (2015) applied targeted quality-controlled 
metabolomics approach using the absolute IDQ p180 Kit 
using a UPLC-QTrap-MS. The authors of the study analyzed 
a high number of plasma samples from (35) NC, (33) MCI 
and (43) AD subjects. Lipids concentrations were capable 
to differentiate controls from MCI and AD. Furthermore, 
the ratio of PC 34:4 and lyso PC 18:2 differentiates con-
trols from MCI (p = 0.0000007; area under the curve (AUC) 
under ROC = 0.85) and from AD (p = 0.0000009; AUC 
under ROC = 0.82) significantly (Klavins et al., 2015).

To gain further knowledge on late-onset AD (LOAD) 
Wood et al. (2016) investigated the plasma levels of diacyl-
glycerols and ethanolamine plasmalogens of a wide cohort 
of patients (51 NC, 77 MCI and 90 AD) using high reso-
lution Orbitrap-MS. Interestingly, the lipidomics analysis 
was capable to clearly differentiate both MCI and LOAD 
subjects. The patients were clustered in three groups: (i) 
subjects with lower circulating ethanolamine plasmalogen 
levels; (ii) subjects with higher plasma diacylglycerol levels; 
and (iii) patients with neither of these lipid alterations. Nev-
ertheless, the data need further validation as also suggested 
by authors, because in the pilot study of a small patient 
cohort they only detected an increase of DAG levels in MCI 
patients but failed to detect any patients with plasmalogen 
deficits. (Wood et al., 2016).

In 2014, Mapstone and co-authors proposed 10 plasma 
phospholipids, as a possible biomarker for memory impair-
ment in older adults (Mapstone et al., 2014). Casanova et al 
(2016) wanted to validate the Mapstone’s results using two 
large independent longitudinal studies of AD’s patients’ 
groups. They tested the metabolites by both flow injection 
analysis mass spectrometry (FIA-MS/MS) and HPLC-
QTrap-MS. In addition, they also performed the analysis 
of other 187 metabolites without a priori hypotheses. Acyl-
carnitines, hexoses, amino acids and biogenic amines were 
analyzed by quadrupole-ion trap mass spectrometer. The 
authors were unable to replicate the Mapstone’s results in the 
samples. However, from the unbiased analysis of the other 
metabolites the phospholipids with fatty acid chains from 
C30 to C44 carbon–carbon bonds, appeared to be important 
for the alterations in distinct metabolic pathways (Casanova 
et al., 2016).

Metallomics can be defined as the extensive analysis of 
metal and metalloids species present in a biological matrix. 
In this specific context, Paglia et al. (2016b) conducted a 
study aimed to develop an approach to detect the variation 
of serum elements in neurodegenerative processes using an 

ICP-MS. Four different groups were studied: 24 patients 
with subjective memory complaint (SMC), 20 subjects 
with MCI, 34 subjects with AD and 40 healthy subjects. 
The serum analysis was conducted by ICP-MS. A cohort of 
six essential elements (manganese, iron, copper, zinc, sele-
nium and calcium), toxic elements (such as mercury, vana-
dium, uranium, arsenic, strontium and tin) and their ratios 
were analyzed by a multivariate statistical model. In details, 
manganese, iron, copper, zinc, selenium, thallium, antimony, 
mercury, vanadium and molybdenum changed significantly 
among the four groups. Most of essential elements increase 
in SMC, while progressively decrease in MCI and AD. Toxic 
elements show a variable behaviour, since some elements 
tended to increase, while others tended to diminish in AD. 
Both essential, such as Se, Zn, and Mn, and toxic elements, 
such as V, Sr, Sn and U, strongly influenced the grouping 
of AD samples. Regarding the other groups Cu is a poten-
tial candidate to discriminate SMC from HS, while Mn, Se 
and Zn appear to be able to discern between MCI and SMC 
(Paglia et al., 2016b). For validation the authors selected 
the biomarkers with the (AUC) higher then 0.7 and statisti-
cal power higher than 70%. As general trend, AUC and p 
values resulted higher for ratios. Mn (AUC = 0.89) and V 
(AUC = 0.83) had the highest diagnostic power in the dis-
tinction between AD and HS. While Mn (AUC = 0.89) and 
the ratio Cu/Mn (AUC = 0.93), were ndividuated as appro-
priate biomarkers for discriminating NC from AD patients. 
These results supported the hypothesis that both toxic and 
essential metals could have an important role in the devel-
opment of AD, although further validation steps are needed 
(Paglia et al., 2015, 2016a).

Cristofano et al. (2016) investigated the amount of free 
L-carnitine, acetyl-L-carnitine and acyl-L-carnitines in the 
serum of 24 SMC, 18 subjects with MCI, 29 subjects with 
AD and 46 healthy subjects. The analysis of the sera were 
carried out on QTrap-MS instrument using labelled inter-
nal stadard for acyl-L-carnitines. The statistical analysis 
highlighted no metabolites changed significantly between 
SMC and MCI. Twelve metabolites and 3 molar ratios were 
identified by PLS-DA as VIP with a score > 1.3, showing 
significant alteration in the content of different L-carnitine, 
acetyl-L-carnitine and acyl-L-carnitine in Alzheimer’s dis-
ease groups. In details, serum acetyl-L-carnitine and acyl-
L-carnitine (C3-DC, C5-OH, C6:1, C10, C12, C12:1, C14, 
C14:1, C16:1, C18, C18:1 and C18:2) decreasing from HS 
through SMC and MCI up to AD patients. ROC curves 
showed that the diagnostic accuracy of acetyl-L-carnitine 
was very good (AUC = 0.82) and that of other acyl-carniti-
nes, such as C12, C18:1 and C18:2, was good (AUC between 
0.7 and 0.8), indicating that these metabolites could be pro-
posed as potential biomarkers for the diagnosis of AD. These 
lower levels of acyl-L-carnitines might be correlated with 
pertubation of transport of fatty acids into the mitochondria 
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resulting in impaired energy metabolism. However the 
authors suggested that further validation studies are needed 
before clinical applications (Cristofano et al., 2016).

Corso et al. (2017) studied the alterations of serum amino 
acids contents in patients over the course of development of 
AD diseases, with the main goal identify possible diagnostic 
biomarkers. 24 subjetcs with SMC, 18 subjects with MCI, 
29 subjects with AD and 46 healthy subjects were involved 
in the study. The analysis of serum samples was conducted 
by FIA-QTrap-MS. For the data analysis the authors used 
a ROC curve-based model evaluation (Tester). The model 
showed that the 10 biomarkers had a very good diagnostic 
power with an AUC of 0.958 in discriminating AD from HS. 
In details, the multivariate model comprise 6 amino acids 
(Glu, Asp, Phe, ASA, HomoCit, and Cit) and 4 ratios (Glu/
Cit, Cit/Phe, Xle/Phe, and Arg/Phe) that were capable of 
discriminated AD patients from healthy subjects with about 
96% accuracy. Furthermore, the study highlighted that the 
content of citrulline, argininosuccinate, and homocitrulline 
increase with progression of the disease. The detection of 
amino acids concentration may assist the characterization of 
patients metabotype during the progression of AD and moni-
toring their variation may help to detect at-risk individuals 
(Corso et al., 2017).

Chouraki et al. (2017) proposed four biomarkers can-
didates for AD diagnosis. A total of A total of 2067 
participants were followed over an average period of 
15.8 ± 5.2 years, at the end of the monitoring period only 
68 subjects developed AD. The data were collected by an 
UPLC-QTrap-MS. The plasma levels of 217 metabolites 
were measured in the participants to evaluate the dementia 
risk. Plasma anthranilic acid and homocysteine levels (95% 
CI 1.15–1.70; p value = 8.08 × 10 − 4) were significant asso-
ciated with risk of incident dementia: the risk increased by 
40% for an increase of one standard deviation. Furthermore, 
applying a more liberal p value threshold of 10–2, other 
three additional metabolites were individuated: glutamic 
acid (95% CI 1.11–1.72; p value = 3.80 ×  10−3), taurine (95% 
CI 0.60–0.92; p value = 6.91 ×  10−3), and hypoxanthine (95% 
CI 0.60–0.92; p value = 6.93 ×  10−3). The authors also high-
lighted the potential neuroprotective role of uric acid and 
taurine (Chouraki et al., 2017).

Considering that drugs may affect metabolism, John-Wil-
liams et al. (2017) developed a dataset starting from serum 
samples from ADNI 1 (199 control, 356 MCI and 175 AD 
subjects) cohort where they include information on medica-
tions taken by the patients. The dataset was developed to 
assist pharmacometabolomic investigations and the discov-
ery of metabolic failures correlated with AD. The analysis 
was carried out by UPLC-QqQ-MS platform. The data set 
can be accessed through Sage Bionetworks’ Synapse plat-
form (Jhon-Williams et al., 2017). Indeed, medicinal can 
results in variation of metabolites levels, thus the authors 

generate a statistical method, in R environment, for auto-
mated curation of metabolomics data. The scripts allow 
the removing of samples that have missing clinical data or 
the deletion of analytes with poor precision. However, the 
analysis suffered of some limitation as also stated by the 
authors. For instance, the low mass resolution of QqQ-MS 
used for collecting the data was unable to resolve the peak 
on isomeric or isobaric level. Another weakness is that the 
curation workflow is very stringent, and thus good measure-
ments can be excluded from the analysis, precluding cor-
relational studies.

Marksteiner et al. (2018) used UPLC-QTrap-MS platform 
to quantify 20 bile acids. The metabolites were quantita-
tively analyzed in plasma of 30 healthy subjects, 20 MCI 
and 30 AD patients. The levels of lithocholic acid were sig-
nificantly higher (50 ± 6 nM, p = 0.004) in plasma of AD 
patients compared to healthy controls (32 ± 3 nM). Levels 
of glycochenodeoxycholic acid, glycodeoxycholic acid and 
glycolithocholic acid were significantly enhanced (p < 0.05) 
in AD patients compared to MCI. All other cholic acid stud-
ied were not significantly different among the three class of 
subjects. The authors also conduct ROC analysis, the results 
showing that lithocholic acid showed an AUC of 0.689 (95% 
CI 0.556–0.822). However, the study showed low diagnostic 
accuracy and could be considered a pilot study (Marksteiner 
et al., 2018).

A very interesting parallel metabolomics analyses was 
recently carried out by Varma and colleagues using both 
FIA- MS/MS and HPLC-QTrap-MS (Varma et al., 2018). 
The study was divided into two phases and accomplished in 
both brain and blood samples to identify systemic changes 
of metabolites quantity during AD progression. For phase 1, 
44 samples (14 CN, 15 asymptomatic Alzheimer’s disease 
(ASYMAD) and 15 AD) were collected from Baltimore 
Longitudinal Study of Aging (BLSA), for the validation 
phase both BLSA (115 NC and 92 AD) and ADNI (216 
NC, 366 MCI and 185 AD) were used. After data collection, 
26 metabolites capable to discriminate between AD and HC 
subjects were selected using machine-learning methods. The 
main results of the study showed that sphingomyelins (SM), 
hydroxy-sphingomyelins and glycerophospholipids (PC) 
were closely associated with the extent of AD pathology and 
progression. Moreover, the authors identified specific SM 
and PC through machine-learning methods to generate an 
AD-specific brain metabolite signature, and then clustered 
them to map the key biological pathways implicated in AD 
pathogenesis including tau phosphorylation, Aβ metabolism, 
calcium homeostasis, acetylcholine biosynthesis, and apop-
tosis. The study should be validated using a wider cohort of 
subjects (Varma et al., 2018).

In the same year Muguruma and colleagues proposed tar-
geted metabolomics method for the evaluation of 97 amines 
in post-mortem CSF (pCSF) (Muguruma et al., 2018). 10 
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healthy subjects and 10 AD patients were included in the 
study. The authors performed the analysis on UPLC-QqQ-
MS. The study identified several alterations in the concentra-
tion of metabolites belonged to polyamine and tryptophan-
kynurenine (Trp-Kyn) pathways in patients with AD. In 
details, The ROC curves analysis of showed AUC values of 
0.91, 0.90, 0.81, and 0.81 for Tryptophan, anthranilic acid, 
kynurenine and 3-hydroxykyurenine, respectively. In addi-
tion, abnormal levels of methionine sulfoxide, 3-methoxy-
anthranilate, cadaverine and guanine in the pCSF of AD 
subjects were found (Muguruma et al., 2018).

Nho et al. (2019) investigated the possible connection 
between peripheral metabolic concentration and central bio-
markers for AD pathophysiology (Nho et al., 2019). For the 
analysis samples from ADNI cohort were selected: 370 con-
trol, 98 SMC, 789 MCI and 305 AD. Compounds belonging 
to primary and secondary bile acid (BA) were evaluated by 
LC–MS/MS in serum samples. Other parameters were also 
evaluated during the study such as brain atrophy (magnetic 
resonance imaging) and brain glucose metabolism. The 
main results of the study showed that abnormal bile acid 
(BA) profiles were remarkably associated with structural 
and functional changes in the brain as recognized by larger 
atrophy and reduced glucose metabolism. Moreover, three 
BA ratios were highly associated with three CSF biomarkers 
including lower CSF Aβ1-42 levels (amyloid-β positivity) in 
addition to reduced cortical glucose metabolism and larger 
structural atrophy: Glycodeoxycholic acid/Cholic acid, Tau-
rodeoxycholic acid/Cholic acid, and Glycolithocholic acid/
Chenodeoxycholic acid. In conclusion, the authors suggested 
that BA signalling pathways could provide useful insights 
for the identification of protective metabolites against AD. 
However, further validation steps are required (Nho et al., 
2019).

Mahmoudian Dehkordi et al. (2019) studied the stored 
blood samples from ADNI cohort (370 control, 789 MCI and 
305 AD) to investigate the possible correlation of microbial 
imbalance and AD pathogenesis. In addition, the high number 
of studied samples allow to investigate the eventual correlation 
between this imbalance and innate immunity–related genes. 
Moreover, the authors also checked for medication use which 
is known to remarkably affect the gut microbiome and bile 
acids. Using a UPLC-QqQ-MS the authors found that the BAs 
profile was appreciably altered in AD subjects. In details, they 
detected a significant decrease in levels of the primary BA, 
Cholic acid (0.85, 95% CI 0.78–0.92; p 1.56E-04) produced 
by liver, while a significant increase of bacterially produced 
secondary BA, deoxycholic acid was noted (1.24, 95% CI 
1.11–1.39; p 1.61E-04) along with several secondary conju-
gated BAs: glycodeoxycholic acid (1.30, 95% CI 1.17–1.43; 
p 4.20E-07), taurodeoxycholic acid (1.19, 95% CI 1.08–1.30; 
3.26E-04), and glycolithocholic acid (1.33, 95% CI 1.20–1.48; 
p 9.21E-08). Furthermore, the authors also correlate the serum 

BAs concentration with CSF and neuroimaging biomarkers for 
AD. As results, they found a possible metabolic link between 
immune system and gut microbiome dysregulation and the 
increased production of cytotoxic secondary bile acids in 
AD subjects. In this frame the BAs represent a constituent 
of the gut-liver-brain axis that relates to cognition. Lastly, the 
authors highlighted the need of longitudinal studies covering 
pre-symptomatic stages to denote the influence of immune 
changes on gut microbiome composition and activity in AD 
subjects (MahmoudianDehkordi et al., 2019).

More recently, Huynh et al. (2020) carried out one of the 
most comprehensive lipidomic study of AD to date. They used 
HPLC-QqQ-MS platform to quantify 569 between lipid and 
lipid-like compounds from 32 classes and subclasses, under-
ling the importance of analyze the whole lipidome at molecu-
lar structural detail to identify crucial lipid pathways involved 
in AD and its future onset. The authors applied their workflow 
to two large independent studies: The Australian Imaging, Bio-
markers and Lifestyle (AIBL: 696 NC, 268 AD) and ADNI 
cohort (210 NC, 178 AD). After covariates (including age, sex, 
body mass index, total cholesterol, HDL-C, triglycerides, site 
of sample collection, APOE ε4 alleles, omega-3 supplementa-
tion and statin use) corrections, using a multivariate model-
ling to identify lipids important for AD diagnosis or predicting 
of future AD onset the authors observed a final concordance 
statistic (C-statistic) of 0.752 (95% CI 0.747–0.757) through 
the incorporation of 10 lipid species in the model. While, in 
the parallel analysis, where the ADNI was the discovery and 
AIBL was the validation, the disease classification model had a 
final C-statistic of 0.869 (95% CI 0.866–0.871). The predomi-
nately altered classes were the following sphingolipids: dihy-
droceramides (dhCer), trihexosylceramides (Hex3Cer), GM3 
gangliosides (GM3), GM1 gangliosides (GM1). This was also 
the first report of an association between circulating GM3 gan-
gliosides and AD. Moreover, also other lipids classes were 
altered: alkylphosphatidylcholine [PC(O)], alkenylphosphati-
dylcholine [PC(P)], alkylphosphatidylethanolamine [PE(O)], 
alkenylphosphatidylethanolamine [PE(P)], alkyldiacylglycerol 
[TG(O)]. The authors also performed further adjustments for 
MCI subjects, and in this case only the dehydrocholesteryl 
ester (DE 18:1) and two plasmalogen species had a significant 
association. Even though, this study improved the knowledge 
in the lipidomic area of research validating the results on two 
large cohorts, a population study will be required to fully 
assess model performance (Huynh et al., 2020).

3  Comparison between targeted 
and untargeted approaches

The studies reviewed in the previous sections describe the 
most recent advances in the use of metabolomics to study 
diagnostic biomarkers in biofluids and tissues from patients 
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with AD. It is important to highlight that particular care 
must be taken when human post-mortem brain tissue where 
selected for investigations. Indeed, not all post-mortem tis-
sues are satisfactory for DNA, miRNA and protein studies. 
Moreover, metabolic pathways alterations are caused by sev-
eral factors, but mostly by proteins expression levels (Ferrer 
et al., 2008). Thus, these samples must be cautious selected 
prior to use, and a possible pre-analytical bias, such as stor-
age time, should be considered and assessed.

Moreover, the metabolome is composed by many classes 
of compounds with diverse chemical properties. For these 
reasons, global extraction of all metabolites in a given sys-
tem is challenging, and the analyses, applying only one plat-
form, is almost impossible. The metabolome is often roughly 
partitioned by polarity during the extraction process, and, in 
this context the “lipidome” and “metallome” can be consid-
ered as fractions of the whole metabolome.

The term “Lipidomic” was introduced for the first time to 
describe the whole complete set of lipid species existing in a 
cell, an organ, or a biological system (Han & Gross, 2003). 
Studying the lipidome is fundamental because it varies with 
time and with the different perturbations experienced by the 
organism. At present, lipidomics has become one of the most 
important branches of omics, is a very active research field. 
From the analytical point of view the most common plat-
form used are LC–MS-based techniques (Wang et al., 2019). 
Nevertheless, due to the wide diversity of the lipid struc-
ture, there is still room for upgrade and refine the lipidomic 
approaches from sample preparation to MS analysis and data 
processing and analysis (Wang et al., 2019).

The term, “metallomics” was a newly proposed word to 
describe a field of –omic sciences that provides a compre-
hensive analysis of metal and metalloids species present in a 
biological system (Shi & Chance, 2008). Metallomics field 
includes various independent areas in trace metal investiga-
tion encompassing genomics, proteomics, and other omics-
sciences. Mass spectrometry played an important role in 
metallomics. New generation ICP-sector field mass spec-
trometer for label-free detection of trace elements, HPLC-
ICP-MS system with simultaneous/multielement detection 
could help to gain new insight in the science of biological 
trace metal (Haraguchi, 2017).

Although, there is still not an actual consensus regarding 
terminology used to classify metabolomics investigation, a 
straightforward and widespread definition that relates to the 
fact whether the researcher had or not a priori knowledge of 
the kind of metabolites to search (Broadhurst et al., 2018; 
Sussulini, 2017). Given the background, a targeted metabo-
lomics approach is defined as a quantitative analysis (abso-
lute concentrations) of a selected number of metabolites that 
might be correlated to common chemical classes or related 
to selected metabolic pathways or reaction (Broadhurst et al., 
2018; Klassen et al., 2017). This approach is not suited for 

the discovery of novel compounds or metabolites involved in 
the studied process or diseases. In addition, to carry out the 
absolute quantitation proper internal standard or a labelled 
standard is required. This process is usually time consuming 
and expensive (Fig. 2).

Alternatively, the untargeted metabolomics assay could 
assist for the discovery of novel biomarkers through the 
reproducibly detection of as many metabolites as possible 
in a biological system. An untargeted metabolomics method 
relies on the qualitative or semi quantitative analysis of the 
largest possible number of metabolites from a diversity 
of chemical and biological classes present in a biological 
matrix. Both fingerprinting and footprinting metabolomics 
belong to this definition (Broadhurst et al., 2018; Klassen 
et al., 2017). The approach is unbiased and thus particularly 
suitable in AD, where relatively poor knowledge of patho-
physiological processes occurring in the diseased brain. 
Unfortunately, the untargeted approaches did not lead to 
any validated biomarkers so far (Fig. 2). It is important to 
highlight that an intermediate assay between untargeted and 
targeted approaches is also commonly used and named semi-
targeted assay (Broadhurst et al., 2018) In this approach, a 
priori known hundreds metabolites are targeted and relative 
quantifications (one calibrations curves and one internal 
standard for multiple metabolites) are accomplished.

For AD biomarker research, the predominant choice 
of MS, compared to NMR, as analytical platform is prob-
ably due to its higher sensibility, higher range of detectable 
metabolites and high throughput (Emwas et al., 2013). MS 
platforms applied for metabolomics investigation include 
low resolution (LRMS) such as QqQ-MS (Dawson et al., 
2013) and QTrap-MS (Fortin et al., 2009; Li et el., 2019), 
or high resolution (HRMS) instruments, such as QTOF-MS 
(Marshall et al., 2008), also hyphenated with Ion mobility 
(IM) (Lapthorn et al., 2013), Q-Orbitrap-MS (Eliuk et al., 
2015) and FTICR-MS (Hecht et al., 2006). The high resolu-
tion mass spectrometry is preferable when untargeted stud-
ies will be carried out. In fact, complex mixtures usually 
contain hundreds of metabolites with close mass differences 
and a resolution of at least 0.1 mDa is necessary to allow the 
separation of all the generated ions (Marshall et al., 2008). 
Indeed, sub-ppm mass accuracy is essential for the confident 
molecule annotation. Moreover, QTOF-MS platforms have 
been hyphenated with IM. The use of IM empowers ions 
separation according to their size and shape, allowing to dif-
ferentiate isomeric and isobaric analytes. This assists a more 
robust day-to-day operation. Moreover, the separations in IM 
take place post-ionization and it happens in milliseconds, 
rather than seconds as in chromatography (Lapthorn et al., 
2013). More recently, several ion mobility-mass spectrom-
etry imaging experiments have been reported (Mesa Sanchez 
et al., 2020). Conversely, QqQ-MS or QTrap-MS are the 
work horse in targeted approach. Both instruments rely on 
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MRM (Multi Reaction Monitoring) as their most sensi-
tive and reliable method in the quantitation of metabolites. 
Nevertheless, HRMS is also capable of targeted metabo-
lite quantification, QTOF-MS in MS1 mode was applied in 
different clinical studies that showed that its performance 
is comparable to traditional MRM assays on the QqQ-MS 
instrument (Ding et al., 2015; Gertsman et al., 2014). This 
assay strategy is usually called parallel reaction monitoring 
(PRM) (Lu et al., 2008; Zhou et al., 2016). PRM-based tar-
geted metabolomics strategy was recently reported also for 
Q-Orbitrap equipment (Zhou et al., 2016).

Untargeted and Targeted metabolomics experiments dif-
fer in the flow of information and data processing (Fig. 2) 
(Goodacre et al., 2007). Prior to choose between the two 
metabolomics strategies, researchers need to focus on the 
scientific question they would like to address and a rigor-
ous experimental design should be defined (Goodacre et al., 
2007). Metabolomics analyses usually generate a large 
amount of data. To analyze this amount of data fast and 
accurate statistical and bioinformatics software or online 
platforms are used to generate biological information 
(Alonso et al., 2015). Matlab ad R sfotware, are widely used 
to carry out raw data processing and statistical analysis (Li 
et al., 2020). Among the available online platforms XCMS 

(Forsberg et al., 2018; Huan et al., 2017; Li et al., 2020) and 
Metaboanalyst are the two most widely used (Chong et al., 
2019; Li et al., 2020).

For untargeted metabolomics studies features identifica-
tion is also required, for such purpose, free databases and 
libraries, such as HMDB, KEGG, Reaxys, Chemspider, 
Metlin, or LipidMaps are used (Klassen et al., 2017). The 
listed metabolites are then used to statistically compare the 
analyzed samples and find significant impaired peaks for a 
given treatment allowing system biology investigation and 
multi-omics pathway analysis (Forsberg et al., 2018; Huan 
et al., 2017).

Although biological validation is not commonly pursued 
after completion of a metabolomics study, a validation step 
should be carried out to make a wider biological meaning 
of the results (Sussulini, 2017). Two different approaches 
could be used for validation: external validation in which 
an entire new set of samples are collected and processed; 
alternatively, internal validation could be carried out. The 
internal validation is a follow-up of the preliminary results 
of the untargeted metabolomics investigation, where selected 
metabolites are quantitatively analyzed in the same sample 
set. However, external validation is recommended (Sus-
sulini, 2017).

Fig. 2  Untargeted and targeted metabolomics workflows using LC–MS platform
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Applications of current diagnostic tools strongly suggests 
that genes dysregulation, different expression of miRNA in 
AD subjects, and metabolic network alterations contribute 
to disease development (Navas-Carrillo et al., 2020; Wilkins 
et al., 2018). The altered patterns include post-translational 
functional modifications of proteins, lipid and amino acid 
and metals metabolism, and metabolic pathways involved 
in glucose and energy substrate utilization (Navas-Carrillo 
et al., 2020; Wilkins et al., 2018). Developing a multi-omics 
platform that links transcriptomic, proteomic, lipidomic, 
metallomics and metabolomics data can shed light on dis-
ease mechanisms. Analytical methods have been devel-
oped by omics scientists for multi-omics data acquisition. 
For instance, to merge proteomics and large-scale targeted 
metabolomics, Liu and coauthors proposed and verified 
liquid chromatography-hydrophilic interaction liquid chro-
matography-tailored selected reaction monitoring (RPLC-
HILIC-tailored SRM) as a viable choice for large-scale tar-
geted bi-omics (Liu et al., 2019). On the other hand, an equal 
number of efforts have been made by bioinformaticians to 
develop reliable workflows for system biology (Huan et al., 
2017; Li, 2020). This joint endeavour may factually lead to 
novel biomarkers for the diagnosis, prognosis, and therapy 
monitoring.

Despite the impressive steps forward done in clinical 
metabolomics in the last decades, several pitfalls remain 
to be solved in the entire research workflow (Kohler et al., 
2016). First, a proper experimental design is fundamental to 
obtain accurate data that could lead to meaningful biologi-
cal results. Furthermore, optimal condition for collection, 
handling, storage, and preparation of the samples are also 
crucial for the analysis. Nevertheless, sample preparation is 
a challenging bottleneck because, usually, different steps are 
carried out by multiple research laboratories, and no stand-
ardized procedures are now available.

Unreliable sampling leads to high analytical variability 
increasing the systematic errors of data acquisition, hinder-
ing the comparisons between populations. The treatment 
of systematic errors is very challenging in untargeted MS-
based metabolomics approaches where unknown metabo-
lites are analyzed and potential data artefacts could arise. 
Data analysis became also more complex when multi-omics 
investigations are performed. Finally, great efforts are usu-
ally made for the discovery of novel biomarkers for the AD. 
The literature is overfull with biomarker candidates that have 
never reached the validation phase. Thus, multi-disciplinary 
studies and collaborations between institutions, pharmaceu-
tical agencies, and companies, are crucial to validate and go 
beyond the actual limits.

Moreover, standardized guidelines for study design and 
standard protocols for sample collection, pretreatment and 
storage for multi-layer omics analysis should be established 
(Long et al., 2020).

4  Perspective

Metabolites represent the final stage of genes- and pro-
tein-based processes. They can be studied through metab-
olomics workflow, disclosing the connection between 
the genotype and the phenotype (Fiehn, 2002). Metabo-
lomics can monitor dynamic changes into biological 
systems suppling suitable information for clinical appli-
cations and translational medicine (Pagani et al., 2017; 
Trushina et  al., 2013). The progress of “–omics” sci-
ences gave a boost the development of the personalized 
medicine. This approach to medicine has the potential to 
transform healthcare, shifting from the present holistic 
focus to the individual focus. Indeed, “-omics” sciences 
are capable to take into account the individual differences 
in genetics, through genomics, and connect them to the 
phenotype, through metabolomics, lipidomics, and met-
allomics (Irvine & Nguyen, 2019). Nevertheless, future 
challenges for this science field will include harmoniza-
tion of disparate datasets, protocols standardizations and 
subsequent algorithmic analysis to get novel insights. In 
fact, the Metabolomics Society with the Metabolomics 
Standards Initiative (MSI) and other authors supports the 
need for standardized reporting of metadata or informa-
tion describing large-scale “-omics” data sets since 2007 
(Sumner et al., 2007). In this regard, during the reviewing 
of LC–MS-based metabolomics studies presented in this 
manuscript we encountered little uniformity and relatively 
little rigor in how researchers select, assess or present their 
candidate biomarkers. This could give rise to complication 
in data comparison and validation. Thus, our hope is that 
all the researcher involved in the filed could adopt standard 
procedure to report and share their data following already 
proposed guidelines (Sumner et al., 2007; Xia et al., 2013).

Moreover, also the reliability and the reproducibility of 
extraction and analysis process still need to be improved 
and standardized. Indeed, the scientific community has 
made important advances in this regard (Long et  al., 
2020). It is important to highlight that the harmonization 
of laboratory procedures, such as the standardization of 
extraction protocol, sample’s matrices, and other pre- and 
post-analytical steps, is a fundamental step to obtain mean-
ingful biological results (Emwas et al., 2013; Gelzo et al., 
2012; Lindon et al., 1999; Long et al., 2020).

In AD research, several quantitative data have been 
collected on compounds suspected to play a role in the 
disease applying targeted approaches. Markers with differ-
ent chemical nature including, biogenic amines, oxylipins, 
lipid mediators, amino acids, metals and oxidative stress 
markers have been identified as reported in Table 1. Two of 
the most recent works by Nho et al. (2019) and Mahmou-
dian Dehkordi et al. (2019) disclose the importance of 
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Table 1  AD-related metabolomics studies for biomarker discovery from 2009 to 2020

Sample Analytical platform Number of samples Proposed biomarkers References

Untargeted metabolomics
 Plasma UPLC-QTOF-MS 10 NC

28 AD
Lipid profile Greenberg et al. (2009)

 Plasma UPLC-QqQ-MS 20 NC
20 AD

LPCs, sphingosine and trypto-
phan

Li et al. (2010)

 Plasma QqQ-MS 26 NC
26 AD

Sphingomyelins and ceramides Han et al. (2011)

 Plasma UPLC-TOF–MS 46 NC
91 MCI
89 AD

Phosphatidylcholine, plasmalo-
gens, sphingomyelins, sterols 
and Dihydroxybutanoic

Oresic et al. (2011)

 CSF CE-TOF–MS Screening:73 AD (pre-
dictor model genera-
tion)

Validation: 12 AD

Choline, dimethylarginine, 
arginine, valine, proline, serine, 
histidine, creatine, carnitine, 
and suberylglycine

Ibanez et al. (2012)

 Brain tissue UPLC-TOF–MS 10 AD vs. 10 controls Spermine and spermidine Inoue et al. (2013)
 Plasma UPLC-QTOF-MS Screening:10 NC

12 MCI
13 AD
Validation:49 NC
50 MCI
42 AD

Phosphatidylcholines (PC) Whiley et al. (2014)

 Serum UPLC-QTOF-MS
ICP-MS

17 NC
19 AD

Alteration in phosphatidylcho-
lines, phosphatidylethano-
lamines, plasmenylcholines, 
plasmenylethanolamines

González-Domínguez et al. 
(2014)

 Plasma UPLC-QTOF-MS 57 NC
58 MCI
57 AD

Panel for AD: arachidonic acid, 
N,N-dimethylglycine, thymine, 
glutamine, glutamic acid, and 
cytidine

Panel for MCI: thymine, ara-
chidonic acid, 2-aminoadipic 
acid, N,N-dimethylglycine, and 
5,8-tetradecadienoic acid for 
MCI

Wang et al. (2014)

 Brain tissue;
 Cerebrospinal fluid

UPLC-QqQ-MS 10 NC
10 AD

9 Carboxylic acids
15 Amines

Takayama et al., (2015, 2019)

 Brain tissue UPLC-QTOF-MS 34 NC
58 AD

dGMP, glycine, xanthosine, 
inosine diphosphate, guanine, 
deoxyguanosine

Ansoleaga et al. (2015)

 Frontal cortex UPLC-QTOF-MS 19 NC
21 AD

Thirty-four altered metabolites 
belonging to six metabolic 
pathways

Paglia et al. (2016a)

 Serum UPLC-QTOF-MS 45 NC
17 MCI
75 AD

Oleamide, histidine, monoglyc-
erides,

phenylacetylglutamine

González-Domínguez et al. 
(2016)

 Saliva FUPLC-TOF–MS 583 MCI
660 AD

Cytidine, sphinganine 1-phos-
phate and 3-dehydrocarnitine

Liang et al. (2016)

 Plasma UPLC-QTOF-MS 152 NC
148 AD

PC 40:4 Proitsi et al. (2017)

 Saliva HPLC-FTICR-MS Screening: 35 NC
25 MCI
22 AD
Validation: 10 NC
10 MCI
7 AD

Phenylalanyl-proline, urocanic 
acid, phenylalanyl-phenylala-
nine, tryptophyl-tyrosine

Huan et al. (2018)
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Table 1  (continued)

Sample Analytical platform Number of samples Proposed biomarkers References

 Serum and plasma UPLC-QTOF-MS 226 NC
392 MCI
188 AD (ADNI Cohort)

MUFA-containing lipids were 
positively associated with the 
brain atrophy and tau accumu-
lation. PUFA-containing lipids 
were negatively associated with 
AD

Barupal et al. (2019)

Targeted metabolomics
 Cerebral fluid HPLC-QqQ-MS 79 AD vs. 51 controls Combinations of three to five 

metabolites, including cortisol, 
cysteine, uridine and various 
amino acids

Czech et al. (2012)

 Brain tissues HPLC–MS/MS 23 NC
12 AD

L-arginine Liu et al. (2014)

 Plasma UPLC-QTrap-MS 35 NC
33 MCI
43 AD

Ratio of PC 34:4 and lysoPC 18:2 Klavins et al. (2015)

 Plasma Orbitrap-MS 51 NC
77 MCI
90 AD

Diacylglycerol levels Wood et al. (2016)

 Plasma HPLC-QTrap-MS 99 NC
93 AD
(BLSA cohort)

Phospholipids with fatty acid 
chains from C30 to C44

Casanova et al. (2016)

 Plasma ICP-MS 40 NC
24 SMC
20 MCI
34 AD

Manganese, iron, copper, zinc, 
selenium, thallium, antimony, 
mercury, vanadium and molyb-
denum

Paglia et al. (2016b)

 Serum QTrap-MS 46 NC
24 SMC
18 MCI
29 AD

Acetyl-L-carnitine and acyl-L-
carnitine levels

Cristofano et al. (2016)

 Serum FIA-QTrap-MS 46 NC
24 SMC
18 MCI
29 AD

Glutamate, aspartate, phenylala-
nine of citrulline, argininosuc-
cinate, homocitrulline

Corso et al. (2017)

 Plasma UPLC-QTrap-MS 1974 NC
68 AD
(FO cohort)

Anthranilic acid, glutamic acid, 
taurine, hypoxanthine

Chauraki et al. (2017)

 Serum UPLC-QqQ-MS 199 NC
356 MCI
175 AD
(ADNI)

Generation of metabolomics 
dataset for applications in phar-
macometabolomic investigation

John-Williams et al. (2017)

 Plasma UPLC-QTrap-MS 30 NC
20 MCI
30 AD

Glycochenodeoxycholic acid, gly-
codeoxycholic acid, glycolitho-
cholic acid

Marksteiner et al. (2018)

 Brain and blood samples HPLC-QTrap-MS Screening: 14 NC
ASYMAD 15
15 AD
(BLSA, Brain tissue);
Validation:115 NC
92 AD
(BLSA)
216 NC
366 MCI
185 AD
(ADNI)

Sphingomyelin (SM) and 
hydroxy-sphingomyelin (H-SM)

Varma et al. (2018)

 pCSF UPLC-QqQ-MS 10 NC
10 AD

Methionine sulfoxide, 3-meth-
oxy-anthranilate, cadaverine, 
guanine

Muguruma et al. (2018)
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the primary and secondary bile acids dysregulation in 
AD patients. Both studies used the large ADNI cohort for 
their investigation. These results are in agreement with 
the recent findings by Baloni et al. (2020) that studied 
alterations in cholesterol and bile acid metabolism in AD. 
The authors used a systems biology approach that reveal 
that taurine transport, bile acid synthesis, and cholesterol 
metabolism were abnormal in AD subjects. Furthermore, 
the concentration of some bile acids cannot be explained 
only by enzymatic synthesis, showing that they may be 
produced by the gut microbiome and then transported to 
the brain (Baloni et al., 2020).

Another important insight that arose from the reviewed 
studies, is that alteration of lipids status and related com-
pounds, seem to play a crucial role in AD pathophysiology 
(Barupal et al., 2019; Casanova et al., 2016; Whiley et al., 
2014, Gonzalez-Dominquez et al., 2014; Huynh et al., 
2020; Klanvis et al., 2015; Liang et al., 2016; Proitsi et al., 
2017; Varma et al., 2018; Wood et al., 2016). Blood lipid 
profiling using both targeted and untargeted lipidomics-
based approaches have been carried out (Astarita et al., 
2018; Proitsi et al., 2017; Sandra et al., 2010) and further 
rigorous studies could actually unlock poor understood 
biochemical pathway in AD development.

All these data, together with previous available knowl-
edge on the pathophysiological mechanisms involved in 
AD, could give a huge contribution in the development of 
reliable diagnostic biomarkers.

In addition, our view is to favor the targeted approaches 
to validate the previous proposed biomarkers. Many 

different metabolites have been found to be altered in 
patients with Alzheimer, however, these potential bio-
markers should undergo an external validation process.

Besides, the available metabolomics data should be 
also integrated with those obtained from clinics, genetics, 
imaging etc., offering new opportunities to improve diag-
nosis AD. As recently done by Damotte and co-authors 
that have built models to accurately distinguish between 
AD and cognitively normal (CN) individuals (Damotte 
et al., 2020).

Finally, recently developed imaging mass spectrom-
etry, that combine the screening capability of thousands 
of metabolites in a single experiment of MS with the 
possibility of spatial visualization of the selected sample 
sections is an important analytical tool in clinical inves-
tigation (Buchberger et al., 2018; McDonnell & Heeren, 
2007). Indeed, MS Imaging has been used for the biologi-
cal characterization of the lipids changes AD patients in 
comparison with healthy subjects (Hong et al., 2017; de 
San Roman et al., 2017). Only with this practical approach 
we could discard or select appropriate biomarker within 
those already reported.
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Table 1  (continued)

Sample Analytical platform Number of samples Proposed biomarkers References

 Serum LC–MS/MS 370 NC
90 SMC
789 MCI
305 AD
(ADNI)

Bile Acids ratios Nho et al. (2019)

 Serum UPLC-QqQ-MS 370 NC
789 MCI
305 AD
(ADNI)

Low concentrations of a pri-
mary cholic acid. Increased 
concentration of deoxycholic 
acid, and its glycine and taurine 
conjugated forms

Mahmoudian Dehkordi et al. 
(2019)

 Plasma and serum HPLC-QqQ-MS ADNI:
210 NC
178 AD
AIBL:
696 NC
268 AD

Strong associations between 218 
plasma lipid species and AD

Huynh et al. (2020)

UPCL ultra performance liquid chromatography, HPLC high performance liquid chromatography, FUPLC fast ultrahigh performance liq-
uid chromatography, QTOF quadrupole time of flight, FTICR fourier transform ion cyclotron resonance spectrometer, QqQ triple quadruple, 
QTrap triple quadrupole linear ion trap, ICP-MS inductively coupled plasma mass spectrometry, pCSF post-mortem cerebrospinal fluid, ASY-
MAD asymptomatic Alzheimer’s disease, ADNI Alzheimer’s disease neuroimaging initiative, BLSA Baltimore longitudinal study of aging, FO 
framingham offspring, AIBL Australian imaging, biomarkers and lifestyle
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